# Route 138 <br> Priority Corridor Study Milton, MA 



# Route 138 Priority Corridor Study 

Project Manager<br>Seth Asante<br>Project Principal<br>Mark Abbott<br>Data Analysts<br>Benjamin Erban<br>Kathy Jacob<br>Chen Chen<br>Graphics<br>Kenneth Dumas<br>Kim DeLauri<br>Cover Design<br>Jane Gillis

Milton, Massachusetts

The preparation of this document was supported by Federal Highway Administration through
MPO 3CPL FFY18 Contract \#1011725
MPO §5303 FFY18 Contract \#102694

Central Transportation Planning Staff Directed by the Boston Region Metropolitan Planning Organization. The MPO is composed of state and regional agencies and authorities, and local governments.


To request additional copies of this document or copies in an accessible format, contact:

Central Transportation Planning Staff State Transportation Building
Ten Park Plaza, Suite 2150
Boston, Massachusetts 02116
(857) 702-3700
(617) 570-9192 (fax)
(617) 570-9193 (TTY)
ctps@ctps.org
www.bostonmpo.org

## Abstract

The Boston Region Metropolitan Planning Organization (MPO) selected Route 138 in the Town of Milton as the subject of a corridor study in federal fiscal year (FFY) 2018. The Route 138 Priority Corridor Study focuses on one of the locations identified in a regional needs assessment-conducted as part of the MPO's Long-Range Transportation Plan, Charting Progress to 2040—used to guide investment decisions regarding transportation infrastructure improvements in the Boston region. The MPO prioritized this location for study after considering a number of factors: the need to address poor safety conditions and traffic congestion; the desire to enhance multimodal transportation; the need to maintain regional travel capacity; the interest in ensuring that, over time, corridor studies are funded in all subregions of the MPO's planning area; and the potential for recommendations from the study to be implemented. This report details the analyses of the existing conditions and assessments of safety and operational problems in the corridor, discusses options for roadway improvements, and makes recommendations for implementing improvements.
TABLE OF CONTENTS PAGE
Abstract ..... 3
Executive Summary ..... 9
ES. 1 Background ..... 9
ES. 2 Existing Conditions ..... 9
ES. 3 Proposed Improvements ..... 10
Blue Hills Reservation Area (Southern Segment) ..... 10
Brush Hill Area (Middle Segment) ..... 11
Tucker Neighborhood (Northern Segment) ..... 12
ES. 4 Conclusion. ..... 13
Chapter 1—Introduction ..... 15
1.1 Origin of Study ..... 15
Chapter 2—Study Location, Goals, and Public Participation ..... 17
2.1 Selection Process ..... 17
2.2 Study Vision and Goals ..... 18
2.3 Public Participation ..... 18
Chapter 3-Characteristics of the Corridor ..... 19
3.1 Roadway ..... 19
3.2 Signalized Intersections ..... 19
3.2.1 Route 138 and Brush Hill Road Intersection ..... 20
3.2.2 Route 138 and Milton Street/Dollar Lane Intersection ..... 20
3.2.3 Route 138 and Atherton Street/Bradlee Road Intersection ..... 20
3.2.4 Route 138 and Robbins Street Intersection ..... 21
3.2.5 Route 138 and Cheever Street/Blue Hill Terrace Street Intersection ..... 21
3.2.6 Route 138 and Brook Road Intersection ..... 21
3.3 Unsignalized Intersections. ..... 22
3.3.1 Route 138 and Neponset Valley Parkway Intersection ..... 22
3.3.2 Route 138 and Blue Jay Way Intersection ..... 22
3.3.3 Route 138 and Aberdeen Road Intersection ..... 22
3.3.4 Route 138 and Oak Street Intersection ..... 22
3.4 Land Use ..... 23
3.5 Planned Projects and Studies ..... 23
3.5.1 Roadway Improvements on Route 138 in Canton and Milton ..... 23
3.5.2 Road Safety Audit, Route 138 at Atherton Street/Bradlee Road and Milton Street/Dollar Lane ..... 24
Chapter 4-Existing Conditions ..... 25
4.1 Data Collection ..... 25
4.2 Daily Traffic Volumes ..... 25
4.3 Turning Movement Volumes ..... 25
4.4 Pedestrian and Bicycle Volumes ..... 26
4.5 Pedestrian Level of Service ..... 27
4.6 Spot Speeds ..... 27
4.7 Signal Timing and Layout Information ..... 27
4.8 Transit Services ..... 28
Chapter 5-Existing Conditions Analyses ..... 29
5.1 Safety Analysis ..... 29
5.1.1 Summary of Crash Data ..... 29
5.1.2 HSM Methodology: Expected Crashes ..... 29
5.1.3 Collision Diagrams ..... 32
5.1.4 Road Safety Audit. ..... 34
5.2 Traffic Operations Analysis ..... 34
5.2.1 Intersection Level-of-Service Analysis ..... 34
5.2.2 Traffic Signal Warrant Analysis ..... 35
Chapter 6-Community Engagement ..... 39
6.1 Town Survey ..... 39
6.2 Milton Wikimap Feedback. ..... 40
Chapter 7—Improvement Concepts ..... 41
7.1 Route 138 Segment in the Blue Hills Reservation Area ..... 41
7.2.1 Alternative 1: Three-Lane Cross-Section with a Multi-Use Path on the East Side of the Roadway ..... 41
7.2.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks ..... 42
7.2.2 Redesign of the Canton Avenue and Blue Hill Avenue Intersection 42
7.3 Route 138 Segment in the Brush Hill Area ..... 43
7.3.1 Alternative 1: Two-Lane Cross-Section with a Multi-Use Path on the East Side of the Roadway ..... 43
7.3.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks ..... 43
7.3.3 Additional Improvements at Selected Intersections ..... 44
7.4 Route 138 Segment in the Tucker Neighborhood ..... 48
7.4.1 Alternative 1: Two-Lane Cross-Section with a Two-Way Bike Lane or Multi-use Path on the East Side of the Roadway ..... 48
7.4.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks ..... 48
7.4.3 Additional Improvements at Selected Intersections ..... 49
Chapter 8-Performance of Future Conditions ..... 51
8.1 Intersection Level-of-Service (LOS) Performance ..... 51
8.2 Pedestrian Level-of-Service Performance with Improvements ..... 51
8.3 Safety Impacts of Proposed Improvemetns ..... 51
Chapter 9—Conclusion and Next Steps ..... 55
9.1 Time Frame and Costs for the Improvements ..... 55
9.2 Benefits of the Study ..... 55
9.3 Project Implementation ..... 56
9.4 Project Development ..... 56
TABLES
Table 1 Pedestrian Crossing by Type ..... 26
Table 2 Potential for Safety Improvement ..... 31
Table 3 Comprehensive Costs of Crashes ..... 32
Table 4 Intersection Level-of-Service Criteria ..... 34
Table 5 Summary of Signal Warrant Analysis ..... 36
Table 6 Route 138 at Brush Hill Road ..... 46
Table 7 Route 138 at Neponset Valley Parkway ..... 46
Table 8 Route 138 at Milton Street/Dollar Lane Intersection ..... 47
Table 9 Route 138 at Atherton Street/Bradlee Road Intersection ..... 47
Table 10 Route 138 at Robbins Street ..... 49
Table 111 Route 138 at Cheever Street/Blue Hill Terrace Street ..... 49
Table 12 Route 138 at Aberdeen Road and Oak Street ..... 50
Table 13 Route 138 at Brook Road ..... 50

## FIGURES

Figure 1. Regional Map of Study Area and Nearby Roadways
Figure 2. Jurisdiction of Roadways in the Route 138 Study Area
Figure 3. Width of Right of Way and Shoulders on Route 138 in Milton
Figure 4. Locations of Existing Sidewalks on Route 138 in Milton
Figure 5. Study Intersections on Route 138 in Milton
Figure 6. Land Use and Zoning Map along Route 138 in Milton
Figure 7. Weekday and Weekend Average Traffic Volumes on Route 138 in Milton
Figure 8. Weekday and Weekend Hourly Traffic-Volume Distribution on Route 138 in Milton
Figure 9. Turning Movement Volumes on Route 138 in Milton Weekday AM and PM Peak Hour
Figure 10. Turning Movement Volumes on Route 138 in Milton Weekend AM and PM Peak Hour
Figure 11. Peak Period Pedestrian Volumes
Figure 12. Peak Period Bicycle Volume
Figure 13. Observed Spot Speeds and Posted Speed Limits on Route 138 in Milton
Figure 14. Crashes by Intersection and Segment (2011-2015)
Figure 15. Observed and Expected Crashes by Intersection and Segment
Figure 16. Existing Conditions Weekday AM Peak Hour Intersection Level of Service
Figure 17. Existing Conditions Weekday PM Peak Hour Intersection Level of Service
Figure 18. Existing Conditions Weekend PM Peak Hour Intersection Level of Service
Figure 19. Survey Questions and Number of Respondents
Figure 20. Improvement Concept: Alternative 1- Multi-Use Path on East Side of Roadway: Blue Hills Reservation South Parking Facility Area
Figure 21. Improvement Concept: Alternative 1 - Multi-Use Path on East Side of Roadway: Green Street to Canton Avenue
Figure 22. Improvement Concept: Alternative 2 - Dual Bike Lanes and Sidewalks: Blue Hills Reservation South Parking Facility Area
Figure 23. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks:
Route 138 at Green Street and Canton Avenue
Figure 24. Improvement Concept: Alternative 1 - Multi-Use Path on East Side of Roadway: Brush Hill Road
Figure 25. Improvement Concept: Alternative 1- Multi-Use Path on East Side of Roadway: Neponset Valley Parkway
Figure 26. Improvement Concept: Alternative 1- Multi-Use Path on East Side of Roadway: Milton Street and Dollar Lane
Figure 27. Improvement Concept: Alternative 1- Multi-Use Path on East Side of Roadway Only: Blue Jay Way (Curry College)
Figure 28. Improvement Concept: Alternative 1- Multi-Use Path on East Side of Roadway Only: Bradlee Road and Atherton Street

Figure 29. Improvement Concept: Alternative 1 - Two-Way Bicycle Lane on East Side of Roadway: Robbins Street
Figure 30. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Brush Hill Road
Figure 31. Improvement Concept: Alternative 2: Dual Bicycle Lanes and Sidewalks: Neponset Valley Parkway
Figure 32. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Milton Street and Dollar Lane
Figure 33. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Blue Jay Way (Curry College)
Figure 34. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Bradlee Road and Atherton Street
Figure 35. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Robbins Street
Figure 36. Improvement Concept: Alternative 1- Two-Way Bike Lane on the East Side of the Roadway: Cheever Street and Blue Hill Terrace Street
Figure 37. Improvement Concept: Alternative 1 - Two-Way Bicycle Lane on the East Side of Roadway: Aberdeen Road and Oak Street
Figure 38. Improvement Concept: Alternative 1: Two-Way Bicycle Lane on East Side of Roadway: Brook Road
Figure 39. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Cheever Street and Blue Hill Terrace Street
Figure 40. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Aberdeen Road and Oak Street
Figure 41. Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks: Brook Road
Figure 42. Future Conditions: Weekday AM Peak Hour Intersection Level of Service Figure 43. Future Conditions: Weekday PM Peak Hour Intersection Level of Service Figure 44. Future Conditions: Weekend PM Peak Hour Intersection Level of Service

## APPENDIXES

Appendix A: Comments and Selection Process
Appendix B: Traffic Data Collection
Appendix C: Traffic Signal Data
Appendix D: Bus Schedules
Appendix E: Traffic Safety Data
Appendix F: Level of Service Analysis
Appendix G: Survey Comments
Appendix H: MassDOT Highway Division Project Development Process

## Executive Summary

## ES. 1 BACKGROUND

The Boston Region Metropolitan Planning Organization (MPO) selected Route 138 in the Town of Milton as the subject of a corridor study in federal fiscal year (FFY) 2018. The Route 138 Priority Corridor Study focuses on one of the locations identified in a regional needs assessment-conducted as part of the MPO's Long-Range Transportation Plan (LRTP), Charting Progress to 2040used to guide investment decisions regarding transportation infrastructure improvements in the Boston region.

The MPO prioritized this location for study after considering a number of factors, including the need to address poor safety conditions and traffic congestion; desire to enhance multimodal transportation; need to maintain regional travel capacity; and the potential to implement the study recommendations. The report analyzes the existing conditions, assesses safety and operational problems in the corridor, and discusses concepts for roadway improvements.

## ES. 2 EXISTING CONDITIONS

Route 138 in Milton is a two-way, two-lane principal arterial under the jurisdiction of the Massachusetts Department of Transportation (MassDOT). The Town of Milton has jurisdiction of the majority of the crossing streets. The Department of Conservation and Recreation (DCR) has jurisdiction of Green Street and Neponset Valley Parkway; DCR also oversees the Blue Hills Recreational area.

The MassDOT Highway Division, Town of Milton, and Boston Region MPO collected and assembled the data used to assess the existing conditions and identify problems in the corridor, which included vehicular, pedestrian, and bicycle volumes, traffic speeds, crashes, zoning and land uses, and community input data (community survey).

Our analysis rates the corridor as poor based on the quality of vehicular, pedestrian, and bicycle travel it provides. Many locations in the study area experienced a greater-than-expected number of crashes; and two intersections are on the list of Highway Safety Improvement Program (HSIP) crash clusters. ${ }^{1}$ The roadway is considered unfriendly for pedestrians and bicyclists because of

[^0]- A lack of connected and continuous bicycle lanes
- Gaps in the sidewalk network
- Narrow and substandard sidewalks
- A lack of crosswalks at midblock locations
- Obstructions in sidewalks
- Poor street lighting
- High vehicle speeds
- Roadway configurations that create inequity by placing too much emphasis on vehicular use

The traffic safety and operational problems facing roadway users include, but are not limited to

- High vehicular speeds
- High-crash locations
- High volumes of traffic
- Inadequate capacity at some of the signalized intersections
- A lack of left-turn lanes
- Outdated signal-timing plans
- Outdated signal equipment
- Drainage problems and pavement conditions
- Motorists' difficulty in turning left or pulling out of side streets and business driveways


## ES. 3 PROPOSED IMPROVEMENTS

MPO staff, working with an advisory task force (representatives from MassDOT and Town of Milton), developed Complete Streets concepts for the corridor. Presently, MassDOT project \#608484: Canton-Milton Roadway Improvements on Route 138 , which had already been programmed in the 2020 Transportation Improvement Program (TIP), addresses roadway and related work on Route 138 in Canton and Milton. For the purposes of this study, staff divided the corridor into three segments-southern, middle, and northern-and developed improvement concepts for each segment.

## Blue Hills Reservation Area (Southern Segment)

- Alternative 1 consists of a three-lane cross-section-one southbound lane and two northbound lanes and a multi-use path on the east side of the roadway. Figure ES 1 shows the improvements in Alternative 1. The two northbound lanes would eliminate the merging from two lanes to one at
the Canton Park-and-Ride lot, and continue as a right-turn-only lane onto the Canton Avenue branch.
- Alternative 2 maintains the existing roadway cross-section-one travel lane in each direction and a bicycle lane and sidewalk on either side of the roadway. Figure ES 1 shows the improvements in Alternative 2.
- Both Alternatives 1 and 2 provide a pedestrian- and bicyclist-friendly environment. However, Alternative 1, improves safety and traffic flow by eliminating the merging of the two northbound lanes into one lane just north of the intersection of Route 138 and Royall Street/Blue Hill River Road; and avoids relocating utility poles on the west side of the roadway, which could impact the project schedule because of right-of-way concerns. Alternative 2, on the other hand increases access and connectivity to places for pedestrian and bicyclists and reduces pedestrian and bicycle crossings on Route 138.


## Brush Hill Area (Middle Segment)

- Alternative 1 maintains the two-lane cross-section, and builds a multi-use path on the east side of the roadway. Figure ES 1 shows the improvement concepts in Alternative 1.
- Alternative 2 maintains the existing two-way roadway cross-section and builds a bicycle lane and sidewalk on either side of the roadway. Figure ES 1 shows the improvements in Alternative 2.

Both Alternatives 1 and 2 provide a pedestrian- and bicyclist-friendly environment. However, Alternative 1 avoids relocating utility poles on the west side of the roadway, which could impact the project schedule because of right-ofway concerns. Alternative 1 also fits the character of the neighborhood and would encourage more people to bicycle and walk. Alternative 2 has better connectivity and reduces pedestrian and bicycle crossings.

Additional improvement concepts that could be incorporated into either alternative include:

- Considering installation of a northbound left-turn lane on Route 138 at Brush Hill Road to reduce the impact of weaving traffic on the westbound approach of Brush Hill Road
- Optimizing traffic signal timings and adjusting clearance intervals of traffic signals
- Upgrading traffic signal equipment including, signal controller, signal poles, pedestrian signals, detection, emergency vehicle preemption system, and retro reflective backplates
- Aligning signal heads to improve visibility
- Improving street lighting to increase safety and security for users
- Trimming vegetation on the approaches to improve visibility of the signal heads
- Installing a Route 138 northbound left-turn lane at the intersections with Neponset Valley Parkway and Milton Street
- Installing "(RED) SIGNAL AHEAD" advance warning signs on Route 138 to warn drivers of upcoming traffic lights at Milton Street/Dollar Lane and Atherton Street/Bradlee Road
- Widening the southbound receiving approach on Route 138 at Brush Hill Road to two lanes
- Installing crosswalk and curb ramps to MassDOT standards
- Adding do-not-block-intersection crosshatch pavement markings at the intersections of Route 138 at Brush Hill Road, Neponset Valley Parkway, and Milton Street/Dollar Lane to prevent queues from blocking the intersection
- Opening the island in front of the fire station to provide emergency vehicles with direct access to the intersection
- Reducing width of the driveways to the fire station and adding signage/pavement markings to limit access to fire/rescue equipment only, and prevent vehicles traveling between the Bradlee Road and Atherton Street approaches to the west of the intersection from cutting through the fire station


## Tucker Neighborhood (Northern Segment)

- Alternative 1 maintains the two-lane cross-section and sidewalks on either side of the roadway and convert one of the 10 -foot shoulders into a twoway bike lane or a multi-use path. The other shoulder would continue to provide designated on-street parking for residents. Figure ES 1 shows the improvements in Alternative 1.
- Alternative 2 also maintains the existing two-way roadway cross-section and sidewalks on either side of the roadway, and converts the existing shoulders into buffered bicycle lanes. Figure ES 1 shows the improvement concepts in Alternative 2.

In this segment, both Alternatives 1 and 2 provide a pedestrian- and bicyclistfriendly environment. However, Alternative 1 addresses parking needs of the residents and Alternative 2 does not.

- Additional improvement concepts that could be incorporated into either alternative include
o Optimizing traffic signal timings and adjusting clearance intervals of traffic signals
o Upgrading signal equipment including signal controller, poles, pedestrian signals, detection, emergency vehicle preemption system, and retro reflective backplates
o Installing a pedestrian-activated midblock crossing signal at Oak Street to provide safer crossing for students or moving the pedestrian crossing signal at Aberdeen Road to Tucker Street to serve both students and church goers
o Installing bump-outs or curb extensions to reduce crossing distance and improve visibility at the intersections
o Improving street lighting to increase safety and security for users
o Installing curb ramps to MassDOT standards


## ES. 4 CONCLUSION

The concepts developed in this study provide the Town of Milton, MassDOT, and other stakeholders an opportunity to review, at a conceptual level, options for addressing the deficiencies in the corridor, before committing design and engineering funds to a roadway improvement project. If implemented, the proposed improvements offered in this report would increase traffic safety, make traffic operations more efficient, and modernize the roadway to accommodate all users. MassDOT, DCR, and the Town of Milton are not obligated to make these improvements, but if they were to seek improvements on this roadway, this document would be a good guide.

Chapter 7 describes in detail short-, medium-, and long-term improvements, as well as cost estimates for each improvement, categorized as low (less than $\$ 10,000$ ), medium ( $\$ 10,000$ to $\$ 500,000$ ), and high ( $\$ 500,000$ or more). The short-term improvements, usually low cost, are relatively uncomplicated and inexpensive to implement, and require minimal design efforts. They include installing signs; pavement markings; in-pavement detection for bicyclists; countdown timers for pedestrians; high-visibility crosswalks; traffic signal retiming; and upgrades to signal-head backplates.

The medium-term improvements, usually low-to-medium cost, are more complicated than their short-term counterparts and require more funding resources and design and engineering efforts. Medium-term improvements include installing pedestrian-activated midblock crosswalks; reconfiguring existing roadway shoulders into bicycle lanes; improving drainage; upgrading signal equipment to include an Opticom system for emergency preemption; reconstructing substandard sidewalks; modifying geometry; and managing driveway access.

The long-term improvements, usually high-cost, typically require more design and engineering efforts, environmental permitting, and more funding resources. They include improving street lights; installing new sidewalks; reconstructing intersections to improve safety; managing capacity and mobility; and installing new traffic signals.

This study aligns with the Boston Region MPO's goals of modernizing roadways to improve capacity and mobility by expanding the quantity and quality of walking and bicycling infrastructure; making transit service more efficient; reducing congestion; increasing safety on the region's highway system; and preserving the transportation system.

## Chapter 1-Introduction

### 1.1 ORIGIN OF STUDY

The Boston Region Metropolitan Planning Organization (MPO) has been conducting studies of roadway corridors identified through the Needs Assessment of the Long-Range Transportation Plan (LRTP) as needing infrastructure improvements to address safety, mobility, and traffic operations problems. ${ }^{2}$ Municipalities in the region have been receptive to these studies, which provide them with the opportunity to review, at a conceptual level, what is required to improve a specific arterial segment before committing design and engineering funds to a project. After reviewing their options, if a city or town initiates a project that qualifies for state and federal funds, the study's documentation may be useful to both MassDOT and the project proponent. The information provided in the study's report is useful for completing MassDOT Highway Division's project initiation forms, identifying problems along the corridor, justifying the need for improvements, allocating funding, and providing improvement concepts to advance into the preliminary design and engineering stages.

MPO staff identified a number of arterial roadway segments that should be prioritized because they require maintenance, modernization, and safety and mobility improvements; these roadway segments are listed in the LRTP. To address the problems that exist in some of these arterial segments, a study was included in the federal fiscal year (FFY) 2018 Unified Planning Work Program (UPWP). ${ }^{3}$ Through this study, MPO staff recommended conceptual improvements for one or more corridors, or several small sections within a corridor. MPO staff selects locations for study-considering municipal, Subregional, and other public feedback—and collect data, conduct technical analysis, and recommend improvements. Recommendations from the study are sent to implementing agencies, which may choose to fund improvements through various federal, state, and local sources, separately or in combination. By focusing on arterial segments rather than intersections, planners can evaluate multimodal transportation needs comprehensively with the goal of creating Complete Streets.

[^1]
# Chapter 2-Study Location, Goals, and Public Participation 

### 2.1 SELECTION PROCESS

On January 18, 2018, the Boston Region MPO gave approval to its staff to study Route 138 in Milton, following a selection process that involved a review of safety conditions, congestion, multimodal and regional significance of the roadway, regional equity, and the potential for implementing study recommendations. ${ }^{4,5,6,7,8,9}$ The map in Figure 1 shows the arterial roadway segments in the study area. (All figures are included at the end of the report.)

The study location was selected from a list of 44 arterial segments in 33 municipalities in the MPO region. ${ }^{10}$ A copy of the technical memorandum describing the selection process is included in Appendix A. MassDOT Highway Division District 6, the MassDOT Office of Transportation Planning, and the Town of Milton supported the study of Route 138. They participated by collecting data needed for the analyses, reviewing documentation of existing conditions, identifying problems, and developing improvements to mitigate the problems.

[^2]
### 2.2 STUDY VISION AND GOALS

The Town of Milton and MassDOT have shown a commitment to supporting alternative transportation options through the Healthy Transportation Compact. Transforming Route 138 into a Complete Streets format that balances the needs of motorists with the needs of pedestrians and bicyclists by increasing the quantity and quality of infrastructure for walking, biking, and bus transit would make the road more efficient by ${ }^{11}$

- Reducing congestion
- Increasing safety for motorists, pedestrians, and bicyclists
- Improving connectivity by closing gaps in the sidewalk and bicycle networks
- Connecting people to places to support livable communities

Toward that end, the objectives of this study were to

- Document existing problems
- Examine traffic flow and capacity
- Analyze safety for pedestrians, bicyclists, motorists, and bus riders
- Determine the needs of pedestrians, bicyclists, motorists, and bus riders
- Develop Complete Streets concepts to improve existing conditions


### 2.3 PUBLIC PARTICIPATION

An advisory task force-composed of representatives from the Town of Milton and MassDOT—was established to guide this study. MPO staff met with the task force twice. In the first meeting they discussed the work scope and existing problems. In the second meeting, MPO staff presented the existing conditions, analyses, proposed improvements, and received advice from the task force members. This report reflects the task force's feedback. Appendix A includes a list of task force members and comments.

[^3]
## Chapter 3-Characteristics of the Corridor

### 3.1 ROADWAY

Route 138 is a state highway in Massachusetts that runs from Milton south to Fall River. This roadway serves regional and local traffic traveling to Boston to the north and Canton, Stoughton, and Easton to the south. Figure 2 shows the roadway jurisdiction, which identifies the authority and obligation of agencies to administer, control, construct, maintain, and operate a highway subject to the provisions of the Commonwealth of Massachusetts. It is a two-lane, two-way roadway classified as a principal arterial, state designated truck route, and part of the National Highway System (NHS) program.

Figure 3 shows the right-of-way and shoulder widths along roadway. In Milton, the roadway's right-of-way width varies between 50 and 65 feet and it has six feet or more paved shoulder on either side for the majority of the corridor. ${ }^{12}$
Figure 4 shows the sidewalk network on Route 138. Approximately, 70 percent of the corridor either lacks sidewalks or has sidewalks that do not meet MassDOT's standards; thus, a significant portion of the roadway could be retrofitted to include sidewalks and the existing substandard sidewalks could be reconstructed. ${ }^{13}$

Providing facilities to keep pedestrians and bicyclists separated from vehicular traffic in this corridor is a high priority because of the high volumes of traffic, high vehicle speeds, high volumes of truck traffic, and mixed land uses (residential, educational, and recreational). The utility poles in the corridor are mostly located on the west side of the roadway and many of the properties along the corridor have stone walls marking the boundaries.

### 3.2 SIGNALIZED INTERSECTIONS

Several cross streets and driveways intersect Route 138, which create safety and operations problems not only for motorists but to also for pedestrians and bicyclists. Figure 5, shows the intersections selected for study. There are six signalized intersections in corridor:

- Brush Hill Road
- Milton Street/Dollar Lane
- Atherton Street/Bradlee Road

[^4]- Robbins Street
- Cheever Street/Blue Hill Terrace Street
- Brook Road

All of the traffic signals are equipped with fully actuated traffic-control systems; however, they are very old and lack Opticom systems for emergency preemption. The equipment, along with the existing signal timings and phasing plans, needs to be upgraded. The traffic-signal heads are mounted on mixture of mast-arm and post mounts and they lack backplates. Over-grown vegetation and tree branches obscure some of the signal heads, especially in spring and summer. There are no pedestrian facilities such as sidewalks, crosswalks, and pushbutton pedestrian-activated signals at two signalized intersections: Brush Hill Road and Milton Street/Dollar Street. MassDOT has jurisdiction over the signalized intersections and is responsible for implementing improvements to the intersections.

### 3.2.1 Route 138 and Brush Hill Road Intersection

Brush Hill Road is a town-owned collector street that intersects Route 138 at an oblique angle to form a four-leg signalized intersection. It is one of the critical intersections in the corridor as there are high traffic volumes on both Route 138 and Brush Hill Road during peak periods. Route 138 has one lane on each approach and Brush Hill Road has two lanes on the westbound approach (an exclusive left-turn lane and a through- right-turn lane) and one travel lane on the eastbound approach. Northbound left turns are prohibited at the intersection; northbound drivers are required to proceed to Brush Hill Road via Canton Avenue. The Thacher Montessori School is in the southwestern corner of the intersection.

### 3.2.2 Route 138 and Milton Street/Dollar Lane Intersection

Milton Street and Dollar Lane are town-owned collector roads that intersect Route 138 to form a four-leg signalized intersection. Each of the approaches at the intersection has one travel lane. The intersection curb radii are adequate for trucks and buses. The land uses adjacent to the intersection are primarily residential.

### 3.2.3 Route 138 and Atherton Street/Bradlee Road Intersection

Atherton Street and Bradlee Road are town-owned collector roads. They intersect with Route 138 at an oblique angle to form a four-leg signalized intersection. Route 138, Atherton Street, and Bradlee Road have one lane on each approach. There are sidewalks only on the north side of Atherton Street/Bradlee Road and crosswalks with curb ramps and detectable warning
plates and pedestrian signals are present at the intersection. The intersection curb radii are adequate for trucks and buses servicing business activities; however, trucks are prohibited on Atherton Street and Bradlee Road. The land uses in the area are residential, and the Milton Fire Department, which experiences cut-through traffic, is located at the intersection.

### 3.2.4 Route 138 and Robbins Street Intersection

Robbins Street is a town-owned local roadway; it intersects Route 138 at an oblique angle to form a four-leg signalized intersection. Each approach at the intersection has one lane serving all traffic movements. South of the intersection, there is a sidewalk on the west side of Route 138, which continues on the east side of Route 138, north of the intersection. A crosswalk connects both sidewalks diagonally across Route 138, and the curb ramps are constructed to MassDOT standards. On Robbins Street, the sidewalks are on north side of the roadway east of the intersection, and on the south side west of the roadway. There are functioning push-button pedestrian signals for crossing Route 138. Sight distance at the intersection is poor because Robbins Street intersects Route 138 at an oblique angle and has a slope. The intersection curb radii are adequate for trucks and buses; and the land uses in the area are mostly residential.

### 3.2.5 Route 138 and Cheever Street/Blue Hill Terrace Street Intersection

Cheever Street and Blue Hill Terrace Street are town-owned, local streets that intersect Route 138 at an oblique angle to form two closely spaced three-leg signalized intersections. The offset between the two intersections is about 100 feet long. Each approach at the intersection has one lane serving all traffic movements. There are sidewalks on either side of the roadways and crosswalks with curb ramps, but the curb ramps lack warning plates. The intersection curb radii are not adequate for trucks and buses. The land use near the intersection is residential.

### 3.2.6 Route 138 and Brook Road Intersection

Brook Road is a town-owned local roadway; it intersects Route 138 at an oblique angle to form a four-leg signalized intersection. The west segment of Brook Road is a two-way, two-lane roadway, and the east segment is a one-way, one lane roadway, that moves traffic away from the intersection (eastbound only). Each approach at the intersection has one lane serving all traffic movements. There are sidewalks along either sides of both roadways, and crosswalks have been installed on all four approaches. The crosswalks have curb ramps but they lack detection-warning plates. Sight distance at the intersection is poor because

Brook Road intersects Route 138 at an oblique angle. The intersection curb radii are adequate for trucks and buses. The land use in the area is mostly residential.

### 3.3 UNSIGNALIZED INTERSECTIONS

All of the selected unsignalized intersections are two-way stop-controlled intersections with one travel lane on each approach. Route 138 is the major street at the all of the intersections and its traffic is not controlled. The minor streets have stop signs. The intersection curb radii are adequate for trucks and buses and the land uses surrounding the intersections are primarily residential.

### 3.3.1 Route 138 and Neponset Valley Parkway Intersection

Neponset Valley Parkway is a principal arterial roadway under the jurisdiction of the Department of Conservation and Recreation (DCR). It intersects Route 138 to form a three-leg unsignalized intersection. A high volume of left-turns off of Route 138 and right turns off of Neponset Valley Parkway occur at the intersection during peak travel periods. There are no pedestrian facilities at the intersection, except for a sidewalk on the north side of Neponset Valley Parkway that terminates at the intersection.

### 3.3.2 Route 138 and Blue J ay Way Intersection

Blue Jay Way is a privately owned local street-the main entrance to Curry College. It intersects Route 138 to form a T-type unsignalized intersection, under the jurisdiction of MassDOT. There is no pedestrian facility at the intersection. The intersection curb radii are adequate for trucks and buses that serve businesses and institutions in the area.

### 3.3.3 Route 138 and Aberdeen Road Intersection

Aberdeen Road is a town-owned roadway that intersects Route 138 to form a Ttype unsignalized intersection. Aberdeen Road is stop controlled. There are sidewalks on either side of Route 138 and Aberdeen Road. In addition, there are crosswalks with curb ramps at the intersection; the crosswalk across Route 138 has pedestrian signals with pedestrian-activated pushbuttons. The intersection curb radii are adequate for trucks and buses. The Concord Baptist Church is located on the east side of Route 138 across from Aberdeen Road.

### 3.3.4 Route 138 and Oak Street Intersection

Oak Street is a town-owned roadway that intersects Route 138 to form a four-leg unsignalized intersection. The north and south legs of Oak Street are offset about 40 feet apart. There are sidewalks along either side of Route 138 and Oak Street; and crosswalks have been installed on both roadways; however, the curb ramps lack detection warning plates. Many of the Tucker Elementary School
students cross Route 138 at Oak Street, and a school crossing guard is posted at the intersection during school openings and closings. The Tucker Elementary School is located on the east side of Route 138 on Oak Street.

### 3.4 LAND USE

The map in Figure 6 shows the general land-use designations for the area surrounding Route 138. The area is generally zoned residential except for the park and open space of the Blue Hills Reservation. The southern and middle portions of the area surrounding the corridor is lightly settled with one-family detached dwellings, and the northern portion is densely settled with one-family dwellings.

Other land uses in the area include

- Curry College-a 4,000-student liberal-arts-based institution located on a 131-acre campus near the Blue Hills Reservation in Milton
- Fuller Village—an independent senior-living facility
- Tucker Elementary School—houses 440 students Pre-Kindergarten to Grade 5
- Concord Baptist Church—a vibrant community church
- Thacher Montessori School-houses students Pre-Kindergarten to Grade 8
- Massachusetts Audubon's Blue Hills Trailside Museum—an interpretive center for the state-owned Blue Hills Reservation, featuring a natural history museum and outdoor wildlife exhibits
- Eustis Estate Museum and Study Center—operated by Historic New England, which sits on 80 acres of picturesque landscape at the base of the Blue Hills


### 3.5 PLANNED PROJ ECTS AND STUDIES

Transportation projects planned for the Route 138 corridor and previous studies that addressed the study area or its surroundings are described below. The conceptual improvements developed in this study considered and incorporated recommendations from the previous studies.

### 3.5.1 Roadway Improvements on Route 138 in Canton and Milton

MassDOT's project number 608484 will resurface and make Complete Streets improvements on Route 138 in Canton and Milton. Funding for the project is planned to be programmed in the Boston Region MPO's federal fiscal year (FFY) 2020 Transportation Improvement Program (TIP). As of August, 2018, the project
was in the preliminary design stage. ${ }^{14}$ Some of the recommendations in this study would be incorporated and implemented as part of that project.

### 3.5.2 Road Safety Audit, Route 138 at Atherton Street/Bradlee Road and Milton Street/Dollar Lane

In 2015, the Town of Milton, in collaboration with MassDOT, conducted a road safety audit (RSA) for two intersections of Route 138 at Atherton Street/Bradlee Road and Milton Street/Dollar Lane. ${ }^{15}$ The RSA was conducted because the intersection was identified as a high-crash location based on the 2012 Highway Safety Improvement Program (HSIP) crash cluster data. ${ }^{16}$ The MassDOT Highway Division's Traffic and Safety Engineering 25\% Design Submission Guidelines require an RSA for all project-related high-crash locations to identify safety enhancements that may be implemented in conjunction with an off-site mitigation project, and other measures that could be programmed for implementation by other agencies or municipalities. The RSA recommended several short-, medium-, and long-term improvements to address safety and operations problems at the intersections. They included provisions for left-turn lanes on Route 138, modifying the signal phasing and timing plans, upgrading signal equipment, geometric enhancements, pavement markings, and new signage.

[^5]
## Chapter 4-Existing Conditions

### 4.1 DATA COLLECTION

MassDOT Highway Division's Traffic Data Collection section conducted automatic traffic recorder (ATR) counts during a six-day period from Tuesday, March 27, 2018 to Sunday, April 1, 2018. The ATR machines count vehicles continuously during the collection period and are used to determine the volume of traffic on a roadway. MassDOT planned counts at 21 sites initially, although equipment issues at five sites (mostly in the northern third of the corridor) prevented data collection at those sites.

MassDOT Highway Division's Traffic Data Collection Section also collected turning-movement counts (TMCs) in the study area on Thursday, March 29, 2018. MassDOT performed TMCs at 17 locations on the Route 138 corridor, conducting the counts during the weekday AM peak travel period (6:00 AM to 9:00 AM) and weekday PM peak travel period (3:00 PM to 6:00 PM). MassDOT performed a second count on Saturday, March 31 at seven of those locations, and at an additional eighth location on a Sunday (in order to capture volumes of churchgoers near the Concord Baptist Church). In all cases, MassDOT recorded heavy vehicles, pedestrians, and bicycles separately.

### 4.2 DAILY TRAFFIC VOLUMES

Figure 7 shows a summary of the Average Daily Traffic (ADT) data recorded using the MassDOT counts. Figure 8 shows the amount of daily traffic variation at four locations along Route 138. The counts on Route 138 show that traffic gradually diminishes toward the north end of the corridor as drivers turn off of Route 138 to access various Boston destinations; this occurs mainly on side streets at Canton Avenue, Brush Hill Road, Neponset Valley Parkway, and Milton Street. Notably, the counts indicate that there is little difference between weekday and weekend volumes, based, in part, on the recreational attractions present in the corridor. Appendix B contains full records of the ATR counts.

### 4.3 TURNING MOVEMENT VOLUMES

Figure 9 shows the turning movement volumes at the major intersections during the weekday AM and PM peak hours. Peak hours in the corridor were recorded as 7:30 AM to 8:30 AM in the morning and 3:00 PM to 4:00 PM in the afternoon peak. The afternoon volumes were remarkably consistent and stayed within four percent of the highest peak volumes throughout the entire afternoon collection period. This kind of "peak spreading" is a common characteristic of urban roadways where demand exceeds available capacity.

Figure 10 shows the turning movement volumes at the eight intersections where an additional weekend count was requested. As with the weekday counts, the weekend counts were conducted during a morning period (8:00 AM-11:00 AM) and an evening period (2:00 PM-5:00 PM). The highest volumes were observed between 3:00 PM and 4:00 PM hour, during which time the total intersection volumes were five percent higher than during the weekday PM peak hour, and only two percent lower than during the weekday AM peak hour. Appendix B contains the turning movement data.

### 4.4 PEDESTRIAN AND BICYCLE VOLUMES

The TMC data were also used to provide staff with information about pedestrian and bicyclist activity during the three-hour collection periods. Figure 11 cites the observed pedestrian volumes; and Figure 12 cites the observed bicyclist volumes. Table 1 also distinguishes the number of pedestrians that crossed Route 138 from those that crossed an adjacent side street.

Table 1
Pedestrian Crossing by Type

| Count Period | Weekday |  |  | Weekend |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crossing Location | $\begin{gathered} \text { Route } \\ 138 \end{gathered}$ | Side Streets | Total | $\begin{gathered} \text { Route } \\ 138 \end{gathered}$ | Side Streets | Total |
| South Parking Lot Entrance | 0 | 0 | 0 | 21 | 9 | 30 |
| South Parking Lot Exit | 0 | 1 | 1 | 2 | 6 | 8 |
| North Parking Lot Entrance | 0 | 0 | 0 | 0 | 3 | 3 |
| Green Street | 0 | 12 | 12 | 5 | 46 | 51 |
| Canton Avenue | 0 | 1 | 1 | 0 | 17 | 17 |
| Thacher Montessori School | 0 | 2 | 2 | 0 | 1 | 1 |
| Brush Hill Road | 0 | 1 | 1 | 1 | 1 | 2 |
| Neponset Valley Parkway | 0 | 2 | 2 | 1 | 2 | 3 |
| Milton Street / Dollar Lane | 1 | 2 | 3 | 7 | 2 | 9 |
| Blue Jay Way | 3 | 19 | 22 | -- | -- | -- |
| Atherton Street / Bradlee Road | 1 | 6 | 7 | -- | -- | -- |
| Robbins Street | 2 | 7 | 9 | -- | -- | -- |
| Cheever Street / Blue Hill Terrace | 13 | 29 | 42 | -- | -- | -- |
| Aberdeen Road | 19 | 51 | 70 | 94 | 143 | 237 |
| Oak Street | 102 | 166 | 268 | -- | -- | -- |
| Brook Road | 22 | 46 | 68 | -- | -- | -- |

Source: Central Transportation Planning Staff.

The counts show that pedestrian activity is highest in the north section of the corridor where there are dense residential neighborhoods, an elementary school, and a church. The rest of the corridor does not see a lot of pedestrian traffic, although pedestrian traffic increased on Saturday near the Blue Hills
Reservation. Bicycle counts were similarly low except near Blue Hills on the weekend. MPO staff attributes the low pedestrian and cyclist volumes primarily to
the absence of appropriate facilities in the corridor. Other contributing factors might include cold April weather, high vehicle speeds, and high traffic volumes during peak periods. Bicycle volumes in particular were found to be at their lowest during peak commuting hours.

### 4.5 PEDESTRIAN LEVEL OF SERVICE

The quality of pedestrian travel is largely affected by the roadway infrastructure, such as whether there are sidewalks or traffic signals that allow pedestrians time to cross an intersection before vehicles get a green light. To reflect the complex relationship between pedestrians and their travel environments, MPO staff developed a Pedestrian Report Card Assessment tool, which grades a given roadway on its quality of pedestrian travel; and whether it reflects the MPO's goals for safe pedestrian facilities, expands pedestrian infrastructure, improves connectivity of the transportation network, and enhances economic vitality in the region. ${ }^{17}$ The ratings in this pedestrian assessment tool (displayed in Appendix F) correlate with the goals emphasized in the MPO's Long-Range Transportation Plan (LRTP): safety, system preservation, capacity management and mobility, and economic vitality. Based on the tool, Route 138 in Milton was rated good in terms of safety (although vehicle speeds remain an issue), fair in terms of system preservation, and poor in terms of economic vitality and capacity management and mobility. Overall, the assessment indicates that the roadway needs improvements to accommodate pedestrians.

### 4.6 SPOT SPEEDS

Staff collected vehicle travel speeds and volumes at four of the ATR sites on Route 138. Figure 13 summarizes the speed data and compares it with the posted speed regulations present in the study area. MassDOT data show that several locations had 85th-percentile speeds well above the posted limit. In particular, there were two locations on Route 138 southbound where 85thpercentile speeds of 51 mph and 43 mph were observed in zones with a 35 mph speed limit. Appendix B contains more information on about speed data.

### 4.7 SIGNAL TIMING AND LAYOUT INFORMATION

MassDOT provided MPO staff with existing signal timings, as-built traffic signal plans, and signal-phase sequences of the signalized intersections (included in Appendix C). MPO staff used Google Maps and field visits to identify recent modifications to the intersection layouts and signal plans in order to analyze the condition of existing traffic operations.

[^6]
### 4.8 TRANSIT SERVICES

The Massachusetts Bay Transportation Authority (MBTA) bus Route 716Cobbs Corner to Mattapan Station-operates throughout the length of the Route 138 corridor in Milton. It provides bus service to Cobbs Corner in Canton, Canton Center Station on the MBTA's Providence/Stoughton commuter rail line, Royall Street and the nearby business park, Curry College, and the Mattapan Red Line station. Buses run Monday through Friday every 90 minutes from 5:50 AM to 7:20 PM, and hourly on Saturdays from 8:00 AM to 5:55 PM. There is no service on Sundays. Appendix D contains the Route 716 schedule and a map showing the 14 stops in Milton.

A\&A Metro Transportation, under contract with the MBTA, operates this bus service. The 716 line has a flexible-stop policy, which allows riders to signal the driver if they wish to board or alight at a location other than a designated stop. However, poor lighting along the corridor can make it difficult for drivers to see those users. The Route 138 corridor also is accessed easily via the red line Mattapan Station, which is just one-quarter mile north of the corridor and is also the terminus of the 716 bus line. From Mattapan, riders can use the Mattapan Trolley and transfer at Ashmont Station for service to downtown Boston.

## Chapter 5-Existing Conditions Analyses

### 5.1 SAFETY ANALYSIS

To evaluate safety for motorists, pedestrians, and bicyclists in the study area, MPO staff used crash data from MassDOT's Registry of Motor Vehicles database and from the Milton Police Department from January 2011 through December 2015. The following sections describe the analyses and results of this safety assessment.

### 5.1.1 Summary of Crash Data

Two hundred sixty-two (262) crashes were recorded in the MassDOT database during the five-year analysis period. Figure 14 shows the spatial distribution of these crashes within the study area.

Some features of the dataset include

- No fatal crashes, but injury rate was very high: 42 percent of crashes (110 of 262) resulted in injury to at least one of the involved parties.
- 61 percent of all crashes were rear-ends. However, this figure rises to 74 percent when considering just the crashes south of Milton Street; those north of Milton Street were only 11 percent rear-ends. This suggests many of the rear-end crashes may be caused by congestion, which is much worse in the southern portion of the corridor.
- 41 percent of crashes took place during peak hours (defined as 7:00 AM10:00 AM and 3:00 PM-6:00 PM).
- Two crashes involved cyclists, although one of those was the result of a cyclist hitting a stopped vehicle.
- Three crashes involved a pedestrian. All three took place in the dense residential neighborhood north of Cheever Street.
- 62 percent of crashes took place at an intersection; 38 percent of crashes took place along an open roadway segment.
- 11 percent of crashes were single-vehicle, 67 percent involved two vehicles, and 22 percent involved three or more vehicles.

Appendix E contains figures and tables that break down the crash data.

### 5.1.2 HSM Methodology: Expected Crashes

MPO staff used methods from the 2010 edition of the Highway Safety Manual (HSM) to analyze safety. The techniques in the HSM combine roadway geometry, traffic volumes, crash history, and regional factors into a unified metric-"expected crashes"-that estimates the intrinsic safety conditions at a site by compensating for the random fluctuations typically associated with
samples of collision data. Expected crashes may be broken down in several ways such as by manner of collision or degree of injury; and also may be converted into dollar values based on agreed-upon societal cost figures for different types of crashes. They may be used to identify high-risk sites with potential for improvement, and to compare the relative merits of different intervention strategies. ${ }^{18}$

The HSM methodology had previously been the subject of research by MassDOT in cooperation with faculty from University of Massachusetts Lowell. The result of this study was to refine the formulas and coefficients of the HSM methodology for intersections to match Massachusetts traffic data better. MPO staff used these regionalized versions of the HSM methods for its analysis of intersections. ${ }^{19}$

Figure 15 summarizes results of the existing-conditions safety analysis. The HSM procedure requires that a corridor is broken down into segments and intersections as each type of facility is analyzed with a distinct method. Figure 15 shows the 10 intersections and 11 segments into which MPO staff divided the corridor. For each intersection and each segment, the number of expected crashes during a five-year period is shown along with number of crashes that MassDOT recorded between 2011 and 2015. This comparison provides insight into the responsiveness of a particular location to potential safety interventions. If the predicted number of crashes (crashes per year under idealized circumstances) is significantly less than the expected number of crashes it suggests that correctable factors are elevating the crash rate. The difference between these two terms is referred to as the Potential for Safety Improvement (PSI).
Figure 15 cites locations in green with PSI less than 0 ; yellow for PSI between 0 and 1; and red for PSI greater than 1. Table 2 shows the numerical values of the PSI for the different intersections (shaded green) and segments (shaded white) within the corridor. It also shows the "high risk" site designation, which is a statistical comparison with other Massachusetts intersections developed as part of the MassDOT and UMass research. The last row in Table 2 shows that 15 of 21 sites showed potential for improvement and eight of 10 intersections qualify as high-risk.

[^7]Table 2
Potential for Safety Improvement

| Analysis Location | Predicted Crashes | Expected Crashes | PSI (Potential for Safety Improvement | High-Risk Site? |
| :---: | :---: | :---: | :---: | :---: |
| Segment from Parking Lot to Green Street | 1.72 | 1.40 | -0.32 | - |
| Intersection at Green Street | 2.39 | 1.13 | -1.26 | No |
| Segment from Green Street to Brush Hill Road | 3.03 | 4.97 | 1.94 |  |
| Intersection at Brush Hill Road | 7.57 | 7.09 | -0.48 | No |
| Segment from Brush Hill Road to Neponset Valley Parkway | 3.00 | 2.24 | -0.76 | - |
| Intersection at Neponset Valley Parkway | 3.04 | 4.24 | 1.19 | Yes |
| Segment from Neponset Valley Parkway to Milton Street | 0.80 | 1.13 | 0.33 |  |
| Intersection at Milton Street/Dollar Lane | 4.46 | 6.19 | 1.74 | Yes |
| Segment from Milton Street to Blue Jay Way | 1.27 | 1.25 | -0.02 | - |
| Intersection at Blue Jay Way | 1.00 | 1.36 | 0.36 | Yes |
| Segment from Blue Jay Way to Atherton Street | 1.25 | 0.93 | -0.32 | - |
| Intersection at Bradlee Road/Atherton Street | 2.50 | 3.07 | 0.58 | Yes |
| Segment from Atherton Street to Robbins Street | 2.23 | 2.52 | 0.28 | - |
| Intersection at Robbins Street | 1.02 | 1.11 | 0.09 | Yes |
| Segment from Robbins Street to Cheever Street | 2.14 | 2.38 | 0.25 | - |
| Intersection at Blue Hill Terrace/Cheever Street | 1.79 | 1.99 | 0.20 | Yes |
| Segment from Cheever Street to Oak Street | 0.98 | 2.25 | 1.27 | - |
| Intersection at Oak Street | 0.41 | 0.44 | 0.04 | Yes |
| Segment from Oak Street to Brook Road | 0.46 | 0.54 | 0.08 | - |
| Intersection at Brook Road | 1.67 | 2.23 | 0.56 | Yes |
| Segment from Brook Road past Austin Street | 0.55 | 1.42 | 0.87 | - |
| Entire Route 138 Corridor | 43.28 | 49.89 | 15 of 21 | 8 of 10 |

Green shading denotes intersections and white shading denotes segments within the corridor.
Source: Central Transportation Planning Staff.
Staff also used the HSM analysis results to assign a monetary value to the societal burden of traffic collisions. The Federal Highway Administration (FHWA) provides "comprehensive cost" values that take into account both economic costs (lost wages, property damage) and costs from monetizing changes in qualityadjusted life years. These equivalencies are broken down by type and severity of accident. For the purposes of this study, MPO staff used two values: $\$ 15,600$ per property damage only (PDO) crash, and $\$ 260,800$ per crash involving a noncapacitating injury. Both values are adjusted to reflect the 2016 Massachusetts cost of living. ${ }^{20}$

[^8]Table 3 shows the total estimated comprehensive societal cost per year that resulted from collisions within the corridor. Estimated costs based on expected crashes and observed crashes are well above $\$ 4$ million per year, which demonstrates that investing in safety improvements inside the corridor can yield large returns when taking the comprehensive societal cost into consideration. Appendix E presents further detail about the input data, computational steps, and HSM formula outputs.

Table 3
Comprehensive Costs of Crashes

|  | Crashes <br> Per Year <br> (Observed) | Estimated <br> Cost <br> (Observed) | Crashes <br> Per Year <br> (Expected) | Estimated <br> Cost <br> (Expected) |
| :--- | ---: | ---: | ---: | ---: |
| Crash Severity | 30.4 | $\$ 470,000$ | 34.2 | $\$ 530,000$ |
| Property Damage Only | 22.0 | $\$ 5,700,000$ | 15.7 | $\$ 4,100,000$ |
| Fatal and Injury | 52.4 | $\$ 6,200,000$ | 49.9 | $\$ 4,600,000$ |
| Total |  |  |  |  |

Source: Central Transportation Planning Staff.

### 5.1.3 Collision Diagrams

MPO staff prepared collision diagrams (included in Appendix E) for the entire length of the study corridor to examine patterns within the crash data. The associated tables may be used to look up additional detail for specific crash events. Considering all of the available data, MPO staff drew the following conclusions about conditions at different sites within the study area:

- High Priority: Neponset Valley Parkway and Milton Street intersections. Each of these intersections has both large numbers of observed crashes and great potential for safety improvement, making them clear targets for intervention. At Neponset Valley Parkway, the lack of a traffic signal causes angle crashes and associated high rates of injury. At Milton Street, the primary culprit is the huge number of rear-end crashes (26 rear-ends out of 33 total crashes). An important contributing factor in this case is the undeveloped stretch of Route 138 leading up to the Milton Street intersection, which causes drivers to travel at high speeds and then get taken by surprise by queues at the signal. Figures 3 and Figure 4 in Appendix E show collision diagrams for these intersections.


## - High Priority: Atherton Street and Cheever Street Intersections.

These lower-volume intersections have a high number of reported collisions, and both have great potential for improvement. The main problem at these intersections is their unconventional geometry, which causes angle collisions and rear-ends that occur inside the intersection.

Figure 6 and Figure 10 in Appendix E, show collision diagrams for these intersections.

- High Priority: Route 138 North of Cheever Street. All of the facilities to the north of Cheever Street showed significant potential for safety improvement. The neighborhoods here are dense with side streets and driveways and most of the collisions were caused by vehicles joining or leaving Route 138 unexpectedly. Several vehicles struck cars parked on Route 138, and there were a number of other collisions where poor visibility because of parked cars was cited as a contributing factor. Three pedestrians and a bicycle were struck by vehicles in this region. Figures 10 through12 in Appendix E show the collision diagrams in this area.
- Moderate Priority: Central Portions of Route 138. Between Neponset Valley Parkway and Cheever Street, the HSM analysis shows greater-than-expected collision rates and good potential for improvement. This area has high travel speeds, and vehicles turning into side streets or driveways are at risk of getting rear-ended. Figures 5 through 9 in Appendix E show collision diagrams for this area.
- Moderate Priority: Blue Jay Way (Curry College Entrance). Despite only nine recorded crashes, this unsignalized intersection shows positive potential for improvement. Although signalization may not be appropriate because of the small volume of traffic, adding sidewalks and lighting and marking a designated bus stop zone should calm speeds and allow vehicles to turn into or out of Curry College more safely. Figure 5 in Appendix E shows the collision diagram at Blue Jay Way.
- Moderate Priority: Intersection at Brush Hill Road. Although this intersection recorded 32 crashes, the HSM analysis showed the intersection as having low potential for improvement because of the massive daily volume of traffic (34,000 vehicles per day) handled by the intersection. Despite this, the estimated cost of the collisions at the intersection (\$680,000 per year) was still higher than anywhere else in the corridor so even incremental improvements in safety could have a significant net effect. Figure 2 in Appendix E shows the collision diagram for Brush Hill Road.
- High Priority: Collisions Caused by Endemic Congestion. Slowmoving, congested conditions contributed to many of the collisions in the corridor, especially toward the border with Canton where rear-end collisions were particularly prevalent. These types of collisions are the main reason that the Route 138 segment between Green Street and Brush Hill Road has very high potential for improvement. (Collisions at

Canton Avenue were included in this segment because of the limitations of the HSM, although only two were caused by that intersection.) Intense traffic is common because daily traffic-much of which is non-local-is highest in this area, though capacity remains the same as in the rest of the corridor. The resulting conditions lead to distracted, aggressive, and impatient drivers, and producing interventions short of increasing capacity that would target this behavior may be difficult. Figure 1 in Appendix E shows the collision diagrams for this area.

### 5.1.4 Road Safety Audit

As mentioned in section 3.5.2, a Road Safety Audit (RSA) was previously performed in the study area in 2015. MPO staff included the findings of the report in their analysis and recommendations-such as "(Red) Signal Ahead" signs and protected left-turn lanes-into the design proposals discussed in Chapter 7. Chapter 7 also contains further discussions of the safety issues for specific locations, along with their proposed alternatives for improvement.

### 5.2 TRAFFIC OPERATIONS ANALYSIS

### 5.2.1 Intersection Level-of-Service Analysis

Staff conducted traffic operations analyses consistent with the Highway Capacity Manual (HCM) methodologies. ${ }^{21} \mathrm{HCM}$ methodology is used to assess traffic conditions at signalized and unsignalized intersections and to rate the level of service (LOS) from A to F. LOS A represents the best operating conditions (little to no delay), while LOS F represents the worst operating conditions (long delay). LOS E represents operating conditions at capacity (the limit of acceptable delay). Table 4 presents the control delays (standards for comparison) associated with each LOS for signalized and unsignalized intersections.

Table 4
Intersection Level-of-Service Criteria

| Level of <br> Service | Signalized Intersection <br> Control Delay (seconds per <br> vehicle) | Unsignalized Intersection <br> Control Delay (seconds per <br> vehicle) |
| :---: | :---: | :---: |
| A | $<10$ | $<10$ |
| B | $10-20$ | $10-15$ |
| C | $20-35$ | $15-25$ |
| D | $35-55$ | $25-35$ |
| E | $55-80$ | $35-50$ |
| F | $>80$ | $>50$ |
| S |  |  |

Source: Highway Capacity Manual 2010.

[^9]Using the traffic and signal data collected, MPO staff built traffic analysis networks for the weekday AM, weekday PM, and weekend PM peak hours.
Synchro traffic analysis software was used to assess the capacity and quality of traffic flow. ${ }^{22}$ Figures 16 and 18 show the analysis results for the weekday AM, weekday PM, and weekend PM peak periods, respectively. Appendix F presents the existing conditions LOS analysis worksheets.

Aside from the intersection at Brush Hill Road, which operates at LOS F and LOS E during the AM and PM peak hours, the capacity analyses show mostly acceptable conditions throughout the corridor. Even the unsignalized side streets in the study area generally experience acceptable levels of delay. The main exception is at Neponset Valley Parkway, which operates at LOS E during the AM peak hour and LOS F during the PM peak hour.

The results of the Synchro model may seem overly optimistic, as congestion is a known issue in this region. But the discrepancy is partially attributed to peak spreading: The HCM uses an analysis period of 15 minutes to calculate delay, whereas the queues in Milton continue building for hours across the lengthy morning and evening peak travel periods. The traffic volumes are also necessarily based on counts at the intersections, which show the entry volume for each intersection. This number may be much smaller than the demand volume during peak hours.

### 5.2.2 Traffic Signal Warrant Analysis

Traffic signals are valuable devices for controlling vehicular and pedestrian traffic. Signals that are properly designed, located, operated, and maintained will provide orderly movement of traffic, reduce congestion, and reduce the frequency and severity of certain types of crashes (especially right-angle collisions). However, traffic control signals are not solutions to all problems at intersections. Poorly designed and maintained, ineffectively placed, improperly operated, or unjustified traffic control signals can result in excessive delays, a significant increase in crashes (especially the rear-end type), and diversion of traffic to less adequate routes as road users attempt to avoid delay produced by signals.

The process of evaluating the suitability of a traffic signal for a given intersection is called "signal warrant analysis." The Manual on Uniform Traffic and Control Devices (MUTCD) provides a procedure for performing signal warrant analysis

[^10]based on nine different criteria, referred to as warrants. ${ }^{23} \mathrm{MPO}$ staff selected five warrants based on available data and relevance to the study, and evaluated each at eight of the intersections within the study area. In some cases, performing the warrant analysis was dependent on turning movement data and was therefore limited to peak hours. Table 5 presents results of the traffic signal warrant analyses. Appendix C contains more detailed worksheets.

The signal warrant analysis confirms that the existing signals at Brush Hill Road, Milton Street, Cheever Street, and Brook Road are appropriate because each location satisfies at least one signal warrant. It also shows that Neponset Valley Parkway is an excellent candidate for receiving a signal because it satisfies Warrants 1 through 3. Oak Street was of interest primarily as a pedestrian crossing location. Because vehicular traffic is relatively low, it does not meet traffic signal criteria. However, it does satisfy MUTCD criteria for pedestrian hybrid beacons. ${ }^{24}$ Chapter 7 discusses this conclusion and incorporates it into the design recommendations.

Table 5
Summary of Signal Warrant Analysis

| Intersection | Has Signal? | Warrant 1 8-hour volume | Warrant 2 4-hour volume | Warrant 3 Peak hour volume | Warrant 4 Pedestrian Volume | Warrant 7 <br> Crash <br> Experience |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yes | Satisfied | Satisfied | Satisfied | Not | Not |
| Brush Hill Road |  |  |  |  | Satisfied | Satisfied |
| Neponset Valley |  |  |  |  | Not | Not |
| Parkway | No | Satisfied | Satisfied | Satisfied | Satisfied | Satisfied |
| Milton Street I |  | Not |  |  | Not | Not |
| Dollar Lane | Yes | Satisfied | Satisfied | Satisfied | Satisfied | Satisfied |
| Atherton Street / |  | Not | Not | Not | Not | Not |
| Bradlee Road | Yes | Satisfied | Satisfied Not | Satisfied | Satisfied | Satisfied |
|  |  | Not |  | Not | Not | Not |
| Robbins Street Cheever Street I Blue Hill Terrace | Yes | Satisfied | Satisfied Not | Satisfied | Satisfied | Satisfied |
|  |  | Not |  |  | Not | Not |
|  | Yes | Satisfied | Satisfied | Satisfied | Satisfied | Satisfied |
|  |  | Not | Not <br> Satisfied | Not <br> Satisfied | Not | Not |
| Oak Street | No | Satisfied |  |  | Satisfied | Satisfied |
|  |  | Satisfied |  | Not | Not | Not |
| Brook Road | Yes |  | Satisfied | Satisfied | Satisfied | Satisfied |

Note: Warrants 1-3 at Brook Road, Warrant 3A (peak hour delay) at all intersections, and Warrant 4 at all intersections were evaluated during peak hours only (6:00 AM-9:00 AM and 3:00 PM-6:00 PM).
Source: Central Transportation Planning Staff.
The existing signals at Atherton Street and Robbins Street do not satisfy any of the five warrants used during this study. However, they each have other factors that justify the presence of a signal. The signal at Atherton Street helps reduce

[^11]confusion caused by the complex five-leg intersection geometry. It also allows safe and rapid access to Route 138 from the fire station immediately adjacent to the intersection. Robbins Street meets Route 138 at an oblique angle, resulting in a very wide intersection with poor visibility. The signal at that intersection helps to mitigate the problems caused by its geometry. A signal is also needed to allow pedestrians to cross from the sidewalk north of Robbins Street, which is only present on the east side of the road, to the sidewalk south of Robbins Street, which is only present on the west side of the road. Therefore, maintaining a signal at both of these locations was deemed appropriate based on engineering judgment.

## Chapter 6-Community Engagement

Stakeholder participation is a crucial part of any project, and the residents who use the Route 138 corridor are among the most important stakeholders. Hence, MPO staff used a number of methods to engage the community in planning for improvements to the study area.

### 6.1 TOWN SURVEY

MPO staff developed a survey to help determine the public's opinion about the problems on Route 138 in Milton and to learn their ideas for resolving them. The online survey that was posted on the Town of Milton website received 740 responses between March 22, 2018 and April 29, 2018. The fact that 45 percent of responses came within the first two days of the posting speaks to strong community engagement in Milton. Figure 19 presents the questions contained in the survey, along with the answers received. More than one-third of respondents left significant free-response feedback for one or more questions; those comments are included in Appendix G.

Some notable conclusions drawn from the survey are

- The vast majority of respondents (89 percent) drive on the corridor. However, nearly a one-quarter ( 24 percent) of respondents also said that they walk or jog (despite low observed pedestrian volumes).
- High vehicle speeds were the most commonly cited problem for pedestrians and cyclists, both in the survey answers and in free responses.
- Many respondents expressed shock that anyone would consider walking, and especially biking, in the corridor because of the dangerous conditions.
- Many people wrote that they had interest in biking or walking on Route 138 but were concerned for their safety. The fact that Question 5 ("Please indicate any problems that keep you from bicycling or walking on Route 138. .) received more responses than Question 4 ("While bicycling or walking along Route 138, what particular problems do you regularly encounter?") also points to this trend.
- Many participants complained about intersections being blocked during peak hours, both for its effects on traffic (preventing turning movements) as well as concern for pedestrian safety (obstructing crosswalks).
- Despite being a population of mostly drivers, the respondents seemed extremely receptive to the idea of improving facilities for other modes. Eighty percent of residents indicated they would like to see Complete Streets solutions in at least part of the corridor. The written comments were overwhelmingly centered on ideas for improving the bicycle and
pedestrian experience; only a couple addressed congestion at all. Some participants, recognizing that much of the traffic is from out-of-town, even went so far as to say they were opposed to added lanes or left-turn bays, since these would only get filled with new traffic.
- On the other hand, improving public transit did not seem to be a priority for respondents. Only 16 percent indicated that they would like to see improved bus service

Feedback from the survey was very helpful both to gauge community sentiment and to solicit ideas for solutions to the existing problems. Some of the ideas presented in the comments section were used while developing the design alternatives discussed in Chapter 7.

### 6.2 MILTON WIKIMAP FEEDBACK

The Town of Milton has set up a map-based community survey for the Milton Complete Streets Prioritization Plan at wikimapping.com. This website allows users to encode a written comment onto a map at a specific location. ${ }^{25} \mathrm{MPO}$ staff examined a sample of these comments in addition to the responses to the town website survey.

Figures 1 through 3 in Appendix G show some of the common comments encountered in the wikimapping data. Overall the responses mirrored many of the themes from the town website survey:

- Significant concern for high speed traffic
- Requests for more pedestrian crossing locations, particularly near the Blue Hills Recreational Area and in the northern portion of the corridor
- Some complaints about cut-through traffic contributing to congestion or unsafe conditions on side streets
- Missing or deteriorating sidewalks in several locations

[^12]
## Chapter 7-Improvement Concepts

MPO staff, working with the study's advisory task force, developed improvement concepts that could transform Route 138 in Milton into a pedestrian-and-bicyclistfriendly transportation corridor that serves all modes of transportation safely and maintains regional travel capacity by connecting people and their destinations. Many of the concepts for improvements that staff developed would be carried out within the existing roadway's right-of-way and would account for the needs of abutters and roadway users. Most of the improvements could be completed in the short-term as funding for the project had already been allocated and programmed in the 2020 Transportation Improvement Program (TIP).

The corridor was divided into three segments based on land use and traffic volume:

- Blue Hills Reservation Area (southern segment): from Canton-Milton town line to the Canton Avenue branch
- Brush Hill Area (middle segment): From Brush Hill Road to Atherton Street/Bradlee Road
- Tucker Neighborhood (northern segment): from Robbins Street to the end of Route 138


### 7.1 ROUTE 138 SEGMENT IN THE BLUE HILLS RESERVATION AREA

This segment extends is in the southern part of corridor. It is surrounded primarily by the park and open spaces of Blue Hills Reservation, and a low-density residential neighborhood of detached one-family dwellings. This segment has the highest levels of traffic and congestion in the study area, and carries about 37,000 vehicles per day. Here, the strategy was to evaluate different roadway cross-sections to improve safety and, operations, and make the roadway more pedestrian-and-bicyclist friendly. MPO staff developed two alternatives for consideration based on discussions with the task force.

### 7.2.1 Alternative 1: Three-Lane Cross-Section with a Multi-Use Path on the East Side of the Roadway

Alternative 1 (shown in Figures 20 and 21) consists of a three-lane cross-section-one southbound lane and two northbound lanes and a multi-use path on the east side of the roadway.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment.
- Encourages more people to walk and bicycle together.
- Fits the character of the neighborhood.
- Improves traffic flow and operations. It allows the two northbound lanes that currently end at the Canton Park-and-Ride lot to be extended onto Canton Avenue, where it will continue as a right-turn-only lane onto the Canton Avenue branch.
- Improves safety by eliminating merging of the two northbound lanes into one just north of the intersection of Route 138 and Royall Street/Blue Hill River Road.
- Avoids relocating utility poles on the west side of the roadway, which could affect the project schedule because of right-of-way impacts.


## Disadvantages

- Limited access for pedestrians and bicyclists to the west side of the roadway.
- Leads to more pedestrian and bicycle crossings.


### 7.2.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks

Alternative 2 (shown in Figures 22 and 23) maintains the existing roadway cross-section-one travel lane each direction, a bicycle lane and sidewalk on either side of the roadway, and a midblock crosswalk in the vicinity of the south parking facility.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment for nonmotorized transportation modes.
- Increases access and connectivity to places for pedestrians and bicyclists.
- Reduces pedestrian and bicycle crossings on Route 138.


## Disadvantages

- Prevents the two northbound lanes that currently end at the Canton park-and-ride lot to be extended onto Canton Avenue.
- Offers minimal improvements to congestion, and queuing in the segment, especially the intersections of Route 138 at Royall Street/Blue Hill River Road and Brush Hill Road.
- Utility poles on the west side of roadway could impact sidewalk installation on that side.


### 7.2.2 Redesign of the Canton Avenue and Blue Hill Avenue Intersection

Figure 23 shows the improvement concept for the redesign of Route 138 and Canton Avenue. The concept would improve safety for pedestrians and bicyclists by

1. Reducing speeds of vehicles continuing on Canton Avenue
2. Consolidating openings at the intersection to reduce crossing distance
3. Aligning Summit Road to approach Canton Avenue more perpendicularly

### 7.3 ROUTE 138 SEGMENT IN THE BRUSH HILL AREA

This segment is the middle part of the corridor. The area surrounding the roadway is primarily low-density residential neighborhoods of detached onefamily dwellings. This segment has medium- to-high traffic volumes (between 15,000 and 25,000 vehicles per day); and congestion and queuing occur primarily during the PM peak period. For this segment, the strategy is similar to that of the Blue Hill Reservation area-to evaluate different roadway crosssections to improve safety, operations, and make the roadway more pedestrian-and-bicyclist friendly. MPO staff developed two alternatives for consideration based on discussions with the task force.

### 7.3.1 Alternative 1: Two-Lane Cross-Section with a Multi-Use Path on the East Side of the Roadway

Alternative 1 (shown in Figures 24 through 29) maintains the two-lane crosssection, installs northbound left-turn lanes at the Neponset Valley Parkway and Milton Street intersections, and builds a multi-use path on the east side of the roadway. Additional improvement concepts include signalizing the intersection of Route 138 and Neponset Valley Parkway.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment.
- Encourages more people to walk and bicycle together.
- Fits the character of the neighborhood.
- Improves traffic flow at the intersections of Route 138 at Brush Hill Road, Neponset Valley Parkway, Milton Street/Dollar Lane, and Atherton Street/Bradlee Road.
- Avoids relocations of utility poles on the west side of the roadway, which could affect the project schedule and right-of-way impacts.


## Disadvantages

- Limited access for pedestrians and bicyclists to the west side of the roadway.
- Leads to more pedestrian and bicycle crossings.


### 7.3.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks

Alternative 2 (shown in Figures 30 through 35) maintains the existing two-way roadway cross-section, installs left-turn lanes at selected intersections, and a
bicycle lane and sidewalk on either side of the roadway. Additional improvement concepts include signalizing the intersection of Route 138 and Neponset Valley Parkway.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment.
- Improves traffic flow at the intersections of Route 138 at Brush Hill Road, Neponset Valley Parkway, Milton Street/Dollar Lane, and Atherton Street/Bradlee Road.
- Increase access and connectivity to places for pedestrian and bicyclists.
- Reduces pedestrian and bicycle crossings on Route 138.


## Disadvantages

- Would require more space at the intersections where a northbound leftturn lane is recommended (Neponset Valley Parkway and Milton Street).
- Utility poles on the west side of roadway would impact sidewalk installation on that side.


### 7.3.3 Additional Improvements at Selected Intersections

Tables 6 through 9 show additional improvement concepts for the intersections that could be incorporated into either alternative. The time frame categorized as short-term is typically less than three years. Short-term improvements are relatively uncomplicated and inexpensive to implement, and require minimal design efforts. Medium-term is typically between three and five years. Mediumterm improvements are more complicated than their short-term counterparts and require more funding resources and design and engineering efforts. Long-term improvements typically require five or more years to plan and implement. They require more design and engineering efforts, environmental permitting, and larger funding resources. Cost estimates for each improvement were categorized as low (less than $\$ 10,000$ ), medium ( $\$ 10,000$ to $\$ 500,000$ ), and high ( $\$ 500,000$ or more). Because there is a funded project for this corridor, some of the mediumor long-term improvements might be incorporated into that project.

## Route 138 at Brush Hill Road: Allow Northbound Left Turns

As a result of feedback from the town engineer, MPO staff investigated the effects of permitting left turns from Route 138 northbound onto Brush Hill Road westbound. Currently, this turning movement is prohibited and vehicles are instead required to use Canton Avenue to access Brush Hill Road. The suggestion from the town would restore this movement and add a protected leftturn bay to the northbound approach.

From a safety standpoint, adding a left turn bay would have advantages and disadvantages. The primary benefit, and the main concern as voiced by the town, would be a reduction in weaving maneuvers on the short segment of Brush Hill Road between Canton Avenue and Route 138. Under the existing configuration, most of the left turns from Brush Hill Road westbound come from southbound traffic on Canton Avenue, while most of the through-traffic comes from Route 138 northbound via Canton Avenue. These two traffic streams, which exceed 100 vehicles per hour during the peak periods, must weave past each other within about 200 feet to reach the appropriate lane. Permitting left turns from Route 138 northbound would remove most of the through traffic off Brush Hill Road and eliminate the need for a weave.

The primary safety drawback of using the proposed configuration is that it would come at the cost of adding a second receiving lane on the Route 138 northbound approach. This recommendation, which is illustrated in Figure 24, improves safety at the intersection by removing the need for westbound left turns and eastbound right turns to merge into a single lane during their shared signal phase. The existing right-of-way in the vicinity of Brush Hill Road is 50 feet and would not provide enough space for two southbound lanes and two northbound lanes (one through-lane and one left-turn bay) without land takings. The collision data obtained by CTPS did not show any crashes resulting from either the weave or the merge maneuvers, so it is not clear which of the two issues presents the greater safety risk.

From an operations standpoint, Synchro level-of-service analysis showed slightly increased intersection delay for the PM and weekend peak hours. The increased delay is primarily experienced by southbound traffic that must yield some effective green time to the northbound left-turn traffic. During the AM peak hour, when southbound traffic is lower, the analysis showed slightly decreased delay after the addition of a left-turn bay. These results suggest that the town's suggestion should be viable operationally, even if it does not represent the optimal traffic configuration. Table F-2 in Appendix F summarizes the level-ofservice analysis for this design option.

Table 6 Route 138 at Brush Hill Road

| Issue | Improvement | Time <br> Frame | Cost | Jurisdiction |
| :--- | :--- | :--- | :--- | :--- |
|  | Consider adding a northbound left-turn <br> lane on Route 138 at Brush Hill to reduce <br> weaving on the westbound approach | Medium | Medium | MassDOT |
| Congestion | Short-term | Low | MassDOT |  |
| Congestion | Optimize traffic signal timings | Medium- <br> term | Medium | MassDOT |
| Safety and <br> congestion | Upgrade signal equipment | Short-term | Medium | MassDOT |
| Safety and <br> congestion | Widen the southbound receiving <br> approach to two lanes. | Short-term | Low | MassDOT |
| Safety | Align signal heads to improve visibility at <br> each approach. | Trim vegetation on the approaches to <br> improve visibility of the signal heads. | Short-term | Low |
| Safety | Medium- <br> Install crosswalk with ADA curb ramps. | Medium | MassDOT |  |
| Safety | Add do not block intersection crosshatch <br> pavement markings to prevent queues <br> from blocking the intersection. | Short-term | Low | MassDOT |
| Safety and <br> congestion | Install additional street lighting to improve <br> safety and security for users. | Medium- <br> term | Medium | MassDOT |
| Safety |  |  |  |  |

Source: Central Transportation Planning Staff.
Table 7
Route 138 at Neponset Valley Parkway

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :--- | :--- | :--- | :--- | :--- |
| Congestion | Install new traffic signal | Medium-term | High | MassDOT |
| Safety and <br> congestion | Add a Route 138 northbound left-turn <br> lane | Medium-term | Medium | MassDOT |
| Safety | Trim vegetation on the approaches to <br> improve visibility of the signal heads. | Short-term | Low | MassDOT |
| Safety | Install crosswalk with ADA curb ramps. | Short-term | Low | MassDOT |
|  | Add do not block intersection <br> crosshatch pavement markings to <br> prevent queues from blocking the <br> intersection. | Short-term | Low | MassDOT |
| Safety and <br> congestion | Install additional street lighting to <br> improve safety and security for users. | Medium-term | Medium | MassDOT |
| Safety |  |  |  |  |

Source: Central Transportation Planning Staff.

Table 8
Route 138 at Milton Street/Dollar Lane Intersection

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :---: | :---: | :---: | :---: | :---: |
| Congestion | Optimize traffic signal timings | Short-term | Low | MassDOT |
| Safety and congestion | Upgrade signal equipment | Medium-term | Medium | MassDOT |
| Safety and congestion | Add a Route 138 northbound left-turn lane | Medium-term | Medium | MassDOT |
| Safety | Install "(RED) SIGNAL AHEAD" advance warning signs to warn road users of upcoming traffic lights | Short-term | Medium | MassDOT |
| Safety | Align signal heads to improve visibility at each approach. | Short-term | Low | MassDOT |
| Safety | Trim vegetation on the approaches to improve visibility of the signal heads. | Short-term | Low | MassDOT |
| Safety | Install crosswalk with ADA curb ramps. | Medium-term | Medium | MassDOT |
| Safety and congestion | Add do not block intersection crosshatch pavement markings to prevent queues from blocking the intersection. | Short-term | Low | MassDOT |
| Safety | Install additional street lighting to improve safety and security for users. | Medium-term | Medium | MassDOT |

Source: Central Transportation Planning Staff.

## Table 9 <br> Route 138 at Atherton Street/Bradlee Road Intersection

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :---: | :---: | :---: | :---: | :---: |
| Congestion | Optimize traffic signal timings | Short-term | Low | MassDOT |
| Safety and congestion | Upgrade signal equipment | Medium-term | Medium | MassDOT |
| Safety and congestion | Install additional signal heads on Bradlee Road to stop vehicles for emergency preemption. | Medium-term | Medium | MassDOT |
| Safety | Install "(RED) SIGNAL AHEAD" advance warning signs to warn road users of upcoming traffic lights | Short-term | Medium | MassDOT |
| Safety and access management | Open the island in front of the Fire Station to provide emergency vehicles direct access to the intersection when queued vehicles are present on either the Atherton Street or Bradlee Road eastbound approaches. | Medium-term | Medium | MassDOT |
| Safety and access management | Reduce width of the driveways to the Fire Station and add signage/pavement markings to limit access only to fire/rescue equipment. | Medium-term | Medium | MassDOT |
| Safety | Align signal heads to improve visibility at each approach. | Short-term | Low | MassDOT |
| Safety | Trim vegetation on the approaches to improve visibility of the signal heads. | Short-term | Low | MassDOT |
| Safety | Install crosswalk with ADA curb ramps. | Medium-term | Medium | MassDOT |
| Safety and congestion | Add "No Turn on Red" signs to the approaches of Atherton Street and Bradlee Road. | Short-term | Low | MassDOT |
| Safety | Install additional street lighting to improve safety and security for users. | Medium-term | Medium | MassDOT |

Source: Central Transportation Planning Staff.

### 7.4 ROUTE 138 SEGMENT IN THE TUCKER NEIGHBORHOOD

This is the northern segment of the corridor. The land uses surrounding the roadway consist of high-density residential neighborhoods of one- and two-family dwellings. This segment has the lowest levels of traffic in the corridor (between 10,000 and 12,000 vehicles per day); and has sidewalks and 10 -foot wide shoulders on either side of the roadway. The 10 -foot wide shoulders are primarily used as on-street parking, but are not authorized. The strategy is to enhance safety for pedestrians and bicycles and make the roadway more pedestrian-andbicyclist friendly.

### 7.4.1 Alternative 1: Two-Lane Cross-Section with a Two-Way Bike Lane or Multi-use Path on the East Side of the Roadway

Figure 36-38 show the improvements in Alternative 1. Staff developed Alternative 1 (shown in Figures 36 through 38) to address concerns about residential parking. Alternative 1 maintains the two-lane cross-section and sidewalks on either side of the roadway and converts one of the 10-foot shoulders into a twoway bike lane or multi-use path. The other shoulder would provide authorized onstreet parking for residents.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment.
- Encourages more people to walk and bicycle together.
- Fits the character of the neighborhood.
- Addresses parking needs of the residents.
- Avoids relocating utility poles on the west side of the roadway, which could affect the project schedule and right of way impacts.


## Disadvantages

- Limited access for bicyclists to one side of the roadway.
- Leads to more crossings for bicyclists.


### 7.4.2 Alternative 2: Two-Lane Cross-Section with Dual Bicycle Lanes and Sidewalks

Alternative 2 (shown in Figures 39 through 41) maintains the existing two-way roadway cross-section and sidewalks on either side of the roadway, and converts the shoulders into buffered bicycle lanes.

## Advantages

- Provides a pedestrian- and bicyclist-friendly environment.
- Increases access and connectivity to places for pedestrian and bicyclists.
- Reduces pedestrian and bicycle crossings on Route 138.
- Fits into the roadway's right-of-way


## Disadvantages

- Residents would lose on-street parking in the vicinity.
- Low volume of bicycles in the segment does not justify dual bicycle lanes, and residents lose on-street parking.


### 7.4.3 Additional Improvements at Selected Intersections

## One

Tables 10 through 13 present additional improvement concepts for the intersections that could the incorporated into either alternative.

Table 10
Route 138 at Robbins Street

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :--- | :--- | :--- | :--- | ---: |
| Congestion | Optimize traffic signal timings | Short-term | Low | MassDOT |
| Safety and <br> congestion | Upgrade signal equipment | Medium-term | Medium | MassDOT |
| Safety and <br> congestion | Add "No Turn on Red" signs to the approaches of <br> Atherton Street and Bradlee Road. | Short-term | Low | MassDOT |
| Safety | Align signal heads to improve visibility at each <br> approach. |  | Short-term | Low |

Table 11
Route 138 at Cheever Street/Blue Hill Terrace Street

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :--- | :--- | :--- | :--- | ---: |
| Congestion | Optimize traffic signal timings | Short-term | Low | MassDOT |
| Safety and <br> congestion | Upgrade signal equipment | Medium-term | Medium | MassDOT |
| Safety and <br> congestion | Add "No Turn on Red" signs to the approaches of <br> Cheever Street and Blue Hill Terrace Street. | Short-term | Low | MassDOT |
| Safety | Align signal heads to improve visibility at each <br> approach. | Short-term | Low | MassDOT |
| Safety | Trim vegetation on the approaches to improve <br> visibility of the signal heads. | Short-term | Low | MassDOT |
| Safety | Upgrade sidewalks and curb ramps Medium-term | Medium | MassDOT |  |
| Safety | Add curb bump-outs or extensions to shorten <br> crosswalks and improve visibility at intersections | Medium-term | Low | MassDOT |
| Safety | Install additional street lighting to improve safety <br> and security for users. | Medium-term | Medium | MassDOT |

Source: Central Transportation Planning Staff.

Table 12
Route 138 at Aberdeen Road and Oak Street

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :---: | :---: | :---: | :---: | :---: |
| Safety and pedestrian accommodation | Install a pedestrian-activated crossing signal at Oak | Medium-term | Medium | MassDOT |
|  | Street to provide safer crossing for students or |  |  |  |
|  | Move the pedestrian-activated crossing signal at |  |  |  |
|  | Aberdeen Road to Tucker Street to serve both |  |  |  |
|  | students and church activities |  |  |  |
| Pedestrian | Upgrade sidewalks, crosswalks, and curb ramps to |  |  |  |
| accommodation | MassDOT standards. | Medium-term | Medium | MassDOT |
|  | Add street curb bump-outs or extensions to shorten |  |  |  |
| Safety | crosswalks and improve visibility at intersections | Medium-term | Low | MassDOT |

Table 13
Route 138 at Brook Road

| Issue | Improvement | Time Frame | Cost | Jurisdiction |
| :---: | :---: | :---: | :---: | :---: |
| Congestion | Optimize traffic signal timings | Short-term | Low | MassDOT |
| Safety and congestion | Upgrade signal equipment | Medium-term | Medium | MassDOT |
| Safety and congestion | Add "No Turn on Red" signs to the approaches of Cheever Street and Blue Hill Terrace Street. | Short-term | Low | MassDOT |
| Safety | Align signal heads to improve visibility at each approach. | Short-term | Low | MassDOT |
| Safety | Trim vegetation on the approaches to improve visibility of the signal heads. | Short-term | Low | MassDOT |
| Safety | Upgrade sidewalks and curb ramps | Medium-term | Medium | MassDOT |
| Safety | Install additional street lighting to improve safety and security for users. | Medium-term | Medium | MassDOT |
| Safety | Add street curb bump-outs to shorten crosswalks and improve visibility | Medium-term | Low | MassDOT |

## Chapter 8-Performance of Future Conditions

### 8.1 INTERSECTION LEVEL-OF-SERVICE (LOS) PERFORMANCE

Planners typically use models to forecast future traffic volumes systematically based on changes in the transportation network or land use. For this study, MPO staff used the statewide travel demand model set. Using this model, staff projected that between now and 2040, traffic volume on Route 138 in Milton would remain at current levels because of congestion and repurposing developments in the corridor.

To test the impact of future traffic conditions that would result from proposed improvements, MPO staff used the projected peak-hour turning movement volumes. Figures 42 through 44 show the expected performance of the signalized and unsignalized intersections after implementing the proposed improvements. The analyses indicate that the intersections would operate satisfactorily during the peak hours. Appendix F contains LOS results for the future conditions.

### 8.2 PEDESTRIAN LEVEL-OF-SERVICE PERFORMANCE WITH IMPROVEMENTS

MPO staff evaluated what would be the future LOS of Route 138 in Milton if the recommendations from this study were implemented. Appendix F contains results of the pedestrian LOS score card analyses, and the ratings, as related to the four goals areas emphasized in the MPO's Long-Range Transportation Plan (LRTP). Based on the assessment, Route 138 was rated good in terms of meeting the MPO's goals for capacity management and mobility and economic vitality because of prioritizing safe accommodations for pedestrians and bicyclists, improving connectivity of the pedestrian network, and providing infrastructure for people with disabilities.

### 8.3 SAFETY IMPACTS OF PROPOSED IMPROVEMETNS

Each of the proposed improvements discussed in Chapter 7 was chosen to target specific safety deficiencies present in the study area. The Highway Safety Manual (HSM) cost-benefit analysis is performed on the basis of reduced collisions; in the case of the existing conditions these were mostly vehicular crashes because of the absence of pedestrian and bicycle facilities on a significant portion of the corridor. However, the improvement concepts primarily target pedestrians and bicyclists, as they are Complete Streets solutions. The HSM analysis will show multimodal improvements as having a negative safety impact because increased participation in these modes exposes a larger number
of users to risk. Nonetheless, several concepts proposed in the study do have high-quality data to justify their safety benefits.

- Corridor and Intersection Lighting Upgrades. Existing lighting along the Route 138 corridor is inadequate. MPO staff recommends upgrading or replacing these facilities as part of any future project. MassDOT crash data show a total collision reduction of about eight percent when street lights are added to unlit intersections or roadway segments. Providing intersection and highway lighting could reduce nighttime crashes by approximately 18 -to- 38 percent ${ }^{26}$.
- Pedestrian Crossing Safety. Improving the ability of pedestrians to cross Route 138 safely was a major priority in this study. The recommendations include fitting all signalized intersections with high-visibility crosswalks and installing midblock pedestrian-activated crossing signals at selected locations. Upgrading crossings has been shown to reduce vehiclepedestrian collisions by about 40 percent. ${ }^{27}$ Providing pedestrian-activated crossing signals such as pedestrian hybrid beacons could reduce vehiclepedestrian crashes by as much as 55 percent $^{26}$.
- Traffic Signal at Neponset Valley Parkway. Complaints about safety at the intersection of Route 138 and Neponset Valley Parkway were confirmed by the HSM analysis, which showed that this is a high-risk intersection. The proposed traffic signal at this intersection will improve safety by providing all movements with a protected phase. The HSM formulas predict these changes will reduce expected annual crashes by about 27 percent.
- Bicycle Safety. The survey responses showed that Route 138 is generally considered to be a very dangerous place in which to bicycle. The proposals in this study seek to remedy this problem by providing bicyclists with separated facilities, either through street-level buffered bike lanes or a multi-use path. A 2017 analysis of similar roadways in Florida showed a 14 percent reduction in vehicle/bicycle collision totals after installing designated bike lanes. ${ }^{28}$ However, other studies show an

[^13]increase in the total number of bicycle accidents as more riders choose to use the new facilities.

- Reduced Speed. High travel speeds were cited in the survey as contributing to unsafe conditions for users of all modes. Spot speed data confirmed that traffic often travels well above the posted limit. A ten percent reduction in mean travel speeds has been shown to correlate with a 10 percent reduction in crashes. ${ }^{29}$ Speeds could also be directly targeted by reducing the official speed limit in the corridor. In particular, the five locations where the speed limit switches between 35 mph and 45 mph is confusing and could be converted to a uniform 35 mph zone. This would require the approval of state legislature.
- "Red Signal Ahead" Signs. These actuated warning signs, which are proposed in advance of the Milton Street and Atherton Street intersections, have been shown to bring about an eight percent reduction in collisions at the intersections where they are used. ${ }^{30}$
- Repaving and Restriping. A corridor project like this will necessarily include some degree of pavement resurfacing or replacement. This change in itself can improve safety by increasing pavement friction and replacing faded pavement markings. However, currently available studies cannot reliably correlate the magnitude of the effect, as it depends heavily on the characteristics of the site.

[^14]
## Chapter 9-Conclusion and Next Steps

### 9.1 TIME FRAME AND COSTS FOR THE IMPROVEMENTS

MPO staff worked with the study's advisory task force members to develop solutions for addressing the pedestrian and bicyclist issues, and traffic safety and operations problems identified in the corridor. The concepts include short-, medium-, and long-term improvements. Short-term improvements usually are low-cost improvements and long-term improvements usually are high-cost improvements. MPO staff qualitatively assigned each improvement concept to one of the following cost categories: low cost, less than \$10,000; medium cost, $\$ 10,000$ to $\$ 500,000$; and high cost, greater than \$500,000. These are preliminary cost estimates that do not include the costs of acquiring lands adjacent to the roadway, which may be required for some of the improvements.

The short-term improvements are relatively uncomplicated and inexpensive to implement, and require minimal design efforts. They include sign installation; pavement markings; in-pavement detection for bicycles; countdown timers for pedestrians; high-visibility crosswalks; traffic signal retiming; and upgrades to signal-head backplates.

The medium-term improvements are more complicated and require more funding resources and design and engineering efforts. Medium-term improvements include installing pedestrian-activated midblock crosswalks; reconfiguring existing roadway shoulders into bicycle lanes; drainage improvements; upgrading signal equipment to include an Opticom system for emergency preemption; reconstructing substandard sidewalks; geometric modifications; and managing access to driveways.

The long-term improvements typically require more design and engineering efforts, environmental permitting, and larger funding resources. They include improving street lighting; installing new sidewalks; reconstructing intersections to improve safety; capacity management and mobility; and installing new traffic signals.

### 9.2 BENEFITS OF THE STUDY

If implemented, the improvements proposed in this report would yield the following benefits:

- Modernize the corridor into a more pedestrian- and bicyclist-friendly roadway
- Close the gap in the sidewalk network
- Transform Route 138 to support the rich recreational activities of the Blue Hills Reservation and the vision of connecting the neighborhoods to places such as schools, recreational areas, and local businesses
- Improve safety at Highway Safety Improvement Program (HSIP) crash cluster locations and other high-crash locations in the corridor
- Improve traffic flow and operations in the corridor, especially at very congested intersections
- Promote multimodal transportation


### 9.3 PROJ ECT IMPLEMENTATION

The federal fiscal year (FFY) 2019-23 Transportation Improvement Program (TIP) includes a project (Resurfacing and Related Work on Route 138) programmed in FFY 2020, to address some of the problems identified in this study. Currently, the emphasis is on providing Complete Streets solutions for the corridor and successful implementation would require cooperation between MassDOT Highway Division and the Town of Milton to ensure that sidewalks, bicycle lanes, or multi-use paths are continuous and connected; and to ensure that MassDOT's standards guide the design of roadway elements. It is important for stakeholders to examine the concepts with all road users in mind. MassDOT owns Route 138 and would be responsible for implementing renovations to the roadway and intersections. The Town of Milton owns the majority of the side streets and would be responsible for implementing renovations on those streets. The Department of Conservation and Recreation (DCR) owns some of the roadways (Neponset Valley Parkway and Green Street) and facilities in the Blue Hills Reservation and would be responsible for implementing improvements for those facilities.

### 9.4 PROJ ECT DEVELOPMENT

Transportation decision making is complex and is influenced by factors such as financial limitations and agencies' programmatic commitments. Project development is the process that takes transportation improvements from concept to construction. This process will depend upon cooperation between MassDOT, the Town of Milton, and the Boston Region MPO. This planning study provides the necessary information for the project proponents to initiate the project notification and review process. After completing these initial steps, the proponents can start preliminary design and engineering and begin working with the MPO to program funding for the project in the TIP. Appendix H contains an overview of the project development process.

SA/sa


27
Figure ES 1
Summary of Alternatives








$\square$

Route 138 in Milton







ting Conditions
Addressing Priority Corridors from

ting Conditions
Addressing Priority Corridors from Existing Conditions
Weekday PM Peak Hour Intersection Level of Service

$\square$

1. How do you typically use Route 138 ? Are you a:

$$
\begin{aligned}
& \text { Pedestrianljogger } \uparrow 176 \\
& \text { Bicyclist ofo } 144 \\
& \text { Bus rider } 17 \\
& \text { Live on Route } 138 \square 15
\end{aligned}
$$

2. Please indicate which section(s) of Route 138 in Canton that you typically use.

| The entire corridor | 481 |
| ---: | :--- | :--- |
| Royal St and Brush Hill Rd | 74 |
| Brush Hill Rd and Bradlee Rd/Atherton St | 78 |
| Bradlee Rd/Atherton St and Robbins St | 44 |
| Robbins St and Blue Hill Parkway | 67 |
| Crossing Route 138 (east/west only) | 4 |

3. While driving on Route 138, what are the problems you encounter?

4. While bicycling or walking along Route 138, what particular problems do you regularly encounter?

High speed of vehicles 291
High volume of traffic
A lack of sidewalks
Aggressive or poor bike manners from drivers
A lack of bike lanes or usable shoulders
A lack of midblock crossings or difficulty crossing Route 138
Personal safety concerns
Sidewalk in poor conditions Insufficient pedestrian crossing times

Poor street lighting
Poor connectivity to places Sidewalk too narrow A lack of accessible curb/wheelchair ramps 48
Other (trash, snow in sidewalk, parked cars in bike lanes) 25
5. Please indicate any problems that keep you from bicycling or walking on Route 138.

High speed of vehicles
High volume of traffic
High volume of traffic
A lack of sidewalks
lack of bike lanes or usable shoulders
Personal safety concerns
A lack of midblock crossings or difficulty crossing Route 138
Sidewalk in poor conditions $\qquad$
Insufficient pedestion crossing tines atier
Sidewalk too narrow
Poor street lighting
Poor connectivity to places (work, school, recreational area, and residence)
A lack of accessible curb/wheelchair ramps
Other 3
6. Please indicate which section(s) of Route 138 in Canton that you feel are most in need of Complete Street (bicycle and pedestrian accommodations) solutions.

7. Please indicate any traffic operational improvements you would like to see implemented in the Route 138 corridor.

Reduce traffic congestion 405 Increase safety for all road users (reduce crashes) Accommodate pedestrians and bicyclists
Add left turn lanes

Improve shuttle and local bus service
Reduce speed limit
$\qquad$
er













## Improvement Concept: Alternative 2 - Dual Bicycle Lanes and Sidewalks

Route 138 at Brush Hill Road
Addressing Priority Corridors from the LRTP Needs Assessment Route 138 in Milton









Improvement Concept: Alternative 1: Raised Two-Way Bicycle Lane or Multi-use Path on East Side of Roadway
Addressing Priority Corridors from the LRTP Needs Assessment Route 138 at Brook Road Route 138 in Milton



Route 138 at Aberdeen Road and Oak Street



ure Conditions
Addressing Priority Corridors from the LRTP Needs Assessment
Weekday PM Peak Hour Intersection Level of Service


# Appendix A: <br> Comments and Selection Process 

1. Review Comments
2. Selection of Study Locations
3. Public Participation

## Part 1: Review Comments

## Seth Asante

| From: | Lee Toma @ Bike Milton |
| :--- | :--- |
| Sent: | Wednesday, September 26, 2018 4:30 PM |
| To: | sasante@ctps.org |
| Cc: | William Clark |
| Subject: | Re: Route 138 Priority Corridor Study in Milton - feedback |

From: Lee Toma @ Bike Milton
Sent: Wednesday, September 26, 2018 4:30 PM
To: sasante@ctps.org
Subject:
Re: Route 138 Priority Corridor Study in Milton - feedback

Dear Mr. Asante,
I'd like to thank you and your team for putting so much effort into the Route 138 Corridor Study. Most of the proposed changes look very promising for local residents like me.

First, I'd like to offer some suggested corrections and notes:

- Appendix Figure 1 - Route 138 is not mapped across Milton in the correct location


## - Appendix P 46 \& 47

Milton - Route 138 and Mystic Valley Parkway Should be Neponset Valley Parkway

- Image quality of traffic report summaries is poor, which makes them difficult to read. I don't know if this is from the source, or from the PDF export.
- Do the Future Conditions charts (Figures 42 and 43) include the effects of adding a northbound lane of traffic?

General comments:

I am pleased to see the proposed intersection improvements, and consideration of a shared-use path. In the Tucker section especially, I would prefer to see an elevated or at least a curb-separated shared-use path over painted bike lanes to prevent vehicle obstructions. I expect that many neighbors would complain about the loss of the area that they currently use for parking, but on the other hand, this could also improve visibility for people pulling out of driveways and side streets. The shared-use path option would encourage more people to bike on this very intimidating corridor, more so than bike lanes would.

I'd like to suggest adding curb bump-outs in the Tucker area to improve sight lines at intersections. I would also like to encourage your team to include additional improvements at the Oak Street crosswalk, such as a signal, improved sight lines, and possibly a raised crosswalk. This school has the highest rate of pedestrian access in town, and anything we can do to improve pedestrian safety at this site should be a high priority.

Finally, I am concerned by the option that would add a second northbound travel lane from the Canton town line to Canton Avenue. I believe that this would increase traffic volumes at some times and increase speeds at other times, both of which are extremely unpopular among many Milton residents. This option would also shift merge conflicts from the current location in Canton up into Milton. Adding the third lane would also make road crossings more challenging for the many people who hike in the Blue Hills. I expect that most Milton residents would prefer to see the second northbound lane end at the Park and Ride parking lot.

Once again, l'd like to thank you for collecting and analyzing so much data and public input to help improve the corridor for residents and travelers.

Sincerely,

Lee (Leonardo) Toma
Member, Milton Traffic Commission
Chair, Milton Bicycle Advisory Committee Member, MIIton Public Schools Transportation and Traffic Safety Subcommittee

On Sep 24, 2018, at 9:16 PM, William Clark [wclark@townofmilton.org](mailto:wclark@townofmilton.org) wrote:
Sent from my iPhone

Begin forwarded message:

From: Seth Asante <sasante@ctps.org[mailto:sasante@ctps.org](mailto:sasante@ctps.org)>
Date: September 20, 2018 at 2:08:57 PM EDT
Subject: Route 138 Priority Corridor Study in Milton

Good Afternoon,

The draft report for the Route 138 Priority Corridor Study in Milton is available for final review. I have already sent you a Dropbox email and link to download the report. If you did not receive that email, then please use the link provided below to download a copy of the report.
https://www.dropbox.com/sh/v9pdd0455p6j7qu/AADPX2tN3pKDkGO6X-2HCApVa?dl=0
Please send me your final comments by September 27. If you do not have any comment, please let me know.

Thank you,
Seth

Seth A. Asante, P.E. | Chief Transportation Planner CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org[mailto:sasante@ctps.org](mailto:sasante@ctps.org)
www.ctps.org/bostonmpo[http://www.ctps.org/bostonmpo](http://www.ctps.org/bostonmpo)
[cid:image001.png@01D1A555.C7335B90]

[^15]
## Seth Asante

| From: | John Thompson |
| :--- | :--- |
| Sent: | Thursday, September 27, 2018 9:21 AM |
| To: | Seth Asante |
| Cc: | Michael D. Dennehy; Chase Berkeley; William Clark; geraldine.vatan@state.ma.us |
| Subject: | Route 138 Priority Corridor Study - Comments |

From:
Sent:
To:

Subject:

John Thompson
Thursday, September 27, 2018 9:21 AM
Seth Asante
Michael D. Dennehy; Chase Berkeley; William Clark; geraldine.vatan@state.ma.us
Route 138 Priority Corridor Study - Comments

Good Morning Seth

I would like to offer the following comment on the Route 138 Priority Corridor Study :

If not already examined, the Town would be extremely interested in the looking at the feasibility of adding a left turn lane on Route 138 at Brush Hill Road for the northbound approach. The current configuration requires northbound vehicles use the Canton Avenue "jug-handle" for all turns. This creates a conflict at the Canton Avenue/Brush Hill Road intersection, particularly in peak hours, as southbound vehicles on Canton Avenue (bound for Route 138 South to expressway) have to criss-cross with the northbound vehicles on Canton Avenue (bound for Brush Hill Road to Paul's Bridge). We believe this condition exacerbates the already heavy backups on Canton Avenue southbound and creates an unsafe condition. Also of note, several of the DCR parking areas on Route 138 (ski area, Trailside Museum, etc.) do not allow exiting vehicles to make left turns to Route 138 south. Vehicles ultimately have to proceed northbound on Route 138 and use the Canton Avenue jug-handle to reverse direction, inviting additional vehicles into the congested Canton Avenue/Brush Hill road and Route 138/Brush Hill Road intersections.

Thank-you for all the work you do and please let me know if you have any questions.

Regards,

John P. Thompson, P.E.
Town Engineer

Town of Milton - Engineering Dept.
525 Canton Avenue
Milton, MA 02186
(617) 898-4869

| From: | Pounds, Bryan (DOT) |
| :--- | :--- |
| Sent: | Tuesday, September 25, 2018 3:58 PM |
| To: | Seth Asante |
| Cc: | Mark Abbott |
| Subject: | RE: Route 138 Priority Corridor Study in Milton |
|  |  |
| Seth - |  |
| Planning has no comments, thanks. |  |
| BP |  |

From: Seth Asante [mailto:sasante@ctps.org]
Sent: Thursday, September 20, 2018 2:09 PM
To: Vatan, Geraldine T. (DOT); Dwyer, Courtney (DOT); Kulen, Raj (DOT); Pervez, Hameed (DOT); Gascon, Cassandra (DOT); Pounds, Bryan (DOT); John Thompson; William Clark; Polin, Bonnie S. (DOT); Chase Berkeley; Michael D. Dennehy; Diaz, John; Reardon, Muazzez G. (DOT); Pastore, Karl (DCR); Jahnige, Paul (DCR); Keating, Connor (DOT); John King; John Grant
Cc: Mark Abbott
Subject: Route 138 Priority Corridor Study in Milton

Good Afternoon,

The draft report for the Route 138 Priority Corridor Study in Milton is available for final review. I have already sent you a Dropbox email and link to download the report. If you did not receive that email, then please use the link provided below to download a copy of the report.
https://www.dropbox.com/sh/v9pdd0455p6j7qu/AADPX2tN3pKDkGO6X-2HCApVa?dl=0

Please send me your final comments by September 27. If you do not have any comment, please let me know.

Thank you, Seth

Seth A. Asante, P.E. | Chief Transportation Planner
CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org
www.ctps.org/bostonmpo


## Part 2: Selection of Study Locations

## TECHNICAL MEMORANDUM

DATE: January 18, 2018
TO: Boston Region Metropolitan Planning Organization

## FROM: Seth Asante, MPO Staff

RE: Selection of Study Locations for the FFY 2018 Addressing Priority Corridors from the Long-Range Transportation Plan Needs Assessment

BACKGROUND
During the development of the Boston Region Metropolitan Planning Organization (MPO) Long-Range Transportation Plan (LRTP), Charting Progress to 2040, the MPO staff identified the existing needs for all transportation modes in the region. ${ }^{1}$ The results were compiled in the LRTP Needs Assessment, which is used to guide the MPO's decision-making process for selecting transportation projects to fund in future Transportation Improvement Programs (TIP). The MPO goals that guided the development of the LRTP Needs Assessment include the following:

- Safety—make all modes safe
- Preservation-maintain and modernize the system
- Capacity Management and Mobility—use existing facility capacity more efficiently and increase healthy transportation capacity
- Clean Air/Clean Communities-create an environmentally friendly transportation system
- Transportation Equity—provide comparable transportation access and service quality among communities, regardless of income level or minority population
- Economic Vitality—ensure our transportation network serves as a strong foundation for economic vitality

Based on previous and ongoing transportation-planning work-including the MPO's Congestion Management Process (CMP) and planning studies-MPO staff identified several priority arterial roadway segments that require maintenance, modernization, and safety and mobility improvements. These locations are documented in the LRTP Needs Assessment.

[^16]To address problems on some of these arterial segments, the Addressing Priority Corridors from the Long-Range Transportation Plan Needs Assessment study was included in the federal fiscal year (FFY) 2018 Unified Planning Work Program (UPWP). ${ }^{2}$ This memorandum presents the results of Task 2 of the work program for that study. ${ }^{3}$ Task 2 involves presenting a recommendation for locations to study to the MPO board for discussion.

By focusing on arterial segments rather than intersections, planners can evaluate multimodal transportation needs comprehensively (with the goal of creating Complete Streets). A holistic approach to analyzing problems and forming recommendations ensures that the needs of all public transportation usersincluding pedestrians, bicyclists, and motorists-are considered. Ultimately, this approach will result in roadways where it is safe to cross the street and walk or cycle to shops, schools, train stations, and recreational facilities, and where buses can run on time. Typically, the recommended improvements are within a roadway's right-of-way. They take into account the needs of abutters and users, and the interests and support of stakeholders.

## 2 PROCEDURE FOR SELECTING STUDY LOCATIONS

The process for selecting study locations consisted of three steps. First, MPO staff assembled data about the arterial segments identified in the LRTP Needs Assessment and used the data to prioritize the roadway segments. Next, MPO staff examined the arterial segments more closely by applying specific criteria. Finally, staff scored each arterial segment and assigned a priority of low, medium, or high to each segment. Details about each step in the process are provided below.

### 2.1 Gathering Data

MPO staff identified 44 arterial segments in 33 municipalities in the Boston region based on the following data sources:

- The Massachusetts Department of Transportation (MassDOT) 2016 Road Inventory File and 2010-14 crash database were used to assemble the following information for each arterial segment: roadway jurisdiction,

[^17]National Highway System status, average daily traffic (ADT), high-crash locations, and crash rates.

- The MPO's CMP data on arterial congestion were used to determine average travel speeds, travel-time index (travel time in the peak period divided by travel time at free-flow conditions), and speed index (average travel speed divided by the speed limit) on each arterial segment.
- The MPO's data on gaps in the bike network and data on the location of MassDOT bike facilities were used to identify needs for the bicycle mode, including locations where connectivity between bicycle facilities could be improved and where bicyclists' accommodations could be improved.
- Data on MBTA bus service performance and passenger loads were used to determine the percentage of bus trips that do not adhere to the schedule (in other words, that provide late service) or do not adhere to passenger load standards (resulting in crowding).
- Data on MBTA bus routes, subway lines, and commuter rail lines were used to identify which arterial segments serve MBTA buses or stations.
- Data on the MPO's Environmental Justice (EJ) transportation analysis zones were used to identify areas of concern as relates to environmental justice.
- Data selected from MassDOT's project-information database, the MPO's FFY 2018-22 TIP projects, MPO planning studies and other studies, and municipal websites were used to obtain data on projects, studies, and TIP projects that are planned or programmed for each arterial segment.

Table 1 (attached) presents the data and information gathered on each of the following arterial segments:

- Municipality
- Metropolitan Area Planning Council (MAPC) subregion
- Jurisdiction
- MassDOT district office
- Crash rate per million vehicle-miles traveled
- Number of top-200 high-crash locations
- Number of crash clusters that are eligible for Highway Safety Improvement Program (HSIP) funding
- Travel-time index
- Transit service performance
- Proximity to an EJ transportation analysis zone (within one-half mile distance)
- Relevant studies or projects within or near the segment

Table 1 also includes the score and priority rating that were determined by applying the selection criteria. The processes for scoring and assigning priority ratings to segments are described below.

### 2.2 Applying Criteria

MPO staff examined the arterial segments more closely by applying the following six criteria and assigning points based on the number of criteria that apply to each location:

1. Safety Conditions, $0-4$ points (each of the four criteria is worth one point)
o Location has a higher-than-average crash rate for its functional class
o Location contains an HSIP-eligible crash cluster
o Location is identified in the Massachusetts Top High Crash Locations Report
o Location has a significant number of pedestrian and bicycle crashes per year (two or more per mile) or contains one or more HSIP-eligible bike-pedestrian crash cluster
2. Congested Conditions, $0-2$ points (each of the two criteria is worth one point)
o Travel-time index is at least 1.3
o Travel-time index is at least 2.0
3. Multimodal Significance, $0-3$ points (each of the three criteria is worth one point)
o Location currently supports transit, bicycle, or pedestrian activities
o Location needs to have improved transit, bicycle, or pedestrian facilities
o Location has a high volume of truck traffic serving regional commerce
4. Regional Significance, $0-4$ points (each of the four criteria is worth one point)
o Location is in the National Highway System
o Location carries a significant portion of regional traffic (ADT is greater than 20,000)
o Location lies within 0.5 miles of an EJ transportation analysis zone
o Location is essential for the region's economic, cultural, or recreational development
5. Regional Equity, 0-2 points (each of the two criteria is worth one point)
o Location is in an MAPC subregion for which there has not been a Priority Corridors study
o Location is in an MAPC subregion for which there has not been a Priority Corridors study in the previous three years.
6. Implementation Potential, $0-3$ points (each of the three criteria is worth one point)
o Location is proposed or endorsed for study by the agency that administers the roadway
o Location is proposed or endorsed by its MAPC subregional group and is a priority for that subregional group
o Other stakeholders strongly support improvements for the location

### 2.3 Scoring and Rating

MPO staff rated arterial segments with a total score of 10 or fewer points as low priority; those with a score of 11 to 12 points as medium priority; and those with a total score of 13 or more points as high priority. MPO staff gave 15 arterial segments a high-priority rating based on safety and operational needs, multimodal and regional significance, regional equity, and support for improvements from agencies and municipalities. Staff then examined highpriority segments more closely, and excluded arterials that had projects meeting any of the following criteria from further consideration for this cycle of the Priority Corridors study: recently completed, in construction, in design, under study, or programmed in the TIP with the 25 percent design completed.

The four arterial segments with the highest scores were:

- Route 138 in Milton
- Route 114 in Peabody
- Route 3A in Quincy
- Route 16 in Wellesley

Staff also evaluated the pedestrian accommodation and safety improvement needs for these segments by applying the MPO's recently developed Pedestrian Report Card Assessment. ${ }^{4}$ All four locations highly qualify based on pedestrian accommodation or safety improvement requirements. Appendix A contains detailed results of the assessments. Based on this evaluation, MPO staff recommends studying the segment on Route 138 in Milton.

[^18]
## 3 ARTERIAL SEGMENT SELECTED FOR STUDY: ROUTE 138 IN MILTON

The arterial segment that was selected for study was Route 138 in Milton, based on a total score of 14 , using the five selection criteria (safety, congestion, multimodal and regional significance, regional equity, and implementation potential). Route 138 runs north-south through Milton, from the border of Boston to the north to the border of Canton to the south. In Milton, the roadway primarily passes through residential areas and the Blue Hills Reservation area. Current evaluation indicates that there are safety, capacity, and mobility problems in the segment. Two locations along the segment contain HSIP-eligible crash clusters and the segment has a higher-than-average crash rate for its functional class. The corridor also sees a high injury rate with 39 percent of collisions causing injuries. Additionally, several intersections in the segment are congested, which create long traffic queues during peak travel periods. Finally, accommodations for pedestrians and bicyclists are poor and need improvement-several sections in the Blue Hills Reservation and Curry College lack sidewalks.

The Town of Milton is considering capacity and mobility improvements in the corridor and has expressed support for and willingness to participate in a study of this arterial segment (See Appendix B). MassDOT Highway Division District 6 supports this study and asked the MPO staff to identify the problems and develop Complete Street solutions that could be implemented by MassDOT in tandem with a future roadway improvement project.

The recommended arterial segment on Route 138 in Milton meets the selection criteria of this study, especially by supporting the transportation improvement priorities of the MPO's LRTP. While the work program for this study assumed that "as many as two" arterial segments would be selected, the MPO staff does not propose studying a second arterial segment because Route 138 in Milton is approximately 3.5 miles long and this study would require considerable resources for evaluating alternative improvement plans. Figure 1 shows the general locations of previous Priority Corridor studies, and the location identified for this year's study.

## 4 NEXT STEPS

After the MPO board discusses this recommendation, staff will meet with officials from the Town of Milton, MassDOT, MAPC, and other stakeholders to discuss the study specifics, conduct field visits, collect data, identify needs, and develop solutions.


|  |  |  |  |  |  |  |  |  |  |  | Arterial Segments |  | Study: Priority Co rterial Segment Se | TABLE <br> dors for Long-Range Transportation Plan Needs Assessment Study ted for Study Is Highlighted in Green) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\substack{\text { ateral } \\ \text { Segment }}}^{\text {ate }}$ | community | mac subregio | Massoot | Jursidiction | $\begin{array}{\|l}  \\ \text { National } \\ \text { Highway } \\ \text { Svstem } \end{array}$ | $\underbrace{\text { Cusse }}_{\text {Functional }}$ |  | Number of Top-200 High- <br> Crash Locations <br> 2012-14 | Nomber sip. Elibibe | $\begin{array}{\|l\|l}  \\ \text { Travel- } \\ \text { Time } \\ \text { Tindoy } \end{array}$ | Trasts Serice | citamed | $\begin{array}{l\|l} \text { In or Near } \\ \text { Environmental } \end{array}$ |  |  |  | Mutimotal | ${ }_{\text {Regional }}^{\substack{\text { Rignifanco }}}$ | $\underbrace{}_{\substack{\text { Regiona } \\ \text { Equity }}}$ | Implemenation Potern |  |  | Summay of comm |
| Roue 138 | witon | 1 CC and TRE | - | Massot | ves | 2 | 1.5 |  |  | 241 |  |  |  | MassDOT Poject \#608484, Roadway Improvement on Route 138, project for the Boston Metropolitan Planning Organization (MPO); project will also incorporate work planned originally for 607763 (described below); in the preliminary design phase. MassDOT Project \#607763, Intersection and Signal Improvements at Two and Route 138 (Blue Hill Avenue) at Milton Street and Dollar Lane, Program (TIP); in the preliminary design phase. |  |  |  | 4 |  |  |  | Hob |  |
| Roue 114 |  | nste |  | Massoot and Town | res |  | ${ }^{3} 7$ |  |  |  | $\left.\begin{array}{\|l} \text { Three MBTA bus } \\ \text { Stops } \\ \text { MBTA bus Routes } \\ 435 \text { and } 465 \end{array} \right\rvert\,$ |  |  | Route 114 at Sylvan Street Cross Street, Northshore Mall, Loris Road, Route 128 Interchange, and Esquire Drive, in design |  |  |  | 3 |  |  |  | Hon | Route 114 in Peabody was listed as a potential corridor in need of signal progression and improvements to accommodate pedestrians and bicyclists. However, the arterial segment was not selected because according to MassDOT Highway District 4, a road safety audit was completed for the segment in August 2016 and a consultant is starting design work as part of project \#608567. The location was suggested in the 2017 MPO outreach program. |
| Rout 3 ${ }^{\text {A }}$ | , xa | Icc |  |  | res |  | 29 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Heg |  study. The location |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | MassDOT Project \#606518. As part of the Quincy redevelopment project, the city plans to construct a new bridge over the existing MBTA tracks that will goal of the new bridge will be improved pedestrian conditions along Hancock Street; 25\% package received (as of 12/16/2016) <br> An FFY 2012 CTPS safety and operations study addressed problems at Route 3A and Coddington Street intersection. |  |  |  |  |  |  |  |  |  |
| Roue 16 | Weleser | mwRc |  | Massoot and Town | ves |  | 6.4 |  |  | 257 | MBTA Commuter Rail at Wellesley Square, Wellesley Hills, and Wellesley Farms MWRTA Route 8 |  |  | MassDOT Project \#94762, Bridge Rehabilitation, Route 16 (Washington Street) over Route 9, including relocation of retaining wall; completed summer MassDOT Project \#600712, Reconstruction of Route 16 from Grantland Road to the Newton City Line. The work consisted of paving, drainage improvements, sidewalk reconstruction, traffic signals, and ornamental lighting on Route 16. A signal was installed at the Washington Street/Walnut Street intersection, and the pedestrian crossing 150 feet south of Hillside Road was upgraded, completed in 2004. |  |  |  |  |  |  |  | Hon | The location was suggested in 2014 LRTP outreach Partnership meeting. |
| Route 60 | Alingoo | 100 |  | Town | res |  |  |  |  |  | Eight MBTA bus stops MBTA bus Routes $67,62,76,77,78$, $79,80,84$, and 350 |  | Yes | TPS and MAPC Community Transportation Technical Assistance Program evaluated the high-crash location at the intersection at Massachusetts Avenue, March 2010. March 2010 <br> MassDOT Project \#606885, the contractor is planning to finish the rest of the <br> bike route symbols and electric work, weather permitting (as of 01/06/2017); in construction. <br> in construction. |  |  |  |  |  |  |  |  | NA |
|  | Cambricge | 100 |  | OCR | res |  | 9.3 |  |  |  |  |  | Yes <br> Most of the segment to EJ zones. | Alewife Studies, Phase II, CTPS study (2009). <br> DCR announced a comprehensive study of the parkway system for bike lanes <br> MassDOT Project \#605637, Improvements at Route 2 and Route 16. The purpose of this project is to perform minor widening, eliminate a merge condition, and improve throughput capacity and vehicle queue storage at the intersection of Route 2 and Route 16 (Alewife Brook Parkway); unde construction. |  |  |  |  |  |  |  | tan |  |
|  | Everet | 100 |  | OCR |  |  |  |  |  |  |  |  | res |  |  |  |  |  |  |  |  |  |  |


| Arterial Segments Considered for Study: Priority Corridors for Long-Range Transportation Plan Needs Assessment Study (Arterial Segment Selected for Study Is Highlighted in Green) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | communty | mapc surreg |  | Jurisicition | $\begin{array}{\|l} \text { National } \\ \text { Highway } \\ \text { System } \\ \hline \end{array}$ | ${ }_{\text {fanction }}^{\substack{\text { chass }}}$ |  | Number of Top-200 High- <br> Crash Le | Nomen |  | Transt serice | Late Bus | $\begin{array}{\|l\|l} \text { In or Near } \\ \text { r } & \text { Environmental } \\ \text { Justice Zone } \\ \hline \end{array}$ | Sucty, Propet, of tip Project |  | $\substack{\text { coneseded } \\ \text { conditos }}_{\text {cose }}$ | Msulimodal | Regional |  | Impemenataion Potental | sore |  | sumar of Comm |
| Roues | Franimenam | ${ }_{\text {MWVec }}$ |  | massoot | res |  | 28 |  |  | 3.47 |  | None |  | MAPC Land Use/Route 9 Corridor Study (fall 2013) <br> MassDOT Project \#603865 is located in Framingham at the intersection of Route 9 and Temple Street; in preliminary design MassDOT Project \#608006, Pedestrian Hybrid Beacon Installation at Route 9 and Maynard Road; 25\% design stage MassDOT Project \#604991, Resurfacing and Related Work on Route 9 , includes wheelchair ramp upgrades, additional sidewalks/repairs, and signal improvements; completed in autumn 2011 \#602522: Framingham- Bridge Replacement, Br/f F-07-006, Route 9 over the Sudbury River -. This project proposes to replace the Route 9 Bridge Sudbury River and includes minor incidental roadway work. (2009) |  |  |  |  |  |  |  | Han |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | \#608006: Framingham- Pedestrian Hybrid Beacon installation at Route 9 And Maynard Road -- The proposed project will construct an at-grade pedestrian crossing across Route 9 in the vicinity of Maynard Road and the Framingham Fire Station. (Design public hearing 2017) |  |  |  |  |  |  |  |  |  |
| Route 107 | ym | Ic |  | Massoot and Toun | res |  | 20.6 |  |  |  |  |  |  | MassDOT Project \#604952, Bridge Replacement, Route 107 over the Saugus Regin in autumn 2018 <br> MassDOT Project \#26710, Bridge Replacement, Route 107 over the Saugus River (Fox Hill Bridge); completed spring 2013 <br> MassDOT Project \#603938, Western Avenue Bridge over Saugus River (Fox Hill Bridge) <br> TIP Project \#374, Lynn Garage (transit) |  |  |  |  |  |  |  | toph | This arterial segment was not selected for study because there is an ongoing Route 107 Corridor Study in Lynn and Salem, which is being conducted by MassDOT in conjunction with Lynn and Salem. |
|  | ${ }_{\text {medorod }}$ | $1 \text { Icc }$ |  | OCR | ves | 2.3 | 22 |  |  |  | MBTA bus Routes <br> $90,97,99,100$, <br> $106,108,110$, <br> 112, and 134 <br>  <br> MBTA Rapid <br> Transit on the <br> Orange Line at <br> Wellington and on <br> the Red Line at <br> Porter Square <br> MBTA Commuter <br> Rail at West <br> Medford and <br> Porter Square |  | Yes <br> EJ zones are located egment in Somervill and Everett and 0.2 Medford. | DCR announced a $\$ 500,000$ comprehensive study of the parkway system for bike lanes in FFY 2015. The goals of the study include updating traffic <br> information, assessing parkway conditions, and deficiencies along the heavily cycled parkways. <br> \#604660: Everett- Medford- Bridge Replacements, Revere Beach Parkway $\left\lvert\, \begin{aligned} & \text { (Route 16), E-12-004=M-12-018 Over The Malden River (Woods Memorial } \\ & \text { Bridge) \& M-12-017 Over Mbta And Rivers Edge Drive -- The purpose of this }\end{aligned}\right.$ bridge. (2020) |  |  |  |  |  |  |  | tap |  |
| Route 9 | Natick | MWRC |  | Massot | res |  | 4. |  |  | ${ }_{3} .30$ |  | None |  | MAPC Land Use/Route 9 Corridor Study (fall 2013) <br> MassDOT Project \#608821, Installation of adaptive traffic control signal equipment, vehicle detection, communication equipment, and managing software at 5 traffic signals (3 in Framingham and 2 in Natick) on Route 9; in construction. <br> MassDOT Project \#605091, Work consists of bridge repairs on 4 bridges over Route 9 and Speen Street, in preliminary design <br> MassDOT Project \#601586 was completed in autumn 2015. <br> MassDOT Project \#605313 will reconstruct the Route 9/Route 27 interchange; $25 \%$ project design stage. MassDOT Project \#604991, Resurfacing and Related Work on Route 9, includes wheelchair ramp upgrades, |  |  |  |  |  |  |  | Hgh |  |



| $\underset{\substack{\text { ateial } \\ \text { Segment }}}{\text { ate }}$ | mm | Masc Subregion | Massoot | jursaditit | $\begin{aligned} & \text { National } \\ & \text { Highway } \\ & \text { System } \\ & \hline \end{aligned}$ |  | ctarem | $\begin{aligned} & \text { Number of Top-200 High- } \\ & \text { Crash Locations } \\ & \text { 2012-14 } \\ & \hline \end{aligned}$ | Number of HSIP-Eligible Crash Clusters 2012-14 | $\begin{aligned} & \text { Tivel } \\ & \text { Tin } \\ & \text { Tinemex } \\ & \text { nnex } \end{aligned}$ | nsis senice | ate uns |  |  | ${ }_{\text {Satas }}^{\substack{\text { Satay } \\ \text { conditions }}}$ | ${ }_{\substack{\text { Congestes } \\ \text { conditoss }}}^{\text {a }}$ | Multimodal | Regoinal |  | Implementaito Poearetal | score |  | nay of Com |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | \#602930: Brookline- Framingham- Natick- Newton- Southborough- Wellesleyall overhead and ground-mounted guide sign panels, exit gore, warning, regulatory, and route marker panels on Route 9 and secondary roadways from the Boston-Brookline town line to I-495 in Westborough (completed 2009) \#603004: Natick- Bridge Replacement, Br\# N-03-021, Route 9 Over Lake Cochituate (2007) \#607732: Framingham- Natick- Cochituate Rail Trail Construction Including Pedestrian Bridge, N-03-014, Over Route 9 \& F-07-033=N-03-029 Over Rout 30 (begins 2018/2019) $\qquad$ 111 And I-290 (2018) |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | *608281: Framingham- Natick A Signal Control On Route 9 Worcester Road) -- Installation of adaptive traffic control signal equipment, vehicle detection, communication equipment, and managing software at 5 traffic signals ( 3 in Framingham +2 in Natick) on Route 9. (completed summ |  |  |  |  |  |  |  |  |  |
| Roueve 114 | Salam | nste |  | Massot and Ciy | ves | 2.3 | 10.4 |  |  | 206 |  |  |  |  |  |  |  |  |  |  |  | Hag |  |
| Rout 3 A | wermuut | ssc |  | spor | res | 3 | 3.5 |  |  |  |  |  |  | MassDOT Project \#608231, The intent of this project is to reconstruct Route $3 A$ and address poor traffic operations along the corridor. The project will als upgrade accomodations for bicyclists and pedestrians; in preliminary design MassDOT Project \#604382, Route 3A (Washington Street) Bridge; construction ends winter 2016/2017 MassDOT Project \#608483, Work consists of resurfacing on Route 3A; in preliminary design MassDOT Project \#602703, Bridge Rehabilitation, Route 3A (Lincoln Street) over the Weymouth Back River; completed in autumn 2006 |  |  |  |  |  |  |  | Hon | A road safety audit was completed for Route 3A in Weymouth in September 2016. The audit identified the problems and needs on the roadway, and suggested short-, medium-, and long-term improvements. MassDOT District 6 indicated that a study would probably be redundant as the audit provided the information needed to advance Project $\# 608321$ in design. |
| Route 18 | Wermout | ssc |  | Massoot | ves |  | 2.1 |  | 10 |  | Nine MBTA bus stops MBTA bus Route 225 MBTA Commuter Rail at South Weymouth |  |  | Programmed TIP (2017) and MassDOT Project \#601630, Reconstruction and Widening on Route 18 (Main Street), from Highland Place to Route 139; construction begins summer 2017 MassDOT Project \#603161, Signalization and Improvements on Route 18 (Three Locations) at West Street, Park Avenue, and Columbian Street; completed in spring 2009 MassDOT Project \#603738, Traffic Signal Improvements on Route 18 at Pond Street and Pleasant Street; completed in summer 2006 |  |  |  |  |  |  |  | Hon | This arterial segment was not selected because according to MassDOT District 6, a MassDOT project is underway, and no project is needed at this time |
| Rout | Whingoson | nspe |  | Massoor and Toun | Yes |  | 6.1 |  |  |  |  |  | None | MassDOT Project \#601732, Rehabilitation, Route 129 (Lowell Street) from Route 38 (Main Street) plantings, and bicycle accommodation within the newly paved shoulders. The intersection of Route 129 and 38 was realigned with new traffic signals bridge over Maple Meadow Brook was replaced; completed in 2009. MassDOT Project \#608051 will reconstruct Route 38 from Route 62 to the Woburn city line and will add bike lanes, sidewalks, turn lanes, and signal upgrades; in preliminary design. |  |  |  |  |  |  |  | Hap | NA |
| ${ }_{2}{ }^{\text {Rouses }}$ |  | ma |  | T and Town | $\mathrm{V}_{\text {res (arat) }}$ | 3.5 | 42 |  |  | $\left.\right\|_{1.82}$ | MBTA bus Route Three MBTA bus stops MBT 62 |  | none | Great Road Project: Master Plan and Conceptual Design, prepared by VHB for the Town of Bedford in 2011, in preliminary design The MassDOT-administered section, from I-95 to Hartwell Avenue, was the subject of a Town study (Hartwell Avenue Traffic Mitigation Plan -- Bedford Street Concept Plan), and a road safety audit was performed for this segment in November 2011 <br> \#29500: Bedford- Roadway Reconstruction And Traffic Signal Installation On A Section Of Great Road (Routes 4 \& 225) (complete 2000) $\qquad$ Road To Pleasant Street -- The proposed project will address safety and capacity deficiencies at three intersections along Massachusetts Avenue; Marret Road (Route 2A), Maple Street (Rout (Routes 4/225). (construction 2016-2018) |  |  |  |  |  |  |  | Modium |  |
|  |  | 1 cc |  | OCR |  |  |  |  |  |  |  |  |  | The Lower North Shore Transportation Improvement Study, CTPS study 2000 <br> DCR announced a comprehensive study of the parkway system for bike lanes. |  |  |  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |  | Isegnent | $\begin{array}{ll} \text { Heres fors } \\ \text { (arter } \end{array}$ | r Study: Priority Corrid rterial Segment Select | TABLE 1 <br> Range Transportation Plan Needs Assessment Study ted for Study Is Highlighted in Green) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\xrightarrow{\text { Ateral }}$ Segment | Community | bregin | massor | Jurisidicion | $\begin{aligned} & \text { National } \\ & \text { Highway } \\ & \text { System } \\ & \hline \end{aligned}$ | ${ }_{\text {Functional }}^{\text {chass }}$ | cisas Rate | Number of Top-200 High <br> Crash L 2012-14 | Nombe | $\begin{aligned} & \text { Travel } \\ & \text { Tine } \\ & \hline \text { Index } \end{aligned}$ | Transt serice | Late Bus | $\begin{array}{\|l\|} \hline \text { In or Near } \\ \text { Environmental } \\ \text { Justice Zone } \\ \hline \end{array}$ |  |  |  | , Matimoal | Regional | ${ }_{\text {Regen }}^{\substack{\text { Regional }}}$ | Implementation Poterital | sore | ${ }_{\text {Premating }}^{\text {Prating }}$ | Summay of Commens |
| 28 | milon | ICC and TRIC |  |  | ves | ${ }_{3}$ | ${ }_{4 .}$ | $\square$ |  | 248 |  |  |  | MassDOT Project \#607342, Intersection and Signal Improvements at Route wbut Road, in preilminary design MassDOT Project \#106901, Roadway Reconstruction on Route 28 (Randolph Conceptual TIP \#1008, Reconstruct the Intersection of Blue Hills Parkway and Brook Road |  |  |  |  |  |  | 12 | medium | This arterial segment was not selected because ther have been several improvements in this segment in recent years. |
| Roue 9 | Nemon | 100 |  | sDOT |  |  | 20 |  |  |  | Six MBTA bus stops MBTA bus Routes 60,52, and 59 MBTA Green Line |  |  |  |  |  |  |  |  |  |  | Medium |  |
| Route 16 | Nemon | cc |  | ssoot and civ | yes |  | 29 | $\bigcirc$ |  | 1.86 |  |  |  |  |  |  |  |  |  |  |  | Medium |  |
| Route 28 | Randon | \% |  | MassDOT and Town | ves |  | 5.5 | $\square$ |  | ${ }_{200}$ |  |  |  | MassDOT Project \#603716, Resurfacing and Related Work on a Section o Route 28, compleded 2007/2008 <br> Conceptual TIP \#1002, Route 28 (N. Main Street) Bridge Conceptual TIP \#1010, Route 28 (N. Main Street) and Liberty Street Onsection ntersection Conceptual TIP \#1011, Route 28 (N. Main Street) and West Street ntersection FFY 2008 Safety and Operations Analyses at Intersections study Arterial Coordination Study, CTPS study (2010) |  |  |  |  |  |  | 12 | medium | (tan |
| Route 16 <br> (Revere <br> Beach <br> Parkway) | Renere | 1 cc |  | OCR | yes |  | 1.5 |  |  |  |  |  | $\begin{array}{\|l} \text { Yes } \\ \text { The entire segment } \\ \text { lies within EJ Zones. } \end{array}$ | DCR announced a $\$ 500,000$ comprehensive study of the parkway system for bike lanes in FFY 2015. The goals of the study include updating traffic bike lanes in FFY 2015. The goals of the study include updating traffic information, assessing parkway conditions, and assessing and understanding long the heavily cycled parkways. <br> The Wynn Everett DEIR (2015) includes intersection improvements and mitigated tr Parkway. |  |  |  |  |  |  |  | Medid |  |
| Rout 20 | Weson | MWVC |  | Massot | res |  | 26 | - |  |  |  |  |  | Nopopects |  |  |  |  |  |  | 12 | medium | A congestion stuay was suggested througn UPVVP and LRTP outreach in 2012, 2013, and 2014 by MAGIC; a formal letter was submitted and verbal comments were made at an MWRC subregion meeting. The location was resubmitted in a comment on Draft FFY 2014 UPWP and was suggested in the 2017 MPO outreach program. |
| $\begin{array}{\|l} \text { Route } 2 \\ \text { (Fresh Pond } \\ \text { Parkway) } \\ \hline \end{array}$ | mbirige | 100 |  | ${ }_{\text {OCR }}$ | res |  | 1.8 |  |  |  |  |  |  | DCR announced that the agency will conduct a traffic study of severa intersections along Mount Auburn Street and Fresh Pond Parkway, in partnership with the City of Cambridge and the MBTA. The study will focus on safety measures, bus prioritization, and accessibility. Conceptual TIP project \#987 would acquire Minuteman Path right-of-way in Watertown to connect Minuteman Bikeway from Arlington, Watertown to connect Minuteman Bikeway from Arlington, Watertown to Dr. Paul Dudley White Bike Path in Boston. |  |  |  |  |  |  |  | Nedium |  |
| Meniol |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Yes } \\ & \text { Most of the segment } \\ & \text { lies within or adjacent } \end{aligned}$ | DCR announced a \$500,000 comprehensive study of the parkway system for bike lanes in FFY 2015. The goals of the study include updating traffic information, assessing parkway conditions, and assessing and understanding |  |  |  |  |  |  |  |  |  |

TABE 1

| $\xrightarrow{\text { Atereal }}$ Sesment | ammunty | mape Subrogion | masamot | Jurasicicion |  | $\underbrace{\text { Class }}_{\text {Fenctiona }}$ |  | Number of Top-200 High Crash Locations <br> 2012-14 | Number of HSIP-Eligible Crash Clusters 2012-14 | $\begin{array}{\|l\|l} \text { Travel- } \\ \text { * } & \text { Ime } \\ \text { Index } \end{array}$ | Transt serice | Late bus | $\begin{array}{\|l\|l} \text { r } & \text { In or Near } \\ \text { Environmental } \\ \text { Justice Zone } \\ \hline \end{array}$ | Stur, Project, of tip Project | ${ }_{\substack{\text { Satat } \\ \text { conditions }}}^{\text {col }}$ | $\underbrace{\text { a }}_{\substack{\text { coneseted } \\ \text { conditos }}}$ | Msultiodal | Regen | $\underbrace{\substack{\text { Euuty }}}_{\text {Regional }}$ | Impemenotato Pooental | score |  | summay of Comm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roue 99 | Eweret | 100 |  | aiv | Yes | 3 | 26 | $\bigcirc$ |  | 223 | 40 MBTA bus stops <br> MBTA bus Routes $97,104,105,109$ $110,112,99$, and 106 |  |  | assDOT Project \#602383 reconstructed Route 99 with a traffic signa upgrade, from Second Street to the Malden city line in 2008; completed autumn 2007; All work is complete except punch list work (as of $02 / 15 / 2008$ ) MassDOT Project \#601580 reconstructed Route 99 from Sweetser Circle to Second Street in 2004; completed in summer 2004 MassDOT Project \#602382 reconstructed Route 99 from Sweetser Circle to the Alford Street Bridge in 2013 . comple the Alford Street Bridge in 2013; completed spring 2013. |  |  |  |  |  |  | 11 | Medium |  vith singin inopoven. |
| Roue 1 | Nomood | TRIC |  | MassDOT | res | 3 | 0.8 |  |  |  | MBTA Commuter <br> Rail at Islington, <br> Dedham Corp <br> Center, Endicott, <br> Norwood Depot, <br> Norwood Central, <br> Windsor Gardens, <br> and Plimptonville |  |  | MassDOT's I-95 South Corridor Study, provided a comprehensive evaluation of the I-95 and Route 1 corridors south of Route 128 that included a (June 2010) MassDOT Project \#608052, Route 1 at Morse Street (approved by PRC Nov. (2014), in preliminary design <br> MassDOT Project \#605857, Route 1 at University Avenue and Everett Street; Town design is at pre-25\% Townder is at pre River; in design stage |  |  |  |  | 0 |  | 11 | Medium |  |
| Roule 1 A | Revere |  |  | Massoot | res |  | 2.1 | $\bigcirc$ |  |  |  |  |  | CTPS Lower North Shore Transportation Improvement Study proposed mprovements for Route 1A in Revere in October 2000; an update may be necessary. <br> Conceptual TIP Project \#982, Mahoney Circle (Bell Circle) Grade Separation |  |  |  |  | 0 |  | 11 | Medid |  |
| Roue 1 | Walode | ${ }_{\text {TRRC }}$ |  | Massoot | res | 3 | 1.5 | 1 |  | 1.53 | $\begin{aligned} & \text { MBTA Commuter } \\ & \text { Rail at Sharon and } \\ & \text { Walpole } \\ & \hline \end{aligned}$ | NA |  | MassDOT's I-95 South Corridor Study presented a comprehensive evaluation of the I-95 and Route 1 corridors south of Route 128 and included a recommended plan of short-term and long-term improvements (June 2010) MassDOT Project \#608480, Resurfacing and related work on Route 1; in preliminary design <br> MassDOT Project \#608599, Stormwater Improvements to treat discharges <br> Trom Route 1, I-95 and Route 1A to the Neponset River and an Unnamed Tributary; in preliminary design <br> Tributary; in preliminary design |  |  |  |  | 0 |  | 11 | Medium | The location has MassDOT projects and studies and Highway District 5 . Highway District 5. |
| Route 35 | Welsser | murc |  | Massoot and Town | Ves |  | 6.7 |  |  |  |  | None |  | Noproeds |  |  |  |  |  |  |  | Medium | None |
| Route 2 | Acton | macic |  | Massoot | Yes |  | ${ }^{1.3}$ |  |  | 1.80 | $\begin{array}{\|l\|} \hline \text { MBTA Commuter } \\ \text { Rail at South } \\ \text { Acton and West } \\ \text { Concord } \\ \hline \end{array}$ |  | res | MassDOT Project \#604472, Resurfacing and Related Work on Route 2 <br> MassDOT Project \#607748, Intersection and Signal Improvements on Route 2 <br> MassDOT Project \#607748, Intersection and Signal Improvements on and Route 111 at Piper Road and Taylor Road; in preliminary design <br> MassDOT Project \#604609, Traffic Sign Replacement and Safety Improvements on Route 2; completed in summer 2009 <br> TIP Project \#606223, Bruce Freeman Rail Trail Construction (Phase II-B) in Acton and Concord to connect the trail across Route 2, programmed in 2018 TIP |  |  |  |  |  |  |  | Low | Location has MassDOT projects. A MassDOT road Road intersection; the project is in the preliminary design phase. <br> The MAGIC subregion expressed interest in a Route study. |
| Roun | Betlocr | masic |  | Massoor and Toun | N |  | 7.0 |  |  |  | Three MBTA bus <br> stops <br>  <br> MBTA bus Route <br> 62 |  | None |  |  |  |  |  |  |  | 10 | Low | 225 atearalse |
| Roue 16 | Hollson | mWRec |  | Massor a and Toun | ves |  | 4.8 |  |  | ${ }^{1.09}$ |  | None | None | MassDOT Project \#605745, Reconstruction of Route 16 from Quail Run to the Sherborn town line; in preliminary design <br> MassDOT Project \#602462 will enhance safety and improve efficiency by instaling a new traffic signal at the intersection of Route 16 at Route 126 and at Oak Street in Holliston; 25\% design stage (as of 12/08/1999) 2011 CTPS study, Route 126 Corridor: Transportation Improvement Study 2008 CTPS study, Washington Street (Route 16/126) at Hollis Street |  |  |  |  |  |  |  |  | Location has MassDOT projects and CTPS studies, which have not been implemented. The 495/MetroWest Partnership expressed interest in a Route 16 study. The section that experiences the most crashes is the town center portion (under town jurisdiction). A road safety audit was performed for the town center portion in December 2012 . |
| Route 35 | Natick | mwRc |  | Town |  |  | 6.7 |  |  |  | $\begin{array}{\|l\|} \hline \text { MWRTA bus } \\ \text { Routes } 10 \text { and } 11 \\ \\ \text { MBTA Commuter } \\ \text { Rail at Natick and } \\ \text { West Natick } \\ \hline \end{array}$ | None | None | MassDOT Project \#600573 reconstructed Route 135 in Natick in 2008. More extensive improvements were proposed in the downtown area, on East Centr new sidewalks, North Main Street and Union Street, including signal upgrades, completed; all construction operations have been suspended (as of 06/30/2007 <br> 2010 CTPS study, West Central Street (Route 135) at Speen Street |  |  |  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |  | Arterial Segments Con |  |  | TABLE 1 <br> Range Transportation Plan Needs Assessment Study ted for Study Is Highlighted in Green |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Communty | mape Subree | Massoot | unusidicion | $\begin{aligned} & \text { National } \\ & \substack{\text { Higlyway } \\ \text { Sysper }} \end{aligned}$ |  |  | Number of Top-200 High Crash Lo 2012-14 |  | ${ }_{\text {Treme }}^{\text {Travel }}$ | nsis |  | $\begin{array}{\|l\|l} \text { In or Near } \\ \text { Environmental } \\ \text { Justice Zone } \end{array}$ | Stud, Proiet, or or Pr Project |  |  | M Mutimodal | $\underbrace{\substack{\text { Randicanco }}}_{\text {Regiona }}$ | $\underbrace{\substack{\text { Euity }}}_{\text {Regional }}$ | mopementaion Potential |  | ing | Summax of co |
| Route 129 | ding | vsp |  | MassDOT and Town | ves | 3 | 3.9 |  |  |  | 11 MBTA bus <br> stops <br>  <br> MBTA bus Route <br> 136 <br> MBTA Commuter <br> Rail at Wakefield, <br> Reading, and <br> Woburn |  | None | Noprogets |  |  |  |  |  |  |  | Low | None |
| Roue 9 | Weloseser | mvec | 6 | Massoot | Ves | 2 | 3.5 | $\bigcirc$ | 11 | 1.76 | MBTA Commuter Rail at Wellesley Hills and Wellesley Farms MWRTA bus Route 1 | None | None | MassDOT Project \#601586, Intersection Improvements at Route 9 Worchester Street) and Oak Street, from 1500 feet West of Oak Street to 300 feet East of Overbrook Drive; construction ended in spring 2015 MassDOT Project \#607340, Resurfacing on Route 9, from Dearborn Street to the Natick town line; in preliminary design MassDOT Project \#606530, Drainage Improvements along Route 9 Boulder Creek Culvert (Design Only); 25\% design stage (as of 06/10/2015) CTPS study: Route 9 Corridor in Wellesley, 2003 MAPC Land Use/Corridor Study (fall 2013) |  |  | 2 | 3 |  |  |  | ow | MassDOT has a preliminary assessment of this corridor that will develop into $25 \%$ design plans for roadway improvements. |
| Roue 16 | Statam | swap | 3 | Town | res |  | ${ }^{1.3}$ |  |  | 1.96 | None | NA | None | 2002 CTPS study, Traffic Congestion in SWAP Subregion: Sherborn Town enter Traffic-Flow Improvement Study <br> Conceptual TIP \#915, Washington Street (Route 16) |  |  |  |  |  |  |  | ${ }^{\text {Low }}$ | $495 /$ MetroWest Partnership meeting. The section that experiences the most crashes and congestion is the town center portion, where Route 16 and Route 27 combine and split. |
| Route 62 | conors | Magic | 4 | Town | res | 3 | 4.3 | $\bigcirc$ |  | 266 | $\begin{aligned} & \text { MBTA Commuter } \\ & \text { Rail at Concord } \\ & \text { and West Concord } \end{aligned}$ | NA | None | No projects |  |  |  |  |  |  |  | Low | vone |
| Route 3 A | Mastrined | ssc | 5 | Massot | Yes | 3 | 20 | - |  | 1.41 | $\begin{array}{\|l\|} \hline \text { GATRA bus } \\ \text { MBTA Commuter } \\ \text { Rail at Greenbush } \\ \hline \end{array}$ |  | None |  <br>  |  | 1 | 2 |  |  |  |  | ow | None |
| Roue 16 | Naick | mwec | 3 | Town | Yes | 3 | 1.5 | $\bigcirc$ |  | 121 | Nore | NA | Yes | Noprojeas |  |  |  |  |  |  |  | ow | The 495/MetroWest Partnership expressed interest in a Route 16 study. Specific issues in this segment include improvements to accommodate pedestrians and bicyclists. |
| Roue 1 | straon | ${ }_{\text {Tric }}$ |  | Massoot | res |  | ${ }^{1.3}$ | $\bigcirc$ |  | 1.36 | $\begin{aligned} & \text { MBTA Commuter } \\ & \text { Rail at Sharon and } \\ & \text { Walpole } \end{aligned}$ | NA | None |  |  |  |  |  |  |  |  | ow | Segment has Massoor ropecis and studes. |
| Roue 1 | Westwod | TRIC | . | Massot | res |  | 1.1 |  |  | 249 | None |  | None | MassDOT's I-95 South Corridor Study provided a comprehensive evaluation of the I-95 and Route 1 corridors south of Route 128 and included a MassDOT Project \#603162, Route 128 Add-a-Lane Bridges (Bridge III), Route 1 and 1A over I-95/128; completed in 2012 |  |  |  |  |  |  |  | ow | Segmert has Massoot rojects and studes |
| Route 9 | Southorown | mwnc | 3 | Massoot | res | 2 | 1.4 | - |  | 2.11 |  | None | None |  |  |  |  |  |  |  |  |  | Most of the intersections on this corridor have already noted. |
| Rout 3a | Sotute | ssc | 5 | Massor | res | 3 | 1.2 | $\square_{0}$ |  | 1.21 |  |  | None |  |  | 0 | 2 | 1 |  | 1 | 5 | Low |  |





Rell
为

\section*{| Functional Cass |
| :--- |
| $2=$ Princopal |
| ateraial |}





Central Transportation Planning Staff (CTPS) to the Boston Region MPO: www.ctps.org | 857.702.3700 | ctps@ctps.org

Ryan Hicks, Congestion Management Process Manager:
www.ctps.org/cmp | 857.702.3661 | rhicks@ctps.org
Casey Claude, Bicycle and Pedestrian Program Manager: www.ctps.org/livability | 857.702.3707 | cclaude@ctps.org

## Pedestrian Report Card Assessment (PRCA): <br> Roadway Segment

Roadway Segment Location
Route 138 - Milton, MA

| Grading Categories | Score | Rating |
| :---: | :---: | :---: |
| Safety | 2.8 | Good |
| System Preservation | N/A | Fair |
| Capacity Management <br> and Mobility | 1.5 | Poor |
| Economic Vitality | 1.5 | Poor |

## Transportation Equity

| High Priority Area | $\checkmark$ |
| :---: | :---: |
| Moderate Priority Area |  |
| Not a Priority Area |  |

## Category Ratings

Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

## Grading Categories: Scoring Breakdown Roadway Segment

Capacity Management and Mobility

| Performance Measure | weight | Rating | Weighted <br> score |
| :---: | :---: | :---: | :---: |
| Sidewalk Presence | 3 | Fair | 6 |
| Crossing Opportunities | 2 | Poor | 2 |
| Walkway Width | 1 | Poor | 1 |
| Total | 6 |  | $\mathbf{9}$ |


| Economic Vitality |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | weight | Rating | Weighted <br> score |
| Pedestrian Volumes | 1 | Fair | 2 |
| Adjacent Bicycle Accommodations | 1 | Poor | 1 |
| Total | $\mathbf{2}$ |  | $\mathbf{3}$ |

Category rating = total rating/total weight
Rating Score:
Good = 3
Fair $=2$
Poor $=1$

| Safety |  |  |  |
| :---: | :---: | :---: | :---: |
| Performance Measure | weight | Rating | weighted <br> score |
| Pedestrian Crashes | 3 | Good | 9 |
| Pedestrian-Vehicle Buffer | 1 | Good | 3 |
| Vehicle Travel Speed | 1 | Fair | 2 |
| Total | 5 |  | 14 |

## System Preservation

| Performance Measure | Rating |
| :---: | :---: |
| Sidewalk Condition | Fair |

Transportation Equity Priority

| Area Condition | Yes/No |
| :---: | :---: |
| Environmental Justice zone? | $\checkmark$ |
| School or college within one-quarter mile? | $\checkmark$ |
| More than 8.9\% of population older than 75 <br> years? | $\checkmark$ |
| More than 27.5\% of households do not <br> own a vehicle? |  |

Category Ratings
Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

## Detailed Performance Measure Information: Roadway Segment

| Goal | Performance <br> Measure | Features of Analyzed Locations |
| :---: | :---: | :---: |
| Mobility | Sidewalk Presence | Sidewalks are present on one side of the street |
|  | Crossing Opportunities | 9 crosswalks/ 3.6 miles $=2.5$ crosswalks per mile |
|  | Walkway Width | 4 foot sidewalks |
| Economic Vitality | Pedestrian Volumes | Estimated 5 to 60 pedestrians |
| Safety | Adjacent Bicycle Accommodations | Some bike lanes are present at the southern portion of the corridor but the bike lanes are inconsistent |
|  | Pedestrian Crashes | Not in HSIP cluster |
|  | Pedestrian-Vehicle Buffer | 13 feet |
|  | Vehicle Travel Speed | 32 MPH |
| System Preservation | Sidewalk Condition | Fair |

## From:

Sent:
To:
Cc:
Subject:

John Thompson
Friday, October 20, 2017 9:21 AM
sasante@ctps.org
geraldine.vatan@state.ma.us; Chase Berkeley; Michael D. Dennehy; William Clark
Rt. 138 corridor study extension and Rt. 28 corridor study - Milton

Good Morning Seth,
Over the past few weeks I have had a few conversations with Geri Vatan at MassDOT District 6 about an ongoing corridor study for Route 138 in Canton and the possibility of extending the study to include Milton. My understanding is that MassDOT will be undertaking a resurfacing project in FY19 for Route 138 through Canton and Milton, and would like to incorporate additional complete streets principles and improvements that may be identified by extending the corridor study. I am writing to relay Milton's enthusiastic support for this effort. The town would benefit greatly from any improvements to this corridor that would increase efficiency and increase accessibility for all users, including bicyclists and pedestrians, especially given the number of area amenities and destinations directly adjacent to Rt. 138 (Blue Hills Ski Area, DCR's Blue Hills Reservation and Trailside Museum, and Curry College to name a few).

In addition to supporting the Route 138 study, I would also like to request that State Route 28, primarily the section between I-93 and Reedsdale Road in Milton, be considered for a corridor study as well. Officials from the Town recently met with MassDOT to discuss ongoing safety issues along this section of state highway. There was recently another fatality on the roadway (there have been numerous fatalities over the past several years) in addition to many other accidents that seemingly occur on a regular basis. I know that an intersection project at the intersection of Randolph Avenue and Chickatawbut Road is already moving forward, which is fantastic, but we believe the entire corridor should be looked at for possible improvements. The corridor sees a tremendous amount of cut-through traffic which floods the town with vehicles looking to avoid and bypass the Braintree split in both the AM (northbound) and PM (southbound). The cut through traffic is travelling at high rates of speed on a four lane highway through a residential neighborhood with many driveways, no shoulders, no accommodations for bikes, and very uncomfortable conditions for pedestrians. Currently, the layout of Route 28 does very little to promote safe driving habits. Compounding the issue is the fact that a lot of traffic, particularly during peak hours, is finding its way onto smaller neighborhood streets to avoid queues and delays due to high volume. We feel that a corridor study would be a very logical and beneficial first step to begin addressing these issues.

Thank you for your attention to this matter and please feel free to reach out to me directly if you have any questions or would like any further information.

Respectfully,
John P. Thompson, P.E.
Town Engineer
Town of Milton - Engineering Dept.
525 Canton Avenue
Milton, MA 02186
(617) 898-4869

Seth Asante

| From: | Vatan, Geraldine (DOT) |
| :--- | :--- |
| Sent: | Thursday, October 19, 2017 10:33 AM |
| To: | Seth Asante (sasante@ctps.org) |
| Cc: | Rose, Marie (DOT); Paul, Andrew (DOT); Polin, Bonnie (DOT); Sutton, Peter (DOT); |
|  | Dwyer, Courtney (DOT) |
| Subject: | FW: Route 138 Corridor Study Canton-Milton |
| Attachments: | Emailing: Ma Ped Plan_DRAFT Corridor Analysis (2).jpg (96.4 KB) |

Hi Seth,
I am writing to update you regarding Route 138 in Canton and Milton. As you know, there is a corridor study underway in Canton and Milton is a potential study for next year. I would like to re-iterate MassDOT's support of the Milton corridor study. OTP is developing a Statewide Pedestrian Plan, ranking corridors for improvement. Route 138 CantonMilton has been ranked as a high priority corridor and as such may be eligible for additional funding (see attached). In the email below statements relating to support for the corridor study have been highlighted. It is my understanding that the Town of Milton has expressed their support for this study to you as well.
Thank you and I look forward to learning what CTPS decides on this issue.
Geri

Geraldine Vatan | District 6 Project Development Engineer
185 Kneeland Street Boston, MA 02111 | Office (857) 368-6115 | Cell (508) 330-1078
MassDOT Highway Division geraldine.vatan@dot.state.ma.us

## Seth Asante

| From: | Polin, Bonnie (DOT) |
| :--- | :--- |
| Sent: | Tuesday, October 3, 2017 8:36 AM |
| To: | 'sasante@ctps.org' |
| Cc: | Vatan, Geraldine (DOT) |
| Subject: | Route 138 Corridor Study Canton-Milton |

Seth - Good morning. I understand CTPS will be conducting a corridor study of Route 138 in Canton. It is perfect because there is a resurfacing job of Canton/Milton Route 138 on the STIP for 2020 (608484). It would be great if we could incorporate the recommendations and actually make the corridor study applicable. Therefore, is your intention to actually pull the crashes? Is it possible to conduct the RSAs for the HSIP eligible locations along the corridor? If not, let me know as soon as possible so we can do it (but it would make sense to have one as part of the corridor rather than piecemeal). Furthermore, because the resurfacing job is for both Canton and Milton, is there a chance you could extend the corridor study to cover the area of the project and then add the HSIP clusters. If not, let me know. We want to work with CTPS to make this effective for Milton, Canton, MassDOT and CTPS.

Also, just so you know, 2015 just closed so we will be updating the high crash cluster map.

Thanks, Bonnie


Bonnie Polin, Manager Highway Safety Programs
MassDOT |Highway Division|Traffic Safety Section
10 Park Plaza Suite 7210|Boston, MA 02116
Phone: 857-368-9636| Fax: 857-368-0628
Email: Bonnie.Polin@state.ma.us

## Part 3: Public Participation

Route 138 Priority Corridor Study in Milton

## Blute Conference Room

Milton Town Hall,
July 12, 2018

| Name | Affiliation | Email |
| :---: | :---: | :---: |
| John Thompson | Town of Milton | jthompson@townofmilton.org |
| 1William Clark | Town of Milton | wclark@townofmilton.org |
| VChase Berkeley | Town of Milton | cberkeley@townofmilton.org |
| Michael D. Dennehy | Town of Milton | mdennehy@townofmilton.org |
| John King, Police Chief | Town of Milton | jking@mpdmilton.org |
| Mark Alba | Town of Milton | malba@mpdmilton.org |
| John Grant, Fire Chief | Town of Milton | jgrant@townofmilton.org |
| Findsey Barbee | GPI | Ibarbee@gpinet.com |
| Liaz, John | GPI | jdiaz@gpinet.com |
| Karl Pastore | DCR | Kpastore@MassMail.state.ma.us |
| Paul Jahnige | DCR | paul.jahnige@state.ma.us |
| Michael Clark | MassDOT-Planning | michael.clark@state.ma.us |
| Cassandra Gascon | MassDOT-Planning | Cassandra.Gascon@dot.state.ma.us |
| Bryan Pounds | MassDOT-Planning | bryan.pounds@state.ma.us |
| Raj Kuten | MassDOT-District 6 | raj.kulen@state.ma.us |
| Courtney Dwyer | MassDOT-District 6 | courtney.dwyer@state.ma.us |
| Geraldine Vatan | MassDOT-District 6 | geraldine.vatan@state.ma.us |
| Amitai Lipton | MassDOT-District 6 | amitai.lipton@state.ma.us |
| Hameed Pervez | MassDOT-District 6 | hameed.pervez@state.ma.us |
| Muazzez Reardon | MassDOT-Project Development | muazzez.reardon@state.ma.us |
| Bonnie Polin | MassDOT-Safety | bonnie.polin@state.ma.us |
| Connor Keating | MassDOT-Safety | connor.keating@state.ma.us |
| Mark Abbott | Boston Region MPO | mabbott@ctps.org |
| Seth Asante | Boston Region MPO | sasante@ctps.org |
| )Ben Erban | Boston Region MPO | berban@ctps.org |

## Route 138 Priority Corridor Study in Milton

## Blute Conference Room

## Milton Town Hall

July 12, 2018

## Meeting Summary

- MassDOT/GPI is considering a "shared use trail" or "shared use sidewalk" concept on Route 138 south of Canton Avenue. This would take advantage of the relatively low bicycle and pedestrian volumes on this stretch and replace the proposed dual bike lanes and dual sidewalks with a single path. That would leave room for a second northbound travel lane which would complement the second northbound lane previously added up to the park-and-ride lot.
- There was also some thought about continuing the shared use trail concept past Neponset Valley Parkway. That would preserve the right-of-way which may be tight at this intersection. In this area it would make sense to keep it on the east side of the road since there's it would provide access to a pond there, and also most of the utility poles are already located on the west side of the road.
- Courtney Dwyer would provide CTPS (Seth Asante) with more information about the shared use trail or shared-use sidewalk concept.
- The island put in at Atherton Street in front of the fire station was installed to prevent Stop and Shop trucks who missed the turn onto Neponset Valley Parkway from using the space to make a U-turn. (Stop and Shop is gone now.)
- Raj Kulen asked if it might be worth moving the existing pedestrian signal at Aberdeen Road away from the intersection to make it more obvious that it's a mid-block crossing.
- Raj was also concerned how the residents would react to losing the ability to park in the shoulder, particularly on the north portion of the corridor.
- There was a discussion about the regional model projections, no future growth expected in the corridor.
- John Diaz expressed uncertainty about constructability due to factors like retaining walls or existing pavement widths.
- This project is programmed for the 2020 TIP.
- Next steps
- Comments by Friday July 20
- Include shared use trail/sidewalk concept and second northbound lane
- Draft report sent out mid/late September


# Route 138 Priority Corridor Study in Milton 

## Blute Conference Room

## Milton Town Hall,

February 20, 2018

## In Attendance:

| Name | Affiliation | Email |
| :--- | :--- | :--- |
| John Thompson | Town of Milton | jthompson@townofmilton.org |
| William Clark | Town of Milton | wclark@townofmilton.org |
| Chase Berkeley | Town of Milton | cberkeley@townofmilton.org |
| Michael D. Dennehy | Town of Milton | mdennehy@townofmilton.org |
| Diaz, John | GPI | jdiaz@gpinet.com |
| Lindsey Barbee | GPI | lbarbee@gpinet.com |
| Michael Clark | MassDOT—Planning | michael.clark@state.ma.us |
| Cassandra Gascon | MassDOT—Planning | cassandra.gascon@dot.state.ma.us |
| Raj Kulen | MassDOT—District 6 | raj.kulen@state.ma.us |
| Courtney Dwyer | MassDOT—District 6 | courtney.dwyer@state.ma.us |
| Hameed Pervez | MassDOT—District 6 | hameed.pervez@state.ma.us |
| Muazzez Reardon | MassDOT—Projects | muazzez.reardon@state.ma.us |
| Bonnie Polin | MassDOT—Safety | bonnie.polin@state.ma.us |
| Connor Keating | MassDOT—Safety | connor.keating@state.ma.us |
| Mark Abbott | Boston Region MPO | mabbott@ctps.org |
| Seth Asante | Boston Region MPO | sasante@ctps.org |
| Ben Erban | Boston Region MPO | berban@ctps.org |

## Meeting Summary

- Summary of study tasks and expected completion date
- Collect stakeholder input - throughout length of project.
- Collect data: intersection geometry, signal timings, turning movement counts (TMCs) for winter and spring, automatic traffic recorder (ATR) counts, spot speed studies, crash data, community survey data - by April
- Analyze existing conditions - by May
- Develop conceptual improvements - by June
- Prepare document - by July
- Reviews and editing - by September


## - Issues and concerns raised

- Safety concerns - the corridor experiences high number of crashes at many of the intersections. CTPS staff will perform further analysis on the crash data using the new methodology from the Highway Safety Manual. The following locations were expressed as areas of particular interest:
- Left turn onto Milton Street - many accidents are reported at this intersection
- Parking along Route 138 - it is not allowed, but the shoulders are used for parking anyway between Blue Hill Terrace and Route 28. The parked cars crowd the travelled way and are a safety risk. The corridor lacks "No Parking" signs. Parking enforcement is state highway jurisdiction, but is enforced by town police.
- Curry College entrance (Blue Jay Way) - this location lacks sidewalks and sees a fair amount of pedestrian traffic, especially from people using the bus stops on the Route 716. Installing sidewalks in the vicinity was previously planned but not completed.
- Pedestrian crossing at Oak Street - Tucker Elementary School generates significant pedestrian traffic at this location. There is no pedestrian signal for crossing Route 138; usually a crossing guard is employed during school hours.

Milton is considering asking this to either be designated a school zone or installing some kind of pedestrian signal. It was proposed to move the signalized crossing at Aberdeen Road to this location to better reflect usage patterns.

- Pedestrian/bicycle accommodations at Blue Hill Recreational Area the lack of these facilities (sidewalks, crosswalks, and bicycle lanes) leading up to the recreation area are a safety and comfort issue for visitors.
- Milton Fire Station at Bradlee Road/Atherton Street - employing signal preemption at the existing traffic signal could improve safety and responsiveness for emergency vehicles leaving the garage.
- No additional RSAs should be needed. Bradlee Road/Atherton Street intersection and Milton Street/Dollar Street intersection were part of previous Road Safety Audits. Both RSAs are available online and Seth Asante has the link.
- Include the fire and police chiefs on the project team in order to have their input.
- Congestion - the entire corridor has congestion issues. Conditions are often just as bad on weekends due to recreational activity. Particular areas of concern are:
- Signal optimization - the signal timing plans are several decades old and will need to be updated. In particular, the signal at Royall Street intersection was brought up as a bottleneck location due to the north/south movements not receiving adequate green time.
- Cut-through traffic - during the PM peak period, drivers will often take Blue Hills Parkway instead of Route 138 southbound to avoid congestion, and then proceed back to Route 138 via Canton Avenue or the side streets.
- Route 138 and Canton Avenue has congestion issues
- Paul's Bridge - this bridge, which is west of the corridor where Neponset Valley Parkway crosses the Neponset River, receives high volume traffic and is used by commuters and truckers to bypass major roads into Boston and to the trucking depot down the road in Boston. However, they avoid the Route 138 and Neponset Valley Parkway intersection because it is not signalized.
- Trucks can use Neponset Valley Parkway unlike all the other parkways in the state.
- The sports field near Paul's Bridge on Neponset Valley Parkway also sees high traffic volume on weekends.
- Additional issues and concerns from Milton residents were gathered using an online mapping tool and can be viewed here:
http://wikimapping.com/wikimap/Milton.html. This outreach effort was well received by citizens.
- Prior and future projects along the corridor
- Prior studies along this corridor include 25\% design plans for a signal at Neponset Valley Parkway put together by GPI, and Road Safety Audits at Route 138 intersections at Milton Street/Dollar Street and Bradlee Road/Atherton Street.
- Expanded scope and funding: The Route 138 corridor has come up on lists because of its high pedestrian potential. MassDOT is expanding the scope of the existing resurfacing project for Route 138 to incorporate complete streets objectives. The results of the CTPS investigation will be incorporated into the new project scope. This expansion will require new funding sources which are yet to be determined.
- Water infrastructure upgrades may also be required. In particular, drainage in the 700 block of Blue Hill Avenue (Route 138) was brought up as an issue. Milton will investigate aging water infrastructure on Blue Hill Avenue and plan the timeline for those repairs to align with any resurfacing and other roadway improvements.
- All parties are interested in keeping communication channels open throughout the course of these projects.


## - Follow-up tasks

- Work with MassDOT Safety to obtain any missing police crash reports along the corridor.
- Have MassDOT Safety assist with using the improved "expected crashes" metric from the Highway Safety Manual for safety analysis. Talk to Connor Keating.
- Should look at the crashes between clusters \#5 and \#6.
- The winter counts are in March, which may be after the peak skiing season. It may be worth it to reach out to the Blue Hill Ski Area to get historical data so we can figure out what traffic would look like on crowded ski days. DCR has jurisdiction of this property. Contact Karl Pastore for traffic data for the Blue Hill Ski Area on heavy skiing days.


## Appendix B: Traffic Data Collection





Figure B-1
Map of Turning Movement Count and Automatic Traffic Recorder Locations Route 138 in Milton

## Part 1: Turning Movement Count (TMC) Data

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  | Narthbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | U | 1 | 0 | R | L | U | 1 | 0 | R | I | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 917 | 1 | 0 | 918 | 1253 | 0 | 0 | 0 | 0 | 2 | 1 | 1253 | 0 | 1254 | 917 | 2172 | E | 0 | 0 |
| One Hour Peak | \% | 85\% | 100\% | 0\% | 85\% | 84\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 84\% | 0\% | 84\% | 85\% | 85\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 89 | 0 | 0 | 89 | 165 | 0 | 0 | 0 | 0 | 0 | 0 | 165 | 0 | 165 | 89 | 254 | S | 0 | 0 |
|  | \% | 8\% | 0\% | 0\% | 8\% | 11\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 11\% | 0\% | 11\% | 8\% | 10\% |  | 0\% |  |
|  | Buses | 26 | 0 | 0 | 26 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 26 | 31 |  | 0 | 0 |
|  | \% | 2\% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 23 | 0 | 0 | 23 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 50 | 23 | 73 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% | 0\% | 3\% | 2\% | 3\% |  |  |  |
|  | Articulated Trucks | 19 | 0 | 0 | 19 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 19 | 34 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 2\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 1074 | 1 | 0 | 1075 | 1488 | 0 | 0 | 0 | 0 | 2 | 1 | 1488 | 0 | 1489 | 1074 | 2564 |  |  |  |
|  | PHF | 0.95 | 0.25 | 0 | 0.95 | 0.97 | 0 | 0 | 0 | 0 | 0.5 | 0.25 | 0.97 | 0 | 0.97 | 0.95 | 0.96 |  |  |  |
|  | Approach \% |  |  |  | 42\% | 58\% |  |  |  | 0\% | 0\% |  |  |  | 58\% | 42\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 1028 | 2 | 0 | 1030 | 1025 | 0 | 0 | 0 | 0 | 12 | 10 | 1025 | 0 | 1035 | 1028 | 2065 | E | 0 | 0 |
| One Hour Peak | \% | 81\% | 100\% | 0\% | 81\% | 88\% | 0\% | 0\% | 0\% | 0\% | 92\% | 91\% | 88\% | 0\% | 88\% | 81\% | 84\% |  | 0\% |  |
| 3:30 PM - 4:30 PM | Light Goods Vehicles | 199 | 0 | 0 | 199 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 0 | 99 | 199 | 298 | s | 0 | 0 |
|  | \% | 16\% | 0\% | 0\% | 16\% | 9\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 9\% | 0\% | 8\% | 16\% | 12\% |  | 0\% |  |
|  | Buses | 10 | 0 | 0 | 10 | 10 | 0 | 0 | 0 | 0 | 1 | 1 | 10 | 0 | 11 | 10 | 21 |  | 0 | 0 |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | $0 \%$ | 8\% | 9\% | 1\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 25 | 0 | 0 | 25 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 25 | 40 |  |  |  |
|  |  | $2 \%$ |  | 0\% | $2 \%$ | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 2\% | 2\% |  |  |  |
|  | Articulated Trucks | 6 | 0 | 0 | 6 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 6 | 15 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 0 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 1268 | 2 | 0 | 1270 | 1164 | 0 | 0 | 0 | 0 | 13 | 11 | 1164 | 0 | 1175 | 1268 | 2445 |  |  |  |
|  | PHF | 0.98 | 0.5 | 0 | 0.98 | 0.88 | 0 | 0 | 0 | 0 | 0.54 | 0.55 | 0.88 | 0 | 0.88 | 0.98 | 0.95 |  |  |  |
|  | Approach \% |  |  |  | 52\% | 48\% |  |  |  | 0\% | 1\% |  |  |  | 48\% | 52\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  |  | Northbound |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | U | 1 | $\bigcirc$ | R | L | U | 1 | 0 | R | T | U | 1 | $\bigcirc$ | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 8:00 AM - 11:00 AM | Cars | 897 | 16 | 0 | 913 | 816 | 0 | 0 | 0 | 0 | 83 | 67 | 816 | 0 | 883 | 897 | 1796 | E | 0 | 0 |
| One Hour Peak | \% | 86\% | 100\% | 0\% | 87\% | 85\% | 0\% | 0\% | 0\% | 0\% | 98\% | 97\% | 85\% | 0\% | 86\% | 86\% | 86\% |  | 0\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 109 | 0 | 0 | 109 | 109 | 0 | 0 | 0 | 0 | 2 | 2 | 109 | 0 | 111 | 109 | 220 | s | 0 | 0 |
|  | \% | 10\% | 0\% | 0\% | 10\% | 11\% | 0\% | 0\% | 0\% | 0\% | 2\% | 3\% | 11\% | 0\% | 11\% | 10\% | 11\% |  | 0\% |  |
|  | Buses | 6 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 6 | 10 |  | 0 | 0 |
|  | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 21 | 0 | 0 | 21 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 19 | 21 | 40 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 2\% | 2\% | 2\% |  |  |  |
|  | Articulated Trucks | 4 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 4 | 9 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 1 | 10 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 1039 | 16 | 0 | 1055 | 963 | 0 | 0 | 0 | 0 | 85 | 69 | 963 | 0 | 1032 | 1039 | 2087 |  |  |  |
|  | PHF | 0.93 | 0.8 | 0 | 0.93 | 0.92 | 0 | 0 | 0 | 0 | 0.79 | 0.78 | 0.92 | 0 | 0.93 | 0.93 | 0.96 |  |  |  |
|  | Approach \% |  |  |  | 51\% | 46\% |  |  |  | 0\% | 4\% |  |  |  | 49\% | 50\% |  |  |  |  |
| Peak 2 | Motorcycles | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 3 | 9 | N | 3 | 3 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 2:00 PM - 5:00 PM | Cars | 1142 | 14 | 0 | 1156 | 1067 | 0 | 0 | 0 | 0 | 76 | 62 | 1067 | 0 | 1129 | 1142 | 2285 | E | 0 | 0 |
| One Hour Peak | \% | 89\% | 100\% | 0\% | 89\% | 90\% | 0\% | 0\% | 0\% | 0\% | 95\% | 94\% | 90\% | 0\% | 90\% | 89\% | 90\% |  | 0\% |  |
| 2:00 PM - 3:00 PM | Light Goods Vehicles | 113 | 0 | 0 | 113 | 78 | 0 | 0 | 0 | 0 | 3 | 3 | 78 | 0 | 81 | 113 | 194 | s | 6 | 6 |
|  | \% | 9\% | 0\% | 0\% | 9\% | 7\% | 0\% | 0\% | 0\% | 0\% | 4\% | 5\% | 7\% | 0\% | 6\% | 9\% | 8\% |  | 100\% |  |
|  | Buses | 5 | 0 | 0 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 5 | 10 |  | 9 | 9 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 15 | 0 | 0 | 15 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 17 | 15 | 32 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 3 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 3 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 2 | 0 | 0 | 2 | 8 | 0 | 0 | 0 | 0 | 1 | 1 | 8 | 0 | 9 | 2 | 11 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 1\% | 2\% | 1\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 1283 | 14 | 0 | 1297 | 1183 | 0 | 0 | 0 | 0 | 80 | 66 | 1183 | 0 | 1249 | 1283 | 2546 |  |  |  |
|  | PHF | 0.94 | 0.88 | 0 | 0.94 | 0.92 | 0 | 0 | 0 | 0 | 0.8 | 0.72 | 0.92 | 0 | 0.93 | 0.94 | 0.96 |  |  |  |
|  | Approach\% |  |  |  | $51 \%$ | 46\% |  |  |  | 0\% | 3\% |  |  |  | 49\% | 50\% |  |  |  |  |


|  |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | \%\% | \% | 0\% | \%\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | \% |  |
| 6:00 AM - 9:00 AM | Cars | 0 | 917 | 0 | 0 | 917 | 1253 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1252 | 0 | 0 | 1252 | 917 | 0 | 0 | 0 | 0 | 0 | 0 | 2170 | E | 0 | 0 |
| One Hour Peak | \% | 0\% | 85\% | 0\% | 0\% | 85\% | 84\% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% | 84\% | 0\% | 0\% | 84\% | 85\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 84\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 0 | 97 | 0 | 0 | 97 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 164 | 0 | 0 | 164 | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 261 | s | 0 | 0 |
|  | \% | \% | 9\% | 0\% | 0\% | 9\% | 11\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 11\% | 0\% | 0\% | 11\% | 9\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% |  | \% |  |
|  | Buses | 0 | 26 | 0 | 0 | 26 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | w | 0 | 0 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | \% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 23 | 0 | 0 | 23 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 0 | 0 | 51 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 74 |  | 0 | 0 |
|  | \% | \%\% | 2\% | 0\% | 0\% | 2\% | 3\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 3\% | \% | \% | 3\% | 2\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% |  |  |  |
|  | Articulated Trucks | 0 | 19 | 0 | 0 | 19 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 15 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | $0 \%$ | 0\% | 0\% | \% | 0\% | 0\% | 1\% | 0\% | \% | 1\% | 2\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% \% |  |  |  |
|  | Total | 0 | 1082 | 0 | 0 | 1082 | 1489 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1488 | 0 | 0 | 1488 | 1082 | 0 | 0 | 0 | 0 | 0 | 0 | 2571 |  |  |  |
|  | PHF | 0 | 0.94 | 0 | 0 | 0.94 | 0.96 | 0.25 | 0 | 0 | 0 | 0.25 | 0 | 0 | 0.96 | 0 | 0 | 0.96 | 0.94 | 0 | 0 | 0 | 0 | 0 | 0 | 0.95 |  |  |  |
|  | Approach \% |  |  |  |  | 42\% | 58\% |  |  |  |  | 0\% | 0\% |  |  |  |  | 58\% | 42\% |  |  |  |  | 0\% | 0\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | \% \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | \% | \% | \% | 0\% | 0\% | 0\% | 0\% | \% |  | 0\% |  |
| 3:00 PM-6:00 PM | Cars | 0 | 1123 | 0 | 0 | 1123 | 1048 | 8 | 0 | 0 | 0 | 8 | 0 | 0 | 1040 | 0 | 0 | 1040 | 1123 | 0 | 0 | 0 | 0 | 0 | 0 | 2171 | E | 0 | 0 |
| One Hour Peak | \% | 0\% | 88\% | 0\% | 0\% | 88\% | 90\% | 80\% | \% | 0\% | 0\% | 80\% | 0\% | \% | 90\% | 0\% | 0\% | 90\% | 88\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 89\% |  | 0\% |  |
| 4:45 PM - 5:45 PM | Light Goods Vehicles | 0 | 128 | 0 | 0 | 128 | 86 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 84 | 0 | 0 | 84 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 214 | s | 0 | 0 |
|  | \% | 0\% | 10\% | 0\% | \% | 10\% | 7\% | 20\% | 0\% | 0\% | 0\% | 20\% | 0\% | 0\% | 7\% | 0\% | 0\% | 7\% | 10\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 9\% |  | \% |  |
|  | Buses | 0 | 7 | 0 | 0 | 7 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 11 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 15 | 0 | 0 | 15 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 16 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 31 |  | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 0 | 1277 | 0 | 0 | 1277 | 1166 | 10 | 0 | 0 | 0 | 10 | 0 | 0 | 1156 | 0 | 0 | 1156 | 1277 | 0 | 0 | 0 | 0 | 0 | 0 | 2443 |  |  |  |
|  | PHF | 0 | 0.95 | 0 | 0 | 0.95 | 0.91 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0.9 | 0 | 0 | 0.9 | 0.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 |  |  |  |
|  | Approach \% |  |  |  |  | 52\% | 48\% |  |  |  |  | 0\% | 0\% |  |  |  |  |  | 52\% |  |  |  |  | 0\% | 0\% |  |  |  |  |


| Time Period |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | $\bigcirc$ | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 8:00 AM - 11:00 AM | Cars | 0 | 907 | 0 | 0 | 907 | 854 | 22 | 0 | 10 | 0 | 32 | 1 | 1 | 832 | 0 | 0 | 833 | 917 | 0 | 0 | 0 | 0 | 0 | 0 | 1772 | E | 1 | 1 |
| One Hour Peak | \% | 0\% | 37\% | 0\% | 0\% | 87\% | 85\% | 100\% | 0\% | 100\% | 0\% | 100\% | 100\% | 100\% | 84\% | 0\% | 0\% | 84\% | 88\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 86\% |  | 100\% |  |
| 9:45 AM - 10:45 AM | Light Goods Vehicles | 0 | 98 | 0 | 0 | 98 | 116 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 116 | 0 | 0 | 116 | 98 | 0 | 0 | 0 | 0 | 0 | 0 | 214 | s | 0 | 0 |
|  | \% | 0\% | 9\% | 0\% | 0\% | 9\% | 12\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% | 12\% | 0\% | 0\% | 12\% | 9\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% |  | 0\% |  |
|  | Buses | 0 | 6 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 20 | 0 | 0 | 20 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 19 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 39 |  | 1 | 1 |
|  | \% | \% | 2\% | 0\% | 0\% | 2\% | 2\% | \% | 0\% | 0\% | 0\% | \%\% | 0\% | \% | 2\% | 0\% | 0\% | 2\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 5 | 0 | 0 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | \% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 1 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% \% |  |  |  |
|  | Total | 0 | 1038 | 0 | 0 | 1038 | 1007 | 22 | 0 | 10 | 0 | 32 | 1 | 1 | 985 | 0 | 0 | 986 | 1048 | 0 | 0 | 0 | 0 | 0 | 0 | 2056 |  |  |  |
|  | PHF | 0 | 0.92 | 0 | 0 | 0.92 | 0.95 | 0.61 | 0 | 0.62 | 0 | 0.62 | 0.25 | 0.25 | 0.94 | 0 | 0 | 0.94 | 0.93 | 0 | 0 | 0 | 0 | 0 | 0 | 0.97 |  |  |  |
|  | Approach \% |  |  |  |  | 50\% | 49\% |  |  |  |  | 2\% | 0\% |  |  |  |  | 48\% | 51\% |  |  |  |  | \% | 0\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | $N$ | 2 | 2 |
| Specified Period | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | \% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  | 100\% |  |
| 2:00 PM - 5:00 PM | Cars | 0 | 1143 | 0 | 0 | 1143 | 1138 | 67 | 0 | 10 | 0 | 77 | 0 | 0 | 1071 | 0 | 0 | 1071 | 1153 | 0 | 0 | 0 | 0 | 0 | 0 | 2291 | E | 0 | 0 |
| One Hour Peak | \% | 0\% | 89\% | \% | 0\% | 89\% | 90\% | 91\% | 0\% | 100\% | 0\% | 92\% | 0\% | 0\% | 90\% | 0\% | 0\% | 90\% | 89\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 89\% |  | \% |  |
| 2:00 PM - 3:00 PM | Light Goods Vehicles | 0 | 119 | 0 | 0 | 119 | 85 | 6 | 0 | 0 | 0 | 6 | 1 | 1 | 79 | 0 | 0 | 80 | 119 | 0 | 0 | 0 | 0 | 0 | 0 | 205 | s | 0 | 0 |
|  | \% | 0\% | 9\% | \% | 0\% | 9\% | 7\% | 8\% | 0\% | 0\% | 0\% | 7\% | 100\% | 100\% | 7\% | 0\% | 0\% | 7\% | 9\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 8\% |  | 0\% |  |
|  | Buses | 0 | 4 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | w | 1 | 1 |
|  | \% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 14 | 0 | 0 | 14 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 19 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 33 |  | 3 | 3 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | \% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 3 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | 0\% | \% \% | 0\% | 0\% | 0\% | \% \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 1 | 0 | 0 | 1 | 9 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | \% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | $0 \%$ | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 0 | 1287 | 0 | 0 | 1287 | 1263 | 74 | 0 | 10 | 0 | 84 | 1 | 1 | 1189 | 0 | 0 | 1190 | 1297 | 0 | 0 | 0 | 0 | 0 | 0 | 2561 |  |  |  |
|  | PHF | 0 | 0.97 | 0 | 0 | 0.97 | 0.94 | 0.84 | 0 | 0.42 | 0 | 0.75 | 0.25 | 0.25 | 0.93 | 0 | 0 | 0.93 | 0.97 | 0 | 0 | 0 | 0 | 0 | 0 | 0.96 |  |  |  |
|  | Approach \% |  |  |  |  | 50\% | 49\% |  |  |  |  | 3\% | 0\% |  |  |  |  | 46\% | 51\% |  |  |  |  | 0\% | 0\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  | Northbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | U | 1 | 0 | R | L | U | 1 | $\bigcirc$ | R | T | U | 1 | $\bigcirc$ | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 932 | 6 | 0 | 938 | 1259 | 0 | 0 | 0 | 0 | 11 | 5 | 1259 | 0 | 1264 | 932 | 2202 | E | 0 | 0 |
| One Hour Peak | \% | 86\% | 100\% | 0\% | 86\% | 84\% | 0\% | 0\% | 0\% | 0\% | 85\% | 71\% | 84\% | 0\% | 84\% | 86\% | 85\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 91 | 0 | 0 | 91 | 162 | 0 | 0 | 0 | 0 | 1 | 1 | 162 | 0 | 163 | 91 | 254 | S | 0 | 0 |
|  | \% | 8\% | 0\% | \% | 8\% | 11\% | 0\% | 0\% | 0\% | 0\% | 8\% | 14\% | 11\% | 0\% | 11\% | 8\% | 10\% |  | 0\% |  |
|  | Buses | 26 | 0 | 0 | 26 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 26 | 32 |  | 0 | 0 |
|  | \% | 2\% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 21 | 0 | 0 | 21 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 48 | 21 | 69 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% | 0\% | 3\% | 2\% | 3\% |  |  |  |
|  | Articulated Trucks | 20 | 0 | 0 | 20 | 15 | 0 | 0 | 0 | 0 | 1 | 1 | 15 | 0 | 16 | 20 | 36 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 8\% | 14\% | 1\% | 0\% | 1\% | 2\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 1090 | 6 | 0 | 1096 | 1490 | 0 | 0 | 0 | 0 | 13 | 7 | 1490 | 0 | 1497 | 1090 | 2593 |  |  |  |
|  | PHF | 0.94 | 0.75 | 0 | 0.94 | 0.96 | 0 | 0 | 0 | 0 | 0.65 | 0.58 | 0.96 | 0 | 0.96 | 0.94 | 0.95 |  |  |  |
|  | Approach \% |  |  |  | 42\% | 57\% |  |  |  | 0\% | 1\% |  |  |  | 58\% | 42\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 1127 | 4 | 0 | 1131 | 1069 | 0 | 0 | 0 | 0 | 10 | 6 | 1069 | 0 | 1075 | 1127 | 2206 | E | 0 | 0 |
| One Hour Peak | \% | 88\% | 100\% | 0\% | 88\% | 92\% | 0\% | 0\% | 0\% | 0\% | 91\% | 86\% | 92\% | 0\% | 92\% | 88\% | 90\% |  | 0\% |  |
| 5:00 PM - 6:00 PM | Light Goods Vehicles | 123 | 0 | 0 | 123 | 57 | 0 | 0 | 0 | 0 | 1 | 1 | 57 | 0 | 58 | 123 | 181 | s | 0 | 0 |
|  | \% | 10\% | 0\% | 0\% | 10\% | 5\% | 0\% | 0\% | 0\% | 0\% | 9\% | 14\% | 5\% | 0\% | 5\% | 10\% | 7\% |  | 0\% |  |
|  | Buses | 11 | 0 | 0 | 11 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 11 | 26 |  | 0 | 0 |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 18 | 0 | 0 | 18 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 18 | 33 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 3 | 0 | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 3 | 8 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 1 | 3 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 1283 | 4 | 0 | 1287 | 1163 | 0 | 0 | 0 | 0 | 11 | 7 | 1163 | 0 | 1170 | 1283 | 2457 |  |  |  |
|  | PHF | 0.96 | 1 | 0 | 0.96 | 0.95 | 0 | 0 | 0 | 0 | 0.55 | 0.44 | 0.95 | 0 | 0.95 | 0.96 | 0.98 |  |  |  |
|  | Approach \% |  |  |  | 52\% | 47\% |  |  |  | 0\% | 0\% |  |  |  | 48\% | 52\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  | Northbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | U | 1 | 0 | R | L | U | 1 | $\bigcirc$ | R | I | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 8:00 AM - 11:00 AM | Cars | 905 | 13 | 0 | 918 | 841 | 0 | 0 | 0 | 0 | 50 | 37 | 841 | 0 | 878 | 905 | 1796 | E | 1 | 1 |
| One Hour Peak | \% | 87\% | 87\% | 0\% | 87\% | 88\% | 0\% | 0\% | 0\% | 0\% | 91\% | 93\% | 88\% | 0\% | 88\% | 87\% | 88\% |  | 100\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 97 | 2 | 0 | 99 | 75 | 0 | 0 | 0 | 0 | 4 | 2 | 75 | 0 | 77 | 97 | 176 | s | 0 | 0 |
|  | \% | 9\% | 13\% | 0\% | 9\% | 8\% | 0\% | 0\% | 0\% | 0\% | 7\% | 5\% | 8\% | 0\% | 8\% | 9\% | 9\% |  | 0\% |  |
|  | Buses | 6 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 6 | 10 |  | 1 | 1 |
|  | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 26 | 0 | 0 | 26 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 18 | 26 | 44 |  |  |  |
|  | \% | 3\% | 0\% | 0\% | 2\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 2\% | 3\% | 2\% |  |  |  |
|  | Articulated Trucks | 4 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 4 | 10 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 1 | 1 | 8 | 0 | 9 | 1 | 10 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 2\% | 3\% | 1\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 1040 | 15 | 0 | 1055 | 953 | 0 | 0 | 0 | 0 | 55 | 40 | 953 | 0 | 993 | 1040 | 2048 |  |  |  |
|  | PHF | 0.93 | 0.47 | 0 | 0.91 | 0.92 | 0 | 0 | 0 | 0 | 0.69 | 0.83 | 0.92 | 0 | 0.92 | 0.93 | 0.95 |  |  |  |
|  | Approach \% |  |  |  | 52\% | 47\% |  |  |  | 0\% | 3\% |  |  |  | 48\% | 51\% |  |  |  |  |
| Peak 2 | Motorcycles | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 3 | 9 | $N$ | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 1152 | 22 | 0 | 1174 | 1105 | 0 | 0 | 0 | 0 | 57 | 35 | 1105 | 0 | 1140 | 1152 | 2314 | E | 0 | 0 |
| One Hour Peak | \% | 89\% | 88\% | 0\% | 89\% | 90\% | 0\% | 0\% | 0\% | 0\% | 93\% | 97\% | 90\% | 0\% | 90\% | 89\% | 90\% |  | 0\% |  |
| 2:00 PM - 3:00 PM | Light Goods Vehicles | 114 | 0 | 0 | 114 | 81 | 0 | 0 | 0 | 0 | 0 | 0 | 81 | 0 | 81 | 114 | 195 | S | 0 | 0 |
|  | \% | 9\% | 0\% | 0\% | 9\% | 7\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 7\% | 0\% | 6\% | 9\% | 8\% |  | 0\% |  |
|  | Buses | 1 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 1 | 6 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 19 | 0 | 0 | 19 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 18 | 19 | 37 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 2 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 2 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 2 | 3 | 0 | 5 | 7 | 0 | 0 | 0 | 0 | 4 | 1 | 7 | 0 | 8 | 2 | 13 |  |  |  |
|  | \% | 0\% | 12\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 7\% | 3\% | 1\% | 0\% | 1\% | 0\% | 1\% |  |  |  |
|  | Total | 1293 | 25 | 0 | 1318 | 1225 | 0 | 0 | 0 | 0 | 61 | 36 | 1225 | 0 | 1261 | 1293 | 2579 |  |  |  |
|  | PHF | 0.94 | 0.69 | 0 | 0.95 | 0.92 | 0 | 0 | 0 | 0 | 0.66 | 0.6 | 0.92 | 0 | 0.92 | 0.94 | 0.96 |  |  |  |
|  | Approach\% |  |  |  | 51\% | 47\% |  |  |  | 0\% | 2\% |  |  |  | 49\% | 50\% |  |  |  |  |



Report Summary

| Time Period |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Grosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | $\bigcirc$ | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | N | 0 | 0 |
| Specified Period | \% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 8:00 AM -11:00 AM | Cars | 2 | 905 | 0 | 0 | 907 | 826 | 16 | 2 | 3 | 0 | 21 | 0 | 0 | 807 | 4 | 0 | 811 | 918 | 10 | 0 | 3 | 0 | 13 | 8 | 1752 | E | 5 | 5 |
| One Hour Peak | \% | 40\% | 87\% | 0\% | 0\% | 87\% | 85\% | 84\% | 100\% | 100\% | 0\% | 88\% | 0\% | 0\% | 85\% | 67\% | 0\% | 85\% | 87\% | 83\% | 0\% | 100\% | 0\% | 87\% | 62\% | 86\% |  | 100\% |  |
| 10:00 AM-11:00 AM | Light Goods Vehicles | 1 | 103 | 0 | 0 | 104 | 108 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 106 | 2 | 0 | 108 | 105 | 2 | 0 | 0 | 0 | 2 | 3 | 216 | s | 0 | 0 |
|  | \% | 20\% | 10\% | 0\% | 0\% | 10\% | 11\% | 11\% | 0\% | \% | 0\% | 8\% | 0\% | 0\% | 11\% | 33\% | 0\% | 11\% | 10\% | 17\% | 0\% | 0\% | 0\% | 13\% | 23\% | 11\% |  | 0\% |  |
|  | Buses | 0 | 6 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 22 | 0 | 0 | 22 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 18 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |  | 5 | 5 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 0\% | 2\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 4 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 2 | 1 | 0 | 0 | 3 | 9 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 12 |  |  |  |
|  | \% | 40\% | 0\% | 0\% | 0\% | \% | 1\% | 5\% | 0\% | 0\% | 0\% | 4\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 15\% | 1\% |  |  |  |
|  | Total | 5 | 1042 | 0 | 0 | 1047 | 971 | 19 | 2 | 3 | 0 | 24 | 0 | 0 | 949 | 6 | 0 | 955 | 1057 | 12 | 0 | 3 | 0 | 15 | 13 | 2041 |  |  |  |
|  | PHF | 0.42 | 0.93 | 0 | 0 | 0.92 | 0.92 | 0.53 | 0.25 | 0.38 | 0 | 0.67 | 0 | 0 | 0.92 | 0.5 | 0 | 0.91 | 0.92 | 0.43 | 0 | 0.38 | 0 | $0.54$ | 0.65 | 0.95 |  |  |  |
|  | Approach \% |  |  |  |  | 51\% | 48\% |  |  |  |  | 1\% | 0\% |  |  |  |  | 47\% | 52\% |  |  |  |  | 1\% | 1\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | N | 0 | 0 |
| Specified Period | \% | 0\% | \% | 0\% | \% | \%\% | 0\% | 0\% | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | \%\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 5 | 1157 | 0 | 0 | 1162 | 1178 | 76 | 0 | 2 | 0 | 78 | 0 | 0 | 1099 | 6 | 2 | 1107 | 1171 | 10 | 0 | 3 | 0 | 13 | 11 | 2360 | E | 5 | 5 |
| One Hour Peak | \% | 71\% | 89\% | 0\% | 0\% | 89\% | 91\% | 95\% | 0\% | 100\% | 0\% | 95\% | 0\% | 0\% | 90\% | 86\% | 100\% | 90\% | 89\% | 83\% | 0\% | 100\% | 0\% | 87\% | 79\% | 90\% |  | 100\% |  |
| 2:00 PM - 3:00 PM | Light Goods Vehicles | 1 | 115 | 0 | 0 | 116 | 79 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 76 | 1 | 0 | 77 | 117 | 2 | 0 | 0 | 0 | 2 | 2 | 198 | s | 0 | 0 |
|  | \% | 14\% | 9\% | 0\% | 0\% | 9\% | 6\% | 4\% | 0\% | 0\% | 0\% | 4\% | 0\% | 0\% | 6\% | 14\% | 0\% | 6\% | 9\% | 17\% | \% | 0\% | 0\% | 13\% | 14\% | 8\% |  | 0\% |  |
|  | Buses | 0 | 4 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | w | 0 | 0 |
|  | \% | 0\% | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | \% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 15 | 0 | 0 | 15 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 18 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 33 |  | 5 | 5 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | \% | 0\% | \% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 4 | 0 | 0 | 5 | 9 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 14 |  |  |  |
|  | \% | 14\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 7\% | 1\% |  |  |  |
|  | Total | 7 | 1301 | 0 | 0 | 1308 | 1298 | 80 | 0 | 2 | 0 | 82 | 0 | 0 | 1215 | 7 | 2 | 1224 | 1317 | 12 | 0 | 3 | 0 | 15 | 14 | 2629 |  |  |  |
|  | PHF | 0.58 | 0.95 | 0 | 0 | 0.95 | 0.94 | 0.65 | 0 | 0.25 | 0 | 0.66 | 0 | 0 | 0.92 | 0.58 | 0.5 | 0.92 | 0.95 | 0.75 | 0 | 0.25 | 0 | 0.62 | 0.88 | 0.97 |  |  |  |
|  | Approach \% |  |  |  |  | 50\% | 49\% |  |  |  |  |  |  |  |  |  |  |  | 50\% |  |  |  |  | 1\% |  |  |  |  |  |


|  |  | Southbound |  |  |  |  |  | Southwestbound |  |  |  |  |  |  | Westbound |  |  |  | Northbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | HL | U | 1 | $\bigcirc$ | HR | BL | HL | U | 1 | $\bigcirc$ | HR | R | L | U | I | 0 | R | BR | T | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 945 | 0 | 5 | 0 | 950 | 824 | 0 | 0 | 0 | 4 | 4 | 484 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 475 | 824 | 0 | 1299 | 945 | 2253 | NE | 0 | 0 |
| One Hour Peak | \% | 87\% | 0\% | 71\% | 0\% | 86\% | 85\% | 0\% | 0\% | 0\% | 100\% | 100\% | 89\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 89\% | 85\% | 0\% | 87\% | 87\% | 86\% |  | 0\% |  |
| 7:30 AM-8:30 AM | Light Goods Vehicles | 76 | 0 | 0 | 0 | 76 | 79 | 0 | 0 | 0 | 0 | 0 | 55 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 54 | 79 | 0 | 133 | 76 | 210 | E | 0 | 0 |
|  | \% | 7\% | 0\% | \%\% | 0\% | 7\% | 8\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% | 10\% | 8\% | 0\% | 9\% | 7\% | 8\% |  | \% |  |
|  | Buses | 25 | 0 | 0 | 0 | 25 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 25 | 30 | s | 0 | 0 |
|  | \% | 2\% | 0\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 2\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 27 | 0 | 2 | 0 | 29 | 46 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 46 | 0 | 49 | 27 | 78 |  | 0 | 0 |
|  | \% | 2\% | 0\% | 29\% | 0\% | 3\% | 5\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 5\% | 0\% | 3\% | 2\% | 3\% |  |  |  |
|  | Articulated Trucks | 19 | 0 | 0 | 0 | 19 | 12 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 12 | 0 | 14 | 19 | 33 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 2\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | \%\% | 0\% | \% | \%\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 0\% | 0\% | 0\% | \% | 0\% | \% |  |  |  |
|  | Total | 1092 | 0 | 7 | 0 | 1099 | 966 | 0 | 0 | 0 | 4 | 4 | 546 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 534 | 966 | 0 | 1501 | 1092 | 2605 |  |  |  |
|  | PHF | 0.95 | 0 | 0.88 | 0 | 0.95 | 0.97 | 0 | 0 | 0 | 0.5 | 0.5 | 0.84 | 0.25 | 0 | 0 | 0 | 0.25 | 0.25 | 0.25 | 0.83 | 0.97 | 0 | 0.96 | 0.95 | 0.95 |  |  |  |
|  | Approach \% |  |  |  |  | 42\% | 37\% |  |  |  |  | 0\% | 21\% |  |  |  |  | 0\% | 0\% |  |  |  |  | 58\% | 42\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% |  | \% | \% | 0\% |  |  | 0\% | 0\% |  | 0\% | 0\% | \% | 0\% | 0\% | \% \% | 0\% | \%\% | 0\% | 0\% | \% | 0\% | 0\% | \%\% | \% | \% |  | \% |  |
| 3:00 PM -6:00 PM | Cars | 1144 | 0 | 2 | 0 | 1146 | 689 | 0 | 0 | 0 | 0 | 0 | 373 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 370 | 689 | 0 | 1059 | 1144 | 2206 | NE | 0 | 0 |
| One Hour Peak | \% |  | 0\% | 100\% | 0\% |  | 90\% | \% | 0\% |  | 0\% | $0 \%$ | 91\% | 50\% | 0\% | 0\% | 0\% | 33\% | 0\% | \% |  | 90\% | 0\% | 90\% | 88\% | 89\% |  |  |  |
| 5:00 PM - 6:00 PM | Light Goods Vehicles | 119 | 0 | $0$ | 0 | 119 | 49 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 49 | 0 | 78 | 119 | 197 | E | 0 | 0 |
|  | \% | 9\% | 0\% | 0\% | 0\% | 9\% | 6\% | 0\% | 0\% | 0\% | 0\% | \% | 7\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 7\% | 6\% | 0\% | 7\% | 9\% | 8\% |  | 0\% |  |
|  | Buses | 11 | 0 | 0 | 0 | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 11 | 0 | 15 | 11 | 26 | s | 0 | 0 |
|  | \% | 1\% | 0\% | \% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 1\% | 1\% | 0\% | 1\% | 1\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 16 | 0 | 0 | 0 | 16 | 13 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 13 | 0 | 14 | 16 | 30 |  | 0 | 0 |
|  | \% | 1\% | 0\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 3 | 0 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 3 | 7 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 1 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 50\% | 0\% | 0\% | 100\% | 67\% | 100\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 1294 | 0 | 2 | 0 | 1296 | 766 | 0 | 0 | 0 | 0 | 0 | 410 | 2 | 0 | 0 | 1 | 3 | 1 | 0 | 406 | 766 | 0 | 1172 | 1294 | 2471 |  |  |  |
|  | PHF | 0.93 | 0 | 0.5 | 0 | 0.93 | 0.95 | 0 | 0 | 0 | 0 | 0 | 0.92 | 0.5 | 0 | 0 | 0.25 | 0.38 | 0.25 | 0 | 0.91 | 0.95 | 0 | 0.94 | 0.93 | 0.97 |  |  |  |
|  | Approach \% |  |  |  |  |  | 31\% |  |  |  |  |  |  |  |  |  |  |  | 0\% |  |  |  |  |  | 52\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  | Southwestbound |  |  |  |  |  |  |  | Westbound |  |  |  | Northibound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | T | L | HL | U | 1 | 0 | HR | BL | HL | U | 1 | 0 | HR | R | L | U | 1 | 0 | R | BR | T | U | 1 | $\bigcirc$ | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 1 | 3 | $N$ | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  | 0\% |  |
| 8:00 AM-11:00 AM | Cars | 906 | 0 | 2 | 0 | 908 | 628 | 0 | 0 | 0 | 0 | 0 | 255 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 253 | 628 | 0 | 884 | 906 | 1792 | NE | 0 | 0 |
| One Hour Peak | \% | 87\% | 0\% | 100\% | 0\% | 87\% | 92\% | 0\% | 0\% | 0\% | 0\% | 0\% | 94\% | 0\% | 0\% | 0\% | 0\% | 0\% | 43\% | 50\% | 94\% | 92\% | 0\% | 92\% | 87\% | 89\% |  | 0\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 105 | 0 | 0 | 0 | 105 | 26 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 26 | 0 | 36 | 105 | 141 | E | 13 | 13 |
|  | \% | 10\% | 0\% | 0\% | 0\% | 10\% | 4\% | 0\% | 0\% | 0\% | 0\% | 0\% | 4\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 4\% | 4\% | 0\% | 4\% | 10\% | 7\% |  | 100\% |  |
|  | Buses | 6 | 0 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 6 | 7 | s | 0 | 0 |
|  | \% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  | 0\% |  |
|  | Single-Unit Trucks | 21 | 0 | 0 | 0 | 21 | 19 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 19 | 0 | 21 | 21 | 42 |  | 13 | 13 |
|  | \% | 2\% | \% | 0\% | 0\% | 2\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 3\% | 0\% | 2\% | 2\% | 2\% |  |  |  |
|  | Articulated Trucks | 4 | 0 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 4 | 9 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% | 0\% | 1\% | 0\% | \% |  |  |  |
|  | Bicycles on Road | 3 | 1 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 4 | 3 | 5 | 1 | 0 | 9 | 3 | 13 |  |  |  |
|  | \% | \%\% | 100\% | 0\% | 0\% | \%\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 57\% | 50\% | 2\% | 0\% | 0\% | 1\% | 0\% | 1\% |  |  |  |
|  | Total | 1046 | 1 | 2 | 0 | 1049 | 682 | 0 | 0 | 0 | 0 | 0 | 272 | 0 | 0 | 0 | 0 | 0 | 7 | 6 | 270 | 682 | 0 | 958 | 1046 | 2007 |  |  |  |
|  | PHF | 0.92 | 0.25 | 0.25 | 0 | 0.92 | 0.96 | 0 | 0 | 0 | 0 | 0 | 0.83 | 0 | 0 | 0 | 0 | 0 | 0.44 | 0.38 | 0.82 | 0.96 | 0 | 0.91 | 0.92 | 0.94 |  |  |  |
|  | Approach \% |  |  |  |  | 52\% | 34\% |  |  |  |  | 0\% | 14\% |  |  |  |  | 0\% | 0\% |  |  |  |  | 48\% | 52\% |  |  |  |  |
| Peak 2 | Motorcycles | 3 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 3 | 0 | 6 | 3 | 10 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 1\% | 25\% | 0\% | 0\% | 0\% | 25\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 1211 | 0 | 3 | 0 | 1214 | 756 | 0 | 0 | 0 | 0 | 0 | 430 | 2 | 0 | 0 | 0 | 2 | 1 | 1 | 425 | 756 | 0 | 1182 | 1211 | 2398 | NE | 0 | 0 |
| One Hour Peak | \% | 93\% | 0\% | 75\% | 0\% | 93\% | 91\% | 0\% | 0\% | 0\% | 0\% | 0\% | 92\% | 50\% | 0\% | 0\% | 0\% | 50\% | 25\% | 33\% | 92\% | 91\% | 0\% | 91\% | 93\% | 92\% |  | 0\% |  |
| 2:00 PM - 3:00 PM | Light Goods Vehicles | 63 | 0 | 0 | 0 | 63 | 44 | 0 | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 44 | 0 | 71 | 63 | 134 | E | 1 | 1 |
|  | \% | 5\% | 0\% | 0\% | 0\% | 5\% | 5\% | 0\% | 0\% | 0\% | 0\% | \% | 6\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 6\% | 5\% | 0\% | 5\% | 5\% | 5\% |  | 100\% |  |
|  | Buses | 4 | 0 | 1 | 0 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 4 | 10 | s | 0 | 0 |
|  | \% | 0\% | 0\% | 25\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
|  | Single-Unit Trucks | 18 | 0 | 0 | 0 | 18 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 21 | 18 | 39 |  | 1 | 1 |
|  | \% | 1\% | 0\% | 0\% | 0\% | 1\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% | 0\% | 2\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 2 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 2 | 5 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | \% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 7 | 1 | 0 | 0 | 0 | 1 | 3 | 2 | 6 | 1 | 0 | 9 | 0 | 11 |  |  |  |
|  | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 0\% | 100\% | 1\% | 25\% | 0\% | 0\% | 0\% | 25\% | 75\% | 67\% | 1\% | \% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 1301 | 0 | 4 | 0 | 1305 | 833 | 0 | 0 | 1 | 0 | 1 | 469 | 4 | 0 | 0 | 0 | 4 | 4 | 3 | 461 | 833 | 0 | 1297 | 1301 | 2607 |  |  |  |
|  | PHF | 0.97 | 0 | 0.5 | 0 | 0.97 | 0.95 | 0 | 0 | 0.25 | 0 | 0.25 | 0.9 | 0.33 | 0 | 0 | 0 | 0.33 | 0.5 | 0.38 | 0.89 | 0.95 | 0 | 0.93 | 0.97 | 0.97 |  |  |  |
| \% | Approach\% |  |  |  |  | 50\% | 32\% |  |  |  |  | 0\% | 18\% |  |  |  |  | 0\% | 0\% |  |  |  |  | 50\% | 50\% |  |  |  |  |

Report Summary

| Time Period |  | Southbound |  |  |  |  |  | Northbound |  |  |  |  |  |  | Northeastbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class. | R | BR | T | U | 1 | $\bigcirc$ | T | L | HL | U | , | 0 | HR | BL | HL | U | 1 | 0 | HR | R | L | U | I | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM -9:00 AM | Cars | 46 | 0 | 910 | 0 | 956 | 802 | 802 | 3 | 0 | 0 | 805 | 919 | 9 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 1770 | s | 0 | 0 |
| One Hour Peak | \% | 100\% | 0\% | 85\% | 0\% | 85\% | 84\% | 84\% | 100\% | 0\% | 0\% | 84\% | 85\% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 85\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 0 | 0 | 97 | 0 | 97 | 99 | 99 | 0 | 0 | 0 | 99 | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 196 | sw | 0 | 0 |
|  | \% | 0\% | 0\% | 9\% | 0\% | 9\% | 10\% | 10\% | 0\% | 0\% | 0\% | 10\% | 9\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | $0 \%$ | 0\% | 9\% |  | 0\% |  |
|  | Buses | 0 | 0 | 26 | 0 | 26 | 5 | 5 | 0 | 0 | 0 | 5 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | w | 0 | 0 |
|  | \% | 0\% | 0\% | 2\% | 0\% | 2\% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 0 | 24 | 0 | 24 | 42 | 42 | 0 | 0 | 0 | 42 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 66 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 2\% | 0\% | 2\% | 4\% | 4\% | 0\% | \% | 0\% | 4\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 18 | 0 | 18 | 12 | 12 | 0 | 0 | 0 | 12 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |  |  |  |
|  | \% | \% | 0\% | 2\% | 0\% | 2\% | 1\% | 1\% | 0\% | \% | 0\% | 1\% | 2\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | \%\% | \% | 0\% | \%\% | \%\% | 0\% | \% | 0\% | \%\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  |  |  |
|  | Total | 46 | 0 | 1075 | 0 | 1121 | 960 | 960 | 3 | 0 | 0 | 963 | 1084 | 9 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 2093 |  |  |  |
|  | PHF | 0.77 | 0 | 0.92 | 0 | 0.92 | 0.98 | 0.98 | 0.75 | 0 | 0 | 0.98 | 0.93 | 0.56 | 0 | 0 | 0 | 0.56 | 0 | 0 | 0 | 0 | 0 | 0 | 0.77 | 0.97 |  |  |  |
|  | Approach \% |  |  |  |  | 54\% | 46\% |  |  |  |  | 46\% | 52\% |  |  |  |  | 0\% | 0\% |  |  |  |  | 0\% | 2\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | N | 0 | 0 |
| Specified Period | \% | \% | 0\% | 0\% | 0\% | \% | 0\% | \% | \% | \% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 3 | 0 | 1067 | 0 | 1070 | 680 | 680 | 0 | 0 | 0 | 680 | 1086 | 19 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1769 | s | 0 | 0 |
| One Hour Peak | \% | 100\% | 0\% | 82\% | 0\% | 82\% | 87\% | 87\% | 0\% | 0\% | 0\% | 87\% | 82\% | 90\% | 0\% | 0\% | 0\% | 90\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 84\% |  | 0\% |  |
| 3:30 PM - 4:30 PM | Light Goods Vehicles | 0 | 0 | 191 | 0 | 191 | 74 | 74 | 0 | 0 | 0 | 74 | 193 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 267 | sw | 0 | 0 |
|  |  | 0\% | 0\% |  | 0\% | 15\% | 9\% | 9\% | 0\% | 0\% | 0\% | 9\% | 15\% | 10\% | 0\% | 0\% | 0\% | 10\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 13\% |  | 0\% |  |
|  | Buses | 0 | 0 | 11 | 0 | 11 | 7 | 7 | 0 | 0 | 0 | 7 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | w | 0 | 0 |
|  | \% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | \% | 0\% | 1\% | 1\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 0 | 24 | 0 | 24 | 15 | 15 | 0 | 0 | 0 | 15 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 2\% | 0\% | 2\% | 2\% | 2\% | 0\% | \% | 0\% | 2\% | 2\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 6 | 0 | 6 | 9 | 9 | 0 | 0 | 0 | 9 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 3 | 0 | 1299 | 0 | 1302 | 786 | 786 | 0 | 0 | 0 | 786 | 1320 | 21 | 0 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2109 |  |  |  |
|  | PHF | 0.75 | 0 | 0.96 | 0 | 0.96 | 0.95 | 0.95 | 0 | 0 | 0 | 0.95 | 0.96 | 0.75 | 0 | 0 | 0 | 0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0.75 | 0.96 |  |  |  |
|  | Approach \% |  |  |  |  | 62\% | 37\% |  |  |  |  | 37\% | 63\% |  |  |  |  |  |  |  |  |  |  | 0\% | \%\% |  |  |  |  |



Report Summary

|  |  | Southbound |  |  |  |  | Westbound |  |  |  |  |  | Northbound |  |  | Eastbound |  |  |  |  | Crosswalk |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | 1 | $\bigcirc$ | R | T | L | 1 | 0 | T | L | U | 1 | 0 | R | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 5 | 561 | 0 | 566 | 822 | 13 | 89 | 152 | 254 | 0 | 805 | 0 | 0 | 805 | 973 | 260 | 4 | 0 | 264 | 94 | 1889 | E | 0 | 0 |
| One Hour Peak | \% | 71\% | 85\% | 0\% | 84\% | 83\% | 81\% | 82\% | 94\% | 89\% | 0\% | 83\% | 0\% | 0\% | 83\% | 86\% | 85\% | 67\% | 0\% | 85\% | 81\% | 84\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 1 | 44 | 0 | 45 | 105 | 1 | 17 | 8 | 26 | 0 | 102 | 1 | 0 | 103 | 88 | 36 | 2 | 0 | 38 | 19 | 212 | s | 0 | 0 |
|  | \% | 14\% | 7\% | 0\% | 7\% | 11\% | 6\% | 16\% | 5\% | 9\% | 0\% | 11\% | 100\% | 0\% | 11\% | 8\% | 12\% | 33\% | 0\% | 12\% | 16\% | 9\% |  | 0\% |  |
|  | Buses | 0 | 17 | 0 | 17 | 5 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 26 | 9 | 0 | 0 | 9 | 0 | 31 | w | 0 | 0 |
|  | \% | 0\% | 3\% | 0\% | 3\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | 3\% | 0\% | 0\% | 3\% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 1 | 22 | 0 | 23 | 49 | 2 | 1 | 1 | 4 | 0 | 47 | 0 | 0 | 47 | 24 | 1 | 0 | 0 | 1 | 2 | 75 |  | 0 | 0 |
|  | \% | 14\% | $3 \%$ | 0\% | 3\% | 5\% | 13\% | 1\% | 1\% | 1\% | 0\% | 5\% | 0\% | 0\% | 5\% | 2\% | 0\% | 0\% | 0\% | 0\% | 2\% | 3\% |  |  |  |
|  | Articulated Trucks | 0 | 19 | 0 | 19 | 11 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 11 | 19 | 0 | 0 | 0 | 0 | 0 | 30 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 3\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Total | 7 | 663 | 0 | 670 | 992 | 16 | 108 | 161 | 285 | 0 | 970 | 1 | 0 | 971 | 1130 | 306 | 6 | 0 | 312 | 116 | 2238 |  |  |  |
|  | PHF | 0.88 | 0.93 | 0 | 0.94 | 0.98 | 0.8 | 0.9 | 0.89 | 0.9 | 0 | 0.97 | 0.25 | 0 | 0.96 | 0.93 | 0.92 | 0.5 | 0 | 0.92 | 0.94 | 0.96 |  |  |  |
|  | Approach \% |  |  |  | 30\% | 44\% |  |  |  | 13\% | \% |  |  |  | 43\% | 50\% |  |  |  | 14\% | 5\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 2 | 587 | 0 | 589 | 720 | 11 | 65 | 117 | 193 | 0 | 694 | 2 | 0 | 696 | 990 | 286 | 15 | 0 | 301 | 69 | 1779 | E | 0 | 0 |
| One Hour Peak | \% | 100\% | 77\% | 0\% | 77\% | 88\% | 92\% | 89\% | 85\% | 87\% | 0\% | 88\% | 100\% | 0\% | 88\% | 78\% | 78\% | 94\% | 0\% | 79\% | 90\% | 82\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 0 | 138 | 0 | 138 | 59 | 0 | 6 | 18 | 24 | 0 | 58 | 0 | 0 | 58 | 230 | 74 | 1 | 0 | 75 | 6 | 295 | S | 0 | 0 |
|  | \% | 0\% | 18\% | 0\% | 18\% | 7\% | 0\% | 8\% | 13\% | 11\% | 0\% | 7\% | 0\% | 0\% | 7\% | 18\% | 20\% | 6\% | 0\% | 20\% | $8 \%$ | 14\% |  | 0\% |  |
|  | Buses | 0 | 5 | 0 | 5 | 12 | 0 | 1 | 0 | 1 | 0 | 12 | 0 | 0 | 12 | 6 | 1 | 0 | 0 | 1 | 1 | 19 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 0\% | 1\% | 0\% | 0\% | 0\% | 2\% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 26 | 0 | 26 | 17 | 1 | 1 | 2 | 4 | 0 | 16 | 0 | 0 | 16 | 31 | 3 | 0 | 0 | 3 | 1 | 49 |  | 0 | 0 |
|  | \% | 0\% | 3\% | 0\% | 3\% | 2\% | 8\% | 1\% | 1\% | 2\% | 0\% | 2\% | 0\% | 0\% | 2\% | 2\% | 1\% | 0\% | 0\% | 1\% | 1\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 10 | 0 | 10 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 7 | 10 | 0 | 0 | 0 | 0 | 0 | 17 |  |  |  |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | $0 \%$ | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 2 | 766 | 0 | 768 | 815 | 12 | 73 | 137 | 222 | 0 | 787 | 2 | 0 | 789 | 1268 | 365 | 16 | 0 | 381 | 77 | 2160 |  |  |  |
|  | PHF | 0.5 | 0.95 | 0 | 0.95 | 0.95 | 1 | 0.91 | 0.93 | 0.96 | 0 | 0.94 | 0.5 | 0 | 0.94 | 0.96 | 0.94 | 0.57 | 0 | 0.94 | 0.92 | 0.97 |  |  |  |
|  | Approach \% |  |  |  | 36\% | 38\% |  |  |  | 10\% | 0\% |  |  |  | 37\% | 59\% |  |  |  | 18\% | 4\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

| Time Period |  | Southbound |  |  |  |  | Westbound |  |  |  |  |  | Northbound |  |  | Eastbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class. | R | T | U | 1 | 0 | R | T | L | 1 | 0 | T | L | U | 1 | $\bigcirc$ | R | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | N | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 8:00 AM-11:00 AM | Cars | 0 | 543 | 0 | 543 | 579 | 4 | 69 | 123 | 196 | 0 | 567 | 1 | 0 | 568 | 903 | 237 | 8 | 0 | 245 | 70 | 1552 | E | 0 | 0 |
| One Hour Peak | \% | 0\% | 87\% | 0\% | 87\% | 84\% | 100\% | 88\% | 88\% | 88\% | 0\% | 84\% | 50\% | 0\% | 84\% | 87\% | 86\% | 89\% | 0\% | 87\% | 88\% | 86\% |  | 0\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 0 | 55 | 0 | 55 | 84 | 0 | 7 | 14 | 21 | 0 | 83 | 0 | 0 | 83 | 101 | 32 | 1 | 0 | 33 | 7 | 192 | s | 0 | 0 |
|  | \% | 0\% | 9\% | 0\% | 9\% | 12\% | 0\% | 9\% | 10\% | 9\% | 0\% | 12\% | 0\% | 0\% | 12\% | 10\% | 12\% | 11\% | 0\% | 12\% | 9\% | 11\% |  | 0\% |  |
|  | Buses | 0 | 5 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 9 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 19 | 0 | 19 | 16 | 0 | 1 | 0 | 1 | 0 | 16 | 0 | 0 | 16 | 22 | 3 | 0 | 0 | 3 | 1 | 39 |  | 1 | 1 |
|  | \% | 0\% | 3\% | 0\% | 3\% | 2\% | 0\% | 1\% | 0\% | 0\% | 0\% | 2\% | 0\% | 0\% | 2\% | 2\% | 1\% | 0\% | 0\% | 1\% | 1\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 3 | 0 | 3 | 5 | 0 | 0 | 1 | 1 | 0 | 5 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 9 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 3 | 0 | 2 | 1 | 0 | 3 | 4 | 2 | 0 | 0 | 2 | 2 | 8 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 50\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% |  |  |  |
|  | Total | 0 | 626 | 0 | 626 | 691 | 4 | 78 | 140 | 222 | 0 | 678 | 2 | 0 | 680 | 1040 | 274 | 9 | 0 | 283 | 80 | 1811 |  |  |  |
|  | PHF | 0 | 0.94 | 0 | 0.94 | 0.95 | 0.5 | 0.78 | 0.88 | 0.84 | 0 | 0.95 | 0.25 | 0 | 0.95 | 0.92 | 0.84 | 0.38 | 0 | 0.85 | 0.8 | 0.96 |  |  |  |
|  | Approach \% |  |  |  | 35\% | 38\% |  |  |  | 12\% | 0\% |  |  |  | 38\% | 57\% |  |  |  | 16\% | 4\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 3 | 0 | 3 | 7 | 0 | 1 | 0 | 1 | 0 | 7 | 0 | 0 | 7 | 7 | 4 | 0 | 0 | 4 | 1 | 15 | $N$ | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 4 | 702 | 0 | 706 | 775 | 0 | 108 | 152 | 260 | 0 | 770 | 1 | 0 | 771 | 1156 | 302 | 5 | 0 | 307 | 113 | 2044 | E | 0 | 0 |
| One Hour Peak | \% | 80\% | 91\% | 0\% | 91\% | 90\% | 0\% | 90\% | 88\% | 89\% | 0\% | 90\% | 100\% | 0\% | 90\% | 91\% | 92\% | 100\% | 0\% | 92\% | 90\% | 91\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 1 | 54 | 0 | 55 | 58 | 0 | 11 | 18 | 29 | 0 | 58 | 0 | 0 | 58 | 92 | 20 | 0 | 0 | 20 | 12 | 162 | s | 0 | 0 |
|  | \% | 20\% | 7\% | 0\% | 7\% | 7\% | 0\% | 9\% | 10\% | 10\% | 0\% | 7\% | 0\% | 0\% | 7\% | 7\% | 6\% | 0\% | 0\% | 6\% | 10\% | 7\% |  | 0\% |  |
|  | Buses | 0 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 8 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 7 | 0 | 7 | 12 | 0 | 0 | 1 | 1 | 0 | 12 | 0 | 0 | 12 | 8 | 0 | 0 | 0 | 0 | 0 | 20 |  | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 2 | 5 | 3 | 0 | 0 | 3 | 0 | 7 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 5 | 773 | 0 | 778 | 858 | 0 | 120 | 172 | 292 | 0 | 853 | 1 | 0 | 854 | 1274 | 329 | 5 | 0 | 334 | 126 | 2258 |  |  |  |
|  | PHF | 0.42 | 0.96 | 0 | 0.95 | 0.96 | 0 | 0.77 | 0.98 | 0.88 | 0 | 0.96 | 0.25 | 0 | 0.96 | 0.97 | 0.87 | 0.42 | 0 | 0.88 | 0.79 | 0.95 |  |  |  |
|  | Approach\% |  |  |  | 34\% | 38\% |  |  |  | 13\% | 0\% |  |  |  | 38\% | 56\% |  |  |  | 15\% | 6\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Northbound |  |  | Eastbound |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | 1 | 0 | T | L | U | 1 | 0 | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $N$ | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 122 | 0 | 0 | 122 | 346 | 346 | 134 | 0 | 480 | 0 | 0 | 256 | 602 | S | 0 | 0 |
| One Hour Peak | \% | 92\% | 0\% | 0\% | 92\% | 88\% | 88\% | 86\% | 0\% | 88\% | 0\% | 0\% | 89\% | 88\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 10 | 0 | 0 | 10 | 41 | 41 | 17 | 0 | 58 | 0 | 0 | 27 | 68 | w | 0 | 0 |
|  | \% | 8\% | 0\% | 0\% | 8\% | 10\% | 10\% | 11\% | 0\% | 11\% | 0\% | 0\% | 9\% | 10\% |  | 0\% |  |
|  | Buses | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 1 | 0 | 0 | 1 | 5 | 5 | 3 | 0 | 8 | 0 | 0 | 4 | 9 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% | 2\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 133 | 0 | 0 | 133 | 393 | 393 | 155 | 0 | 548 | 0 | 0 | 288 | 681 |  |  |  |
|  | PHF | 0.85 | 0 | 0 | 0.85 | 0.86 | 0.86 | 0.84 | 0 | 0.86 | 0 | 0 | 0.89 | 0.87 |  |  |  |
|  | Approach\% |  |  |  | 20\% | 58\% |  |  |  | 80\% | 0\% | 0\% | 42\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 181 | 0 | 0 | 181 | 305 | 305 | 64 | 0 | 369 | 0 | 0 | 245 | 550 | s | 0 | 0 |
| One Hour Peak | \% | 91\% | 0\% | 0\% | 91\% | 91\% | 91\% | 88\% | 0\% | 90\% | 0\% | 0\% | 90\% | 90\% |  | 0\% |  |
| 5:00 PM - 6:00 PM | Light Goods Vehicles | 17 | 0 | 0 | 17 | 24 | 24 | 8 | 0 | 32 | 0 | 0 | 25 | 49 | w | 0 | 0 |
|  | \% | 9\% | 0\% | 0\% | 9\% | 7\% | 7\% | 11\% | 0\% | 8\% | 0\% | 0\% | 9\% | 8\% |  | 0\% |  |
|  | Buses | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | 4 | 0 | 0 | 1 | 4 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 1\% | 0\% | 1\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 1 | 2 | 4 | 3 | 0 | 0 | 3 | 0 | 0 | 1 | 5 |  |  |  |
|  | \% | 1\% | 0\% | 100\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Total | 199 | 0 | 1 | 200 | 337 | 336 | 73 | 0 | 409 | 0 | 0 | 272 | 609 |  |  |  |
|  | PHF | 0.9 | 0 | 0.25 | 0.89 | 0.86 | 0.87 | 0.87 | 0 | 0.92 | 0 | 0 | 0.93 | 0.91 |  |  |  |
|  | Approach \% |  |  |  | 33\% | 55\% |  |  |  | 67\% | 0\% | 0\% | 45\% |  |  |  |  |

Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  |  | Northbound |  |  | Eastbound |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | 1 | 0 | T | L | U | 1 | 0 | I | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 8:00 AM - 11:00 AM | Cars | 118 | 0 | 0 | 118 | 176 | 176 | 82 | 0 | 258 | 0 | 0 | 200 | 376 | s | 2 | 2 |
| One Hour Peak | \% | 89\% | 0\% | 0\% | 89\% | 89\% | 89\% | 92\% | 0\% | 90\% | 0\% | 0\% | 90\% | 90\% |  | 100\% |  |
| 9:45 AM - 10:45 AM | Light Goods Vehicles | 11 | 0 | 0 | 11 | 13 | 13 | 6 | 0 | 19 | 0 | 0 | 17 | 30 | w | 1 | 1 |
|  | \% | 8\% | 0\% | 0\% | 8\% | 7\% | 7\% | 7\% | 0\% | 7\% | 0\% | 0\% | 8\% | 7\% |  | 100\% |  |
|  | Buses | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  | 4 | 4 |
|  | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 1 | 2 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 1\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Articulated Trucks | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 2 | 0 | 0 | 2 | 8 | 8 | 0 | 0 | 8 | 0 | 0 | 2 | 10 |  |  |  |
|  | \% | 2\% | 0\% | 0\% | 2\% | 4\% | 4\% | 0\% | 0\% | 3\% | 0\% | 0\% | 1\% | 2\% |  |  |  |
|  | Total | 133 | 0 | 0 | 133 | 198 | 198 | 89 | 0 | 287 | 0 | 0 | 222 | 420 |  |  |  |
|  | PHF | 0.85 | 0 | 0 | 0.85 | 0.88 | 0.88 | 0.86 | 0 | 0.88 | 0 | 0 | 0.85 | 0.87 |  |  |  |
|  | Approach \% |  |  |  | 32\% | 47\% |  |  |  | 68\% | 0\% | 0\% | 53\% |  |  |  |  |
| Peak 2 | Motorcycles | 1 | 0 | 0 | 1 | 6 | 6 | 1 | 0 | 7 | 0 | 0 | 2 | 8 | N | 0 | 0 |
| Specified Period | \% | 1\% | 0\% | 0\% | 1\% | 2\% | 2\% | 1\% | 0\% | 2\% | 0\% | 0\% | 1\% | 1\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 117 | 0 | 0 | 117 | 252 | 252 | 160 | 0 | 412 | 0 | 0 | 277 | 529 | s | 0 | 0 |
| One Hour Peak | \% | 87\% | 0\% | 0\% | 87\% | 89\% | 89\% | 91\% | 0\% | 90\% | 0\% | 0\% | 90\% | 90\% |  | 0\% |  |
| 3:15 PM - 4:15 PM | Light Goods Vehicles | 13 | 0 | 0 | 13 | 16 | 16 | 13 | 0 | 29 | 0 | 0 | 26 | 42 | w | 0 | 0 |
|  | \% | 10\% | 0\% | 0\% | 10\% | 6\% | 6\% | 7\% | 0\% | 6\% | 0\% | 0\% | 8\% | 7\% |  | 0\% |  |
|  | Buses | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |  |  |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 1 | 8 | 8 | 1 | 0 | 9 | 0 | 0 | 2 | 10 |  | . |  |
|  | \% | 1\% | 0\% | 0\% | 1\% | 3\% | 3\% | 1\% | 0\% | 2\% | 0\% | 0\% | 1\% | 2\% |  |  |  |
|  | Total | 134 | 0 | 0 | 134 | 282 | 282 | 175 | 0 | 457 | 0 | 0 | 309 | 591 |  |  |  |
|  | PHF | 0.93 | 0 | 0 | 0.93 | 0.79 | 0.79 | 0.88 | 0 | 0.82 | 0 | 0 | 0.92 | 0.85 |  |  |  |
|  | Approach \% |  |  |  | 23\% | 48\% |  |  |  | 77\% | 0\% | 0\% | 52\% |  |  |  |  |

## Report Summary

|  |  | Southbound |  |  |  |  | Northbound |  |  |  |  | Eastbound |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | 1 | 0 | T | L | U | 1 | 0 | R | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 2 | 432 | 0 | 434 | 460 | 458 | 364 | 0 | 822 | 548 | 116 | 2 | 0 | 118 | 366 | 1374 | s | 0 | 0 |
| One Hour Peak | \% | 67\% | 88\% | 0\% | 88\% | 84\% | 84\% | 83\% | 0\% | 83\% | 83\% | 69\% | 50\% | 0\% | 69\% | 82\% | 83\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 0 | 33 | 0 | 33 | 51 | 50 | 54 | 0 | 104 | 54 | 21 | 1 | 0 | 22 | 54 | 159 | w | 0 | 0 |
|  | \% | 0\% | 7\% | 0\% | 7\% | 9\% | 9\% | 12\% | 0\% | 11\% | 8\% | 13\% | 25\% | 0\% | 13\% | 12\% | 10\% |  | 0\% |  |
|  | Buses | 0 | 5 | 0 | 5 | 3 | 3 | 2 | 0 | 5 | 17 | 12 | 0 | 0 | 12 | 2 | 22 |  | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 3\% | 7\% | 0\% | 0\% | 7\% | 0\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 1 | 8 | 0 | 9 | 31 | 30 | 13 | 0 | 43 | 22 | 14 | 1 | 0 | 15 | 14 | 67 |  |  |  |
|  | \% | 33\% | 2\% | 0\% | 2\% | 6\% | 6\% | 3\% | 0\% | 4\% | 3\% | 8\% | 25\% | 0\% | 9\% | 3\% | 4\% |  |  |  |
|  | Articulated Trucks | 0 | 14 | 0 | 14 | 4 | 4 | 8 | 0 | 12 | 19 | 5 | 0 | 0 | 5 | 8 | 31 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 3\% | 1\% | 1\% | 2\% | 0\% | 1\% | 3\% | 3\% | 0\% | 0\% | 3\% | 2\% | 2\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 3 | 492 | 0 | 495 | 549 | 545 | 441 | 0 | 986 | 660 | 168 | 4 | 0 | 172 | 444 | 1653 |  |  |  |
|  | PHF | 0.38 | 0.98 | 0 | 0.98 | 0.93 | 0.93 | 0.93 | 0 | 0.98 | 0.94 | 0.86 | 0.5 | 0 | 0.86 | 0.93 | 0.98 |  |  |  |
|  | Approach \% |  |  |  | 30\% | 33\% |  |  |  | 60\% | 40\% |  |  |  | 10\% | 27\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 3 | 424 | 0 | 427 | 451 | 445 | 258 | 0 | 703 | 583 | 159 | 6 | 0 | 165 | 261 | 1295 | S | 0 | 0 |
| One Hour Peak | \% | 100\% | 80\% | 0\% | 80\% | 90\% | 90\% | 82\% | 0\% | 87\% | 76\% | 69\% | 86\% | 0\% | 69\% | 82\% | 82\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 0 | 81 | 0 | 81 | 35 | 35 | 36 | 0 | 71 | 140 | 59 | 0 | 0 | 59 | 36 | 211 | w | 0 | 0 |
|  | \% | 0\% | 15\% | 0\% | 15\% | 7\% | 7\% | 11\% | 0\% | 9\% | 18\% | 25\% | 0\% | 0\% | 25\% | 11\% | 13\% |  | 0\% |  |
|  | Buses | 0 | 4 | 0 | 4 | 7 | 6 | 6 | 0 | 12 | 5 | 1 | 1 | 0 | 2 | 6 | 18 |  | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 2\% | 0\% | 1\% | 1\% | 0\% | 14\% | 0\% | 1\% | 2\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 0 | 15 | 0 | 15 | 5 | 5 | 11 | 0 | 16 | 26 | 11 | 0 | 0 | 11 | 11 | 42 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 3\% | 1\% | 1\% | 4\% | 0\% | 2\% | 3\% | 5\% | 0\% | 0\% | 5\% | 3\% | 3\% |  |  |  |
|  | Articulated Trucks | 0 | 8 | 0 | 8 | 3 | 3 | 3 | 0 | 6 | 10 | 2 | 0 | 0 | 2 | 3 | 16 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 1\% | 1\% | 1\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 3 | 532 | 0 | 535 | 501 | 494 | 314 | 0 | 808 | 764 | 232 | 7 | 0 | 239 | 317 | 1582 |  |  |  |
|  | PHF | 0.75 | 0.92 | 0 | 0.92 | 0.97 | 0.97 | 0.88 | 0 | 0.95 | 0.93 | 0.87 | 0.44 | 0 | 0.88 | 0.88 | 0.97 |  |  |  |
|  | Approach \% |  |  |  | 34\% | 32\% |  |  |  | 51\% | 48\% |  |  |  | 15\% | 20\% |  |  |  |  |

Study Name Milton - Route 138 and Neponset Valley Parkway TM16 TMC
Start Date Thursday, March 29, 2018 6:00 AM
End Date Saturday, March 31, 2018 5:00 PM
Site Code
Report Summary

|  |  | Southbound |  |  |  |  | Northbound |  |  |  |  | Eastbound |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | I | 0 | T | L | U | I | 0 | R | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 8:00 AM-11:00 AM | Cars | 1 | 400 | 0 | 401 | 365 | 364 | 229 | 0 | 593 | 549 | 149 | 1 | 0 | 150 | 230 | 1144 | S | 1 | 1 |
| One Hour Peak | \% | 50\% | 89\% | 0\% | 89\% | 89\% | 89\% | 78\% | 0\% | 85\% | 87\% | 81\% | 100\% | 0\% | 81\% | 78\% | 86\% |  | 100\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 1 | 36 | 0 | 37 | 26 | 26 | 54 | 0 | 80 | 57 | 21 | 0 | 0 | 21 | 55 | 138 | w | 1 | 1 |
|  | \% | 50\% | 8\% | 0\% | 8\% | 6\% | 6\% | 18\% | 0\% | 11\% | 9\% | 11\% | 0\% | 0\% | 11\% | 19\% | 10\% |  | 100\% |  |
|  | Buses | 0 | 3 | 0 | 3 | 3 | 3 | 0 | 0 | 3 | 5 | 2 | 0 | 0 | 2 | 0 | 8 |  | 2 | 2 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 1\% | 0\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 0 | 7 | 0 | 7 | 11 | 11 | 4 | 0 | 15 | 18 | 11 | 0 | 0 | 11 | 4 | 33 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 2\% | 3\% | 3\% | 1\% | 0\% | 2\% | 3\% | 6\% | 0\% | 0\% | 6\% | 1\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 2 | 2 | 2 | 3 | 0 | 5 | 3 | 1 | 0 | 0 | 1 | 3 | 8 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 2 | 449 | 0 | 451 | 408 | 407 | 292 | 0 | 699 | 633 | 184 | 1 | 0 | 185 | 294 | 1335 |  |  |  |
|  | PHF | 0.25 | 0.94 | 0 | 0.93 | 0.95 | 0.96 | 0.95 | 0 | 0.99 | 0.96 | 0.82 | 0.25 | 0 | 0.81 | 0.93 | 0.98 |  |  |  |
|  | Approach \% |  |  |  | 34\% | 31\% |  |  |  | 52\% | 47\% |  |  |  | 14\% | 22\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 2 | 0 | 2 | 1 | 1 | 4 | 0 | 5 | 4 | 2 | 0 | 0 | 2 | 4 | 9 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 1\% | 1\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 2 | 519 | 0 | 521 | 429 | 427 | 357 | 0 | 784 | 705 | 186 | 2 | 0 | 188 | 359 | 1493 | S | 0 | 0 |
| One Hour Peak | \% | 100\% | 90\% | 0\% | 90\% | 93\% | 93\% | 90\% | 0\% | 91\% | 89\% | 86\% | 100\% | 0\% | 86\% | 90\% | 90\% |  | 0\% |  |
| 2:45 PM - 3:45 PM | Light Goods Vehicles | 0 | 39 | 0 | 39 | 26 | 26 | 22 | 0 | 48 | 61 | 22 | 0 | 0 | 22 | 22 | 109 | w | 0 | 0 |
|  | \% | 0\% | 7\% | 0\% | 7\% | 6\% | 6\% | 6\% | 0\% | 6\% | 8\% | 10\% | 0\% | 0\% | 10\% | 6\% | 7\% |  | 0\% |  |
|  | Buses | 0 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 3 | 3 | 1 | 0 | 0 | 1 | 2 | 6 |  | 0 | 0 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Single-Unit Trucks | 0 | 10 | 0 | 10 | 2 | 2 | 10 | 0 | 12 | 13 | 3 | 0 | 0 | 3 | 10 | 25 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 2\% | 0\% | 0\% | 3\% | 0\% | 1\% | 2\% | 1\% | 0\% | 0\% | 1\% | 3\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 2 | 0 | 4 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 3 | 0 | 3 | 4 | 4 | 1 | 0 | 5 | 4 | 1 | 0 | 0 | 1 | 1 | 9 |  |  |  |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% |  | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Total | 2 | 577 | 0 | 579 | 463 | 461 | 396 | 0 | 857 | 794 | 217 | 2 | 0 | 219 | 398 | 1655 |  |  |  |
|  | PHF | 0.5 | 0.91 | 0 | 0.92 | 0.86 | 0.87 | 0.87 | 0 | 0.94 | 0.95 | 0.9 | 0.5 | 0 | 0.9 | 0.87 | 0.97 |  |  |  |
|  | Approach \% |  |  |  | 35\% | 28\% |  |  |  | 52\% | 48\% |  |  |  | 13\% | 24\% |  |  |  |  |


|  |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM-9:00 AM | Cars | 24 | 404 | 0 | 0 | 428 | 488 | 34 | 166 | 23 | 0 | 223 | 107 | 7 | 423 | 9 | 0 | 439 | 439 | 12 | 100 | 31 | 0 | 143 | 199 | 1233 | E | 0 | 0 |
| One Hour Peak | \% | 86\% | 88\% | 0\% | 0\% | 88\% | 32\% | 92\% | 89\% | 92\% | 0\% | 90\% | 88\% | 88\% | 80\% | 82\% | 0\% | 81\% | 89\% | 100\% | 88\% | 91\% | 0\% | 90\% | 88\% | 86\% |  | 0\% |  |
| 7:15 AM - 8:15 AM | Light Goods Vehicles | 3 | 26 | 1 | 0 | 30 | 64 | 2 | 19 | 2 | 0 | 23 | 10 | 1 | 61 | 2 | 0 | 64 | 28 | 0 | 8 | 1 | 0 | 9 | 24 | 126 | s | 0 | 0 |
|  | \% | 11\% | 6\% | 100\% | 0\% | 6\% | 11\% | 5\% | 10\% | 8\% | 0\% | 9\% | 8\% | 13\% | 12\% | 18\% | 0\% | 12\% | 6\% | 0\% | 7\% | 3\% | 0\% | 6\% | 11\% | 9\% |  | 0\% |  |
|  | Buses | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 3 | 4 | 0 | 2 | 1 | 0 | 3 | 0 | 10 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 2\% | 3\% | 0\% | 2\% | 0\% | 1\% |  | \% |  |
|  | Single-Unit Trucks | 1 | 9 | 0 | 0 | 10 | 36 | 1 | 2 | 0 | 0 | 3 | 3 | 0 | 34 | 0 | 0 | 34 | 9 | 0 | 3 | 1 | 0 | 4 | 3 | 51 |  | 0 | 0 |
|  | \% | 4\% | 2\% | 0\% | 0\% | 2\% | 6\% | 3\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 6\% | 0\% | 0\% | 6\% | 2\% | 0\% | 3\% | 3\% | 0\% | 3\% | 1\% | 4\% |  |  |  |
|  | Articulated Trucks | 0 | 15 | 0 | 0 | 15 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | \% | \% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% |  |  |  |
|  | Total | 28 | 458 | 1 | 0 | 487 | 597 | 37 | 187 | 25 | 0 | 249 | 122 | 8 | 526 | 11 | 0 | 545 | 495 | 12 | 113 | 34 | 0 | 159 | 226 | 1440 |  |  |  |
|  | PHF | 0.64 | 0.96 | 0.25 | 0 | 0.94 | 0.93 | 0.77 | 0.88 | 0.69 | 0 | 0.92 | 0.87 | 0.67 | 0.91 | 0.46 | 0 | 0.91 | 0.98 | 0.6 | 0.88 | 0.85 | 0 | 0.85 | 0.86 | 0.97 |  |  |  |
|  | Approach \% |  |  |  |  | 34\% | 41\% |  |  |  |  | 17\% | 8\% |  |  |  |  | 38\% | 34\% |  |  |  |  | 11\% | 16\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $N$ | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 3:00 PM - 6:00 PM | Cars | 20 | 414 | 5 | 0 | 439 | 476 | 26 | 93 | 9 | 0 | 128 | 120 | 9 | 428 | 15 | 0 | 452 | 437 | 14 | 106 | 22 | 0 | 142 | 128 | 1161 | E | 0 | 0 |
| One Hour Peak | \% | 80\% | 81\% | 63\% | 0\% | 81\% | 90\% | 96\% | 82\% | 82\% | 0\% | 84\% | 90\% | 90\% | 90\% | 88\% | 0\% | 90\% | 82\% | 93\% | 91\% | 79\% | 0\% | 89\% | 82\% | 86\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 4 | 71 | 3 | 0 | 78 | 35 | 1 | 15 | 1 | 0 | 17 | 12 | 0 | 30 | 2 | 0 | 32 | 73 | 1 | 9 | 4 | 0 | 14 | 21 | 141 | s | 0 | 0 |
|  | \% | 16\% | 14\% | 38\% | 0\% | 14\% | 7\% | 4\% | 13\% | 9\% | 0\% | 11\% | 9\% | 0\% | 6\% | 12\% | 0\% | 6\% | 14\% | 7\% | 8\% | 14\% | 0\% | 9\% | 13\% | 10\% |  | 0\% |  |
|  | Buses | 1 | 4 | 0 | 0 | 5 | 8 | 0 | 4 | 0 | 0 | 4 | 1 | 1 | 6 | 0 | 0 | 7 | 4 | 0 | 0 | 2 | 0 | 2 | 5 | 18 | w | 0 | 0 |
|  | \% | 4\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 4\% | 0\% | 0\% | 3\% | 1\% | 10\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 7\% | 0\% | 1\% | 3\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 16 | 0 | 0 | 16 | 6 | 0 | 2 | 0 | 0 | 2 | 1 | 0 | 6 | 0 | 0 | 6 | 16 | 0 | 1 | 0 | 0 | 1 | 2 | 25 |  | 1 | 1 |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 1\% | 0\% | 2\% | 0\% | 0\% | 1\% | 1\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 5 | 0 | 0 | 5 | 3 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |  |  |  |
|  | \% | 0\% | 1\% | \%\% | \% | 1\% | 1\% | 0\% | 0\% | 9\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 25 | 510 | 8 | 0 | 543 | 528 | 27 | 114 | 11 | 0 | 152 | 134 | 10 | 473 | 17 | 0 | 500 | 536 | 15 | 116 | 28 | 0 | 159 | 156 | 1354 |  |  |  |
|  | PHF | 0.78 | 0.9 | 0.33 | 0 | 0.94 | 0.93 | 0.52 | 0.89 | 0.55 | 0 | 0.76 | 0.86 | 0.83 | 0.97 | 0.71 | 0 | 0.95 | 0.92 | 0.62 | 0.85 | 0.7 | 0 | 0.92 | 0.91 | 0.95 |  |  |  |
|  | Approach \% |  |  |  |  | 40\% | 39\% |  |  |  |  | 11\% | 10\% |  |  |  |  | 37\% | 40\% |  |  |  |  | 12\% | 12\% |  |  |  |  |

Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  | Northbound |  |  |  |  | Eastbound |  |  |  |  |  | Stasswalk |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time Period | Class. | R | T | L | U | I | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | $\bigcirc$ | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | N | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% |  | 100\% |  |
| 8:00 AM-11:00 AM | Cars | 15 | 378 | 0 | 0 | 393 | 365 | 8 | 63 | 11 | 0 | 82 | 80 | 8 | 336 | 8 | 0 | 352 | 401 | 12 | 72 | 21 | 0 | 105 | 86 | 932 | E | 0 | 0 |
| One Hour Peak | \% | 83\% | 90\% | \% | 0\% | 90\% | 87\% | 100\% | 89\% | 73\% | 0\% | 87\% | 90\% | 89\% | 88\% | 100\% | 0\% | 88\% | 89\% | 92\% | $91 \%$ | 81\% | 0\% | 89\% | 90\% | 89\% |  | 0\% |  |
| 10:00 AM - 11:00 AM | Light Goods Vehicles | 2 | 32 | 1 | 0 | 35 | 37 | 0 | 7 | 3 | 0 | 10 | 8 | 0 | 33 | 0 | 0 | 33 | 36 | 1 | 7 | 4 | 0 | 12 | 9 | 90 | s | 0 | 0 |
|  | \% | 12\% | 8\% | 100\% | 0\% | 8\% | 9\% | 0\% | 10\% | 20\% | 0\% | 11\% | 9\% | 0\% | 9\% | 0\% | 0\% | 8\% | 8\% | 8\% | 9\% | 15\% | 0\% | 10\% | 9\% | 9\% |  | 0\% |  |
|  | Buses | 0 | 3 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 1 | 0 | 1 | 0 | 7 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 4\% | 0\% | 1\% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 5 | 0 | 0 | 5 | 9 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 9 | 0 | 0 | 10 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |  | 1 | 1 |
|  | \% | 0\% | 1\% | \% | 0\% | 1\% | 2\% | 0\% | 0\% | 7\% | 0\% | 1\% | 1\% | 11\% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |  |  |  |
|  | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 1\% | \% | \% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \%\% | 0\% | \% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |  |  |  |
|  | \% | 0\% | 0\% | \% | 0\% | \% | \% | 0\% | 1\% | \% | 0\% | 1\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 1\% | \%\% |  |  |  |
|  | Total | 17 | 421 | 1 | 0 | 439 | 418 | 8 | 71 | 15 | 0 | 94 | 89 | 9 | 384 | 8 | 0 | 401 | 449 | 13 | 79 | 26 | 0 | 118 | 96 | 1052 |  |  |  |
|  | PHF | 0.47 | 0.89 | 0.25 | 0 | 0.9 | 0.91 | 1 | 0.77 | 0.54 | 0 | 0.81 | 0.72 | 0.56 | 0.91 | 0.67 | 0 | 0.93 | 0.91 | 0.65 | 0.66 | 0.72 | 0 | 0.69 | 0.89 | 0.97 |  |  |  |
|  | Approach\% |  |  |  |  | 42\% | 40\% |  |  |  |  | 9\% | 8\% |  |  |  |  | 38\% | 43\% |  |  |  |  | 11\% | 9\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 3\% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | \% | 2\% | \%\% |  | 0\% |  |
| 2:00 PM - 5:00 PM | Cars | 24 | 505 | 1 | 0 | 530 | 480 | 17 | 65 | 17 | 0 | 99 | 95 | 9 | 435 | 15 | 0 | 459 | 529 | 7 | 85 | 28 | 0 | 120 | 104 | 1208 | E | 0 | 0 |
| One Hour Peak | \% | 89\% | 93\% | 100\% | 0\% | 93\% | 94\% | 89\% | 89\% | 100\% | 0\% | 91\% | 90\% | 100\% | 94\% | 88\% | 0\% | 94\% | 93\% | 88\% | 89\% | 93\% | 0\% | 90\% | 89\% | 93\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 2 | 27 | 0 | 0 | 29 | 26 | 2 | 6 | 0 | 0 | 8 | 7 | 0 | 22 | 2 | 0 | 24 | 28 | 1 | 7 | 2 | 0 | 10 | 10 | 71 | s | 1 | 1 |
|  | \% | 7\% | 5\% | \% | 0\% | 5\% | 5\% | 11\% | 8\% | 0\% | 0\% | 7\% | 7\% | 0\% | 5\% | 12\% | 0\% | 5\% | 5\% | 13\% | 7\% | 7\% | \% | 7\% | 9\% | 5\% |  | 100\% |  |
|  | Buses | 0 | 2 | 0 | 0 | $2$ | $1$ | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 5 | w | 0 | 0 |
|  | \% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 2\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 2\% | \% | 0\% | 1\% | 0\% | \% |  | \% |  |
|  | Single-Unit Trucks | 0 | 5 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 5 | 0 | 2 | 0 | 0 | 2 | 0 | 9 |  | 1 | 1 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | $2 \%$ | \% | 0\% | 0\% | \%\% | 0\% | 1\% | \%\% | 2\% | 0\% | 0\% | 1\% | \% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
|  | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | \%\% | 0\% | 0\% | \%\% | 0\% | \% | \% | \% |  |  |  |
|  | Bicycles on Road | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |  |  |  |
|  | \% | 4\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  |  |  |
|  | Total | 27 | 542 | 1 | 0 | 570 | 512 | 19 | 73 | 17 | 0 | 109 | 106 | 9 | 463 | 17 | 0 | 489 | 567 | 8 | 96 | 30 | 0 | 134 | 117 | 1302 |  |  |  |
|  | PHF | 0.75 | 0.91 | 0.25 | 0 | 0.93 | 0.93 | 0.79 | 0.96 | 0.61 | 0 | 0.91 | 0.76 | 0.56 | 0.94 | 0.85 | 0 | 0.93 | 0.89 | 0.67 | 0.75 | 0.83 | 0 | 0.84 | 0.89 | 0.95 |  |  |  |
|  | Approach\% |  |  |  |  |  | 39\% |  |  |  |  |  | 8\% |  |  |  |  | 38\% | 44\% |  |  |  |  | 10\% | 9\% |  |  |  |  |

End Date Thursday, March 29, 2018 6:00 PM

## Site Code

Report Summary

|  |  | Southbound |  |  |  |  |  | Northbound |  |  | Eastbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | U | I | 0 | T | L | U | I | 0 | R | L | U | I | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | N | 1 | 1 |
| Specified Period | \% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% |  | 100\% |  |
| 6:00 AM - 9:00 AM | Cars | 58 | 419 | 0 | 477 | 393 | 388 | 126 | 0 | 514 | 431 | 12 | 5 | 0 | 17 | 184 | 1008 | s | 0 | 0 |
| One Hour Peak | \% | 95\% | 87\% | 0\% | 88\% | 81\% | 80\% | 96\% | 0\% | 84\% | 87\% | 80\% | 100\% | 0\% | 85\% | 96\% | 86\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 2 | 32 | 0 | 34 | 54 | 54 | 4 | 0 | 58 | 34 | 2 | 0 | 0 | 2 | 6 | 94 | w | 16 | 16 |
|  | \% | 3\% | 7\% | 0\% | 6\% | 11\% | 11\% | 3\% | 0\% | 9\% | 7\% | 13\% | 0\% | 0\% | 10\% | 3\% | 8\% |  | 100\% |  |
|  | Buses | 0 | 4 | 0 | 4 | 3 | 3 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 7 |  | 17 | 17 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 0 | 11 | 0 | 11 | 34 | 34 | 1 | 0 | 35 | 12 | 1 | 0 | 0 | 1 | 1 | 47 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 2\% | 7\% | 7\% | 1\% | 0\% | 6\% | 2\% | 7\% | 0\% | 0\% | 5\% | 1\% | 4\% |  |  |  |
|  | Articulated Trucks | 0 | 14 | 0 | 14 | 4 | 4 | 0 | 0 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 18 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 3\% | 1\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 61 | 480 | 0 | 541 | 488 | 483 | 131 | 0 | 614 | 495 | 15 | 5 | 0 | 20 | 192 | 1175 |  |  |  |
|  | PHF | 0.64 | 0.94 | 0 | 0.93 | 0.91 | 0.91 | 0.61 | 0 | 0.95 | 0.95 | 0.42 | 0.42 | 0 | 0.42 | 0.62 | 0.92 |  |  |  |
|  | Approach\% |  |  |  | 46\% | 42\% |  |  |  | 52\% | 42\% |  |  |  | 2\% | 16\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 3:00 PM -6:00 PM | Cars | 23 | 349 | 0 | 372 | 460 | 409 | 71 | 0 | 480 | 441 | 92 | 51 | 0 | 143 | 94 | 995 | s | 0 | 0 |
| One Hour Peak | \% | 96\% | 80\% | 0\% | 81\% | 89\% | 88\% | 95\% | 0\% | 89\% | 82\% | $91 \%$ | 94\% | 0\% | 92\% | 95\% | 86\% |  | 0\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 1 | 63 | 0 | 64 | 42 | 39 | 3 | 0 | 42 | 72 | 9 | 3 | 0 | 12 | 4 | 118 | w | 1 | 1 |
|  | \% | 4\% | 14\% | 0\% | 14\% | 8\% | 8\% | 4\% | 0\% | 8\% | 13\% | 9\% | 6\% | 0\% | 8\% | 4\% | 10\% |  | 100\% |  |
|  | Buses | 0 | 5 | 0 | 5 | 8 | 8 | 0 | 0 | 8 | 5 | 0 | 0 | 0 | 0 | 0 | 13 |  | 1 | 1 |
|  | \% | 0\% | 1\% | 0\% | 1\% | 2\% | 2\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Single-Unit Trucks | 0 | 15 | 0 | 15 | 4 | 4 | 1 | 0 | 5 | 15 | 0 | 0 | 0 | 0 | 1 | 20 |  |  |  |
|  | \% | 0\% | 3\%, | 0\% | 3\% | 1\% | 1\% | 1\% | 0\% | 1\% | 3\% | 0\% | 0\% | 0\% | 0\% | 1\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 6 | 0 | 6 | 3 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 9 |  |  |  |
|  | \% | 0\% | 1\% | 0\% | 1\% | 1\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 24 | 438 | 0 | 462 | 517 | 463 | 75 | 0 | 538 | 539 | 101 | 54 | 0 | 155 | 99 | 1155 |  |  |  |
|  | PHF | 0.75 | 0.89 | 0 | 0.88 | 0.94 | 0.93 | 0.78 | 0 | 0.91 | 0.93 | 0.7 | 0.68 | 0 | 0.69 | 0.85 | 0.93 |  |  |  |
|  | Approach\% |  |  |  |  | 45\% |  |  |  |  | 47\% |  |  |  | 13\% | 9\% |  |  |  |  |

    End Date Thursday, March 29, 2018 6:00 PM
    Report Summary


|  |  | Southbound |  |  |  |  | Westbound |  |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 0\% |  |
| 6:00 AM - 9:00 AM | Cars | 7 | 415 | 0 | 0 | 422 | 426 | 12 | 26 | 25 | 0 | 63 | 23 | 10 | 404 | 3 | 1 | 418 | 444 | 3 | 13 | 10 | 0 | 26 | 36 | 929 | E | 0 | 0 |
| One Hour Peak | \% | 100\% | 88\% | 0\% | 0\% | 89\% | 83\% | 80\% | 90\% | $81 \%$ | 0\% | 84\% | 88\% | 83\% | 83\% | 75\% | 100\% | 83\% | 88\% | 100\% | 93\% | 100\% | 0\% | 96\% | 90\% | 86\% |  | 0\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 0 | 22 | 0 | 0 | 22 | 44 | 1 | 3 | 5 | 0 | 9 | 2 | 1 | 43 | 1 | 0 | 45 | 27 | 0 | 1 | 0 | 0 | 1 | 4 | 77 | s | 0 | 0 |
|  | \% | 0\% | 5\% | 0\% | 0\% | 5\% | 9\% | 7\% | 10\% | 16\% | 0\% | 12\% | 8\% | 8\% | 9\% | 25\% | 0\% | 9\% | 5\% | \% | 7\% | \% | 0\% | 4\% | 10\% | 7\% |  | 0\% |  |
|  | Buses | 0 | 6 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | w | 0 | 0 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 4\% | 8\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 12 | 0 | 0 | 12 | 32 | 2 | 0 | 1 | 0 | 3 | 0 | 0 | 30 | 0 | 0 | 30 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 45 |  | 0 | 0 |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 6\% | 13\% | 0\% | 3\% | 0\% | 4\% | 0\% | 0\% | 6\% | 0\% | 0\% | 6\% | 3\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 4\% |  |  |  |
|  | Articulated Trucks | 0 | 14 | 0 | 0 | 14 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  |  |  |
|  | Total | 7 | 469 | 0 | 0 | 476 | 511 | 15 | 29 | 31 | 0 | 75 | 26 | 12 | 486 | 4 | 1 | 503 | 504 | 3 | 14 | 10 | 0 | 27 | 40 | 1081 |  |  |  |
|  | PHF | 0.44 | 0.95 | 0 | 0 | 0.96 | 0.9 | 0.62 | 0.72 | 0.78 | 0 | 0.82 | 0.54 | 0.5 | 0.91 | 0.5 | 0.25 | 0.9 | 0.94 | 0.38 | 0.58 | 0.5 | 0 | 0.56 | 0.91 | 0.92 |  |  |  |
|  | Approach\% |  |  |  |  | 44\% | 47\% |  |  |  |  | 7\% | 2\% |  |  |  |  | 47\% | 47\% |  |  |  |  | 2\% | 4\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 0 | 0 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% | \% |  | 0\% |  |
| 3:00 PM - 6:00 PM | Cars | 9 | 328 | 3 | 0 | 340 | 418 | 4 | 31 | 6 | 0 | 41 | 50 | 16 | 409 | 0 | 0 | 425 | 337 | 3 | 31 | 5 | 0 | 39 | 40 | 845 | E | 1 | 1 |
| One Hour Peak | \% | 100\% | 81\% | 60\% | 0\% | 81\% | 90\% | 80\% | 86\% | 86\% | 0\% | 85\% | 88\% | 89\% | 90\% | 0\% | 0\% | 90\% | 81\% | 100\% | 91\% | 100\% | 0\% | 93\% | 89\% | 86\% |  | 100\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 0 | 56 | 2 | 0 | 58 | 31 | 1 | 4 | 1 | 0 | 6 | 6 | 2 | 30 | 0 | 0 | 32 | 57 | 0 | 2 | 0 | 0 | 2 | 4 | 98 | s | 0 | 0 |
|  | \% | 0\% | 14\% | 40\% | 0\% | 14\% | 7\% | 20\% | 11\% | 14\% | 0\% | 13\% | 11\% | 11\% | 7\% | 0\% | 0\% | 7\% | 14\% | 0\% | 6\% | 0\% | 0\% | 5\% | 9\% | 10\% |  | 0\% |  |
|  | Buses | 0 | 5 | 0 | 0 | 5 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | w | 2 | 2 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | \% | 1\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 10 | 0 | 0 | 10 | 4 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 0 | 4 | 10 | 0 | 1 | 0 | 0 | 1 | 1 | 16 |  | 3 | 3 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | 3\% | 0\% | 0\% | 2\% | 2\% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 3\% | 0\% | 0\% | 2\% | 2\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 7 | 0 | 0 | 7 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |  |  |  |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  |  |  |
|  | Total | 9 | 406 | 5 | 0 | 420 | 463 | 5 | 36 | 7 | 0 | 48 | 57 | 18 | 453 | 0 | 0 | 471 | 416 | 3 | 34 | 5 | 0 | 42 | 45 | 981 |  |  |  |
|  | PHF | 0.56 | 0.85 | 0.42 | 0 | 0.88 | 0.96 | 0.42 | 0.9 | 0.44 | 0 | 0.86 | 0.71 | 0.75 | 0.95 | 0 | 0 | 0.95 | 0.87 | 0.38 | 0.77 | 0.31 | 0 | 0.88 | 0.87 | 0.93 |  |  |  |
|  | Approach \% |  |  |  |  |  | 47\% |  |  |  |  |  | 6\% |  |  |  |  |  | 42\% |  |  |  |  |  | 5\% |  |  |  |  |


|  |  | Southbound |  |  |  |  |  |  | Westbound |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 6:00 AM - 9:00 AM | Cars | 7 | 356 | 10 | 0 | 373 | 453 | 14 | 33 | 97 | 0 | 144 | 70 | 46 | 437 | 1 | 0 | 484 | 456 | 3 | 14 | 2 | 0 | 19 | 41 | 1020 | E | 4 | 4 |
| One Hour Peak | \% | 100\% | 87\% | 100\% | 0\% | 88\% | 83\% | 100\% | 94\% | 94\% | 0\% | 95\% | 91\% | 94\% | 83\% | 100\% | 0\% | 84\% | 89\% | 100\% | 78\% | 100\% | 0\% | 83\% | 95\% | 87\% |  | 100\% |  |
| 7:15 AM - 8:15 AM | Light Goods Vehicles | 0 | 23 | 0 | 0 | 23 | 53 | 0 | 2 | 4 | 0 | 6 | 7 | 3 | 53 | 0 | 0 | 56 | 27 | 0 | 4 | 0 | 0 | 4 | 2 | 89 | s | 1 | 1 |
|  | \% | 0\% | 6\% | 0\% | 0\% | 5\% | 10\% | 0\% | 6\% | 4\% | 0\% | 4\% | 9\% | 6\% | 10\% | 0\% | 0\% | 10\% | 5\% | 0\% | 22\% | 0\% | 0\% | 17\% | 5\% | 8\% |  | 100\% |  |
|  | Buses | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | w | 0 | 0 |
|  | \% | 0\% | 1\% | \%\% | 0\% | 1\% | 1\% | 0\% | 0\% | 2\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  | 0\% |  |
|  | Single-Unit Trucks | 0 | 9 | 0 | 0 | 9 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 | 29 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 38 |  | 6 | 6 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 5\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 5\% | \%\% | 0\% | 5\% | 2\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 3\% |  |  |  |
|  | Articulated Trucks | 0 | 15 | 0 | 0 | 15 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 5 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |  |  |  |
|  | \% | 0\% | 4\% | 0\% | 0\% | 4\% | 1\% | \% | 0\% | \% | 0\% | \% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | 0\% | \% | 0\% | \% | \%\% | 2\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \%\% |  |  |  |
|  | Total | 7 | 407 | 10 | 0 | 424 | 545 | 14 | 35 | 103 | 0 | 152 | 77 | 49 | 529 | 1 | 0 | 579 | 513 | 3 | 18 | 2 | 0 | 23 | 43 | 1178 |  |  |  |
|  | PHF | 0.35 | 0.86 | 0.62 | 0 | 0.86 | 0.86 | 0.44 | 0.62 | 0.76 | 0 | 0.75 | 0.62 | 0.68 | 0.86 | 0.25 | 0 | 0.84 | 0.84 | 0.38 | 0.41 | 0.5 | 0 | 0.48 | 0.67 | 0.82 |  |  |  |
|  | Approach \% |  |  |  |  | 36\% | 46\% |  |  |  |  | 13\% | 7\% |  |  |  |  | 49\% | 44\% |  |  |  |  | 2\% | 4\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 6 | 6 |
| Specified Period | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 3:00 PM-6:00 PM | Cars | 6 | 330 | 16 | 1 | 353 | 414 | 14 | 8 | 31 | 0 | 53 | 58 | 37 | 397 | 3 | 0 | 437 | 363 | 2 | 5 | 2 | 0 | 9 | 17 | 852 | E | 5 | 5 |
| One Hour Peak | \% | 86\% | 79\% | 94\% | 100\% | 80\% | 89\% | 88\% | 89\% | 91\% | 0\% | 90\% | 84\% | 80\% | 89\% | 100\% | 0\% | 88\% | 80\% | 67\% | 83\% | 67\% | 0\% | 75\% | 89\% | 85\% |  | 100\% |  |
| 3:00 PM - 4:00 PM | Light Goods Vehicles | 1 | 61 | 1 | 0 | 63 | 36 | 1 | 1 | 0 | 0 | 2 | 9 | 7 | 34 | 0 | 0 | 41 | 61 | 0 | 1 | 1 | 0 | 2 | 2 | 108 | s | 1 | 1 |
|  | \% | 14\% | 15\% | 6\% | 0\% | 14\% | 8\% | 6\% | 11\% | 0\% | 0\% | 3\% | 13\% | 15\% | 8\% | 0\% | 0\% | 8\% | 13\% | 0\% | 17\% | 33\% | 0\% | 17\% | 11\% | 11\% |  | 100\% |  |
|  | Buses | 0 | 6 | 0 | 0 | 6 | 7 | 0 | 0 | 2 | 0 | 2 | 2 | 2 | 7 | 0 | 0 | 9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | w | 3 | 3 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 2\% | \% | 0\% | 6\% | \% | 3\% | 3\% | 4\% | 2\% | \% | 0\% | 2\% | 2\% | \% | \% | \% | 0\% | 0\% | 0\% | 2\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 15 | 0 | 0 | 15 | 4 | 0 | 0 | $1$ | 0 | $1$ | $0$ | 0 | 4 | 0 | 0 | 4 | 17 | 1 | 0 | 0 | 0 | 1 | 0 | 21 |  | 15 | 15 |
|  | \% | 0\% | 4\% | 0\% | 0\% | 3\% | 1\% | 0\% | 0\% | 3\% | 0\% | 2\% | 0\% | 0\% | 1\% | \% | 0\% | 1\% | 4\% | 33\% | 0\% | 0\% | 0\% | 8\% | 0\% | 2\% |  |  |  |
|  | Articulated Trucks | 0 | 6 | 0 | 0 | 6 | 4 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |  |  |  |
|  | \% | 0\% | 1\% | \% | 0\% | 1\% | 1\% | 6\% | 0\% | \% | 0\% | 2\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | \% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | \% |  |  |  |
|  | Total | 7 | 418 | 17 | 1 | 443 | 465 | 16 | 9 | 34 | 0 | 59 | 69 | 46 | 445 | 3 | 0 | 494 | 455 | 3 | 6 | 3 | 0 | 12 | 19 | 1008 |  |  |  |
|  | PHF | 0.58 | 0.88 | 0.61 | 0.25 | 0.88 | 0.91 | 0.67 | 0.75 | 0.71 | 0 | 0.74 | 0.64 | 0.64 | 0.93 | 0.38 | 0 | 0.91 | 0.86 | 0.38 | 0.5 | 0.38 | 0 | 0.6 | 0.79 | 0.94 |  |  |  |
|  | Approach \% |  |  |  |  | 44\% | 46\% |  |  |  |  |  | 7\% |  |  |  |  | 49\% | 45\% |  |  |  |  | 1\% | 2\% |  |  |  |  |

Report Summary


Report Summary

|  |  | Southbound |  |  |  |  |  | Westbound |  |  |  |  |  |  | Northbound |  |  |  | Eastbound |  |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | R | T | L | U | 1 | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | 16 | 16 |
| Specified Period | \% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 8:00 AM - 12:00 PM | Cars | 28 | 305 | 66 | 4 | 403 | 365 | 0 | 0 | 0 | 0 | 0 | 80 | 14 | 357 | 7 | 1 | 379 | 309 | 3 | 0 | 4 | 0 | 7 | 35 | 789 | E | 91 | 91 |
| One Hour Peak | \% | 97\% | 95\% | 100\% | 100\% | 96\% | 94\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 94\% | 100\% | 100\% | 94\% | 95\% | 100\% | 0\% | 100\% | 0\% | 100\% | 97\% | 95\% |  | 100\% |  |
| 9:15 AM-10:15 AM. | Light Goods Vehicles | 1 | 10 | 0 | 0 | 11 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 20 | 10 | 0 | 0 | 0 | 0 | 0 | 1 | 31 | s | 54 | 54 |
|  | \% | 3\% | 3\% | 0\% | 0\% | 3\% | 5\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 5\% | 0\% | 0\% | 5\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 3\% | 4\% |  | 100\% |  |
|  | Buses | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | w | 6 | 6 |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 4 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |  | 167 | 167 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 1\% | \%\% | 0\% | \% | 1\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | \%\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 29 | 320 | 66 | 4 | 419 | 388 | 0 | 0 | 0 | 0 | 0 | 80 | 14 | 380 | 7 | 1 | 402 | 324 | 3 | 0 | 4 | 0 | 7 | 36 | 828 |  |  |  |
|  | PHF | 0.66 | 0.89 | 0.49 | 0.5 | 0.88 | 0.77 | 0 | 0 | 0 | 0 | 0 | 0.47 | 0.39 | 0.77 | 0.58 | 0.25 | 0.8 | 0.89 | 0.38 | 0 | 0.33 | 0 | 0.44 | 0.64 | 0.93 |  |  |  |
|  | Approach\% |  |  |  |  | 51\% | 47\% |  |  |  |  | 0\% | 10\% |  |  |  |  | 49\% | 39\% |  |  |  |  | 1\% | 4\% |  |  |  |  |

Report Summary


Report Summary

|  |  | Southbound |  |  |  |  | Westbound |  |  |  | Northbound |  |  |  |  | Eastbound |  |  |  |  |  |  |  | Crosswalk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Period | Class. | R | T | L | U | 1 | 0 | 1 | 0 | R | T | L | U | I | 0 | R | T | L | U | I | 0 | Total |  | Pedestrians | Total |
| Peak 1 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | N | 1 | 1 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% |  | 100\% |  |
| 6:00 AM - 9:00 AM | Cars | 17 | 345 | 9 | 0 | 371 | 407 | 0 | 219 | 40 | 402 | 4 | 0 | 446 | 349 | 4 | 170 | 5 | 0 | 179 | 21 | 996 | E | 7 | 7 |
| One Hour Peak | \% | 89\% | 85\% | 100\% | 0\% | 86\% | $81 \%$ | 0\% | 91\% | 85\% | 81\% | 80\% | 0\% | 82\% | 86\% | 100\% | 92\% | 63\% | 0\% | 91\% | 88\% | 85\% |  | 100\% |  |
| 7:30 AM - 8:30 AM | Light Goods Vehicles | 2 | 26 | 0 | 0 | 28 | 60 | 0 | 14 | 3 | 58 | 0 | 0 | 61 | 26 | 0 | 11 | 2 | 0 | 13 | 2 | 102 | s | 1 | 1 |
|  | \% | 11\% | 6\% | 0\% | 0\% | 6\% | 12\% | 0\% | 6\% | 6\% | 12\% | 0\% | 0\% | 11\% | 6\% | 0\% | 6\% | 25\% | 0\% | 7\% | 8\% | 9\% |  | 100\% |  |
|  | Buses | 0 | 6 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | w | 1 | 1 |
|  | \% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 14 | 0 | 0 | 14 | 28 | 0 | 5 | 4 | 27 | 1 | 0 | 32 | 14 | 0 | 1 | 1 | 0 | 2 | 1 | 48 |  | 10 | 10 |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 6\% | 0\% | 2\% | 9\% | 5\% | 20\% | 0\% | 6\% | 3\% | 0\% | 1\% | 13\% | 0\% | 1\% | 4\% | 4\% |  |  |  |
|  | Articulated Trucks | 0 | 13 | 0 | 0 | 13 | 4 | 0 | 1 | 0 | 4 | 0 | 0 | 4 | 13 | 0 | 1 | 0 | 0 | 1 | 0 | 18 |  |  |  |
|  | \% | 0\% | 3\% | 0\% | 0\% | 3\% | 1\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 3\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 2\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 1\% | 0\% | 0\% |  |  |  |
|  | Total | 19 | 404 | 9 | 0 | 432 | 503 | 0 | 241 | 47 | 495 | 5 | 0 | 547 | 408 | 4 | 185 | 8 | 0 | 197 | 24 | 1176 |  |  |  |
|  | PHF | 0.59 | 0.93 | 0.45 | 0 | 0.91 | 0.91 | 0 | 0.84 | 0.65 | 0.9 | 0.42 | 0 | 0.88 | 0.92 | 0.5 | 0.94 | 0.67 | 0 | 0.93 | 0.75 | 0.9 |  |  |  |
|  | Approach\% |  |  |  |  | 37\% | 43\% | 0\% | 20\% |  |  |  |  | 47\% | 35\% |  |  |  |  | 17\% | 2\% |  |  |  |  |
| Peak 2 | Motorcycles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $N$ | 2 | 2 |
| Specified Period | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  | 100\% |  |
| 3:00 PM - 6:00 PM | Cars | 33 | 379 | 14 | 0 | 426 | 378 | 0 | 232 | 39 | 373 | 6 | 0 | 418 | 383 | 4 | 179 | 5 | 0 | 188 | 39 | 1032 | E | 2 | 2 |
| One Hour Peak | \% | 92\% | 87\% | 100\% | 0\% | 88\% | 94\% | 0\% | 91\% | 87\% | 94\% | 100\% | 0\% | 94\% | 87\% | 80\% | 92\% | 100\% | 0\% | 92\% | 93\% | 91\% |  | 100\% |  |
| 4:45 PM - 5:45 PM | Light Goods Vehicles | 3 | 38 | 0 | 0 | 41 | 19 | 0 | 16 | 5 | 19 | 0 | 0 | 24 | 39 | 1 | 11 | 0 | 0 | 12 | 3 | 77 | s | 4 | 4 |
|  | \% | $8 \%$ | 9\% | 0\% | 0\% | 8\% | 5\% | 0\% | 6\% | 11\% | 5\% | 0\% | 0\% | 5\% | 9\% | 20\% | 6\% | 0\% | 0\% | 6\% | 7\% | 7\% |  | 100\% |  |
|  | Buses | 0 | 7 | 0 | 0 | 7 | 2 | 0 | 1 | 1 | 2 | 0 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | w | 3 | 3 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 2\% | 1\% | 0\% | 0\% | 1\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% |  | 100\% |  |
|  | Single-Unit Trucks | 0 | 8 | 0 | 0 | 8 | 1 | 0 | 4 | 0 | 1 | 0 | 0 | 1 | 8 | 0 | 4 | 0 | 0 | 4 | 0 | 13 |  | 11 | 11 |
|  | \% | 0\% | 2\% | 0\% | 0\% | 2\% | 0\% | 0\% | 2\% | 0\% | 0\% | 0\% | 0\% | 0\% | 2\% | 0\% | 2\% | 0\% | 0\% | 2\% | 0\% | 1\% |  |  |  |
|  | Articulated Trucks | 0 | 2 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Bicycles on Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |  |  |  |
|  | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |  |  |
|  | Total | 36 | 434 | 14 | 0 | 484 | 401 | 0 | 254 | 45 | 396 | 6 | 0 | 447 | 439 | 5 | 195 | 5 | 0 | 205 | 42 | 1136 |  |  |  |
|  | PHF | 0.75 | 0.94 | 0.58 | 0 | 0.93 | 0.93 | 0 | 0.93 | 0.75 | 0.92 | 0.5 | 0 | 0.9 | 0.94 | 0.42 | 0.9 | 0.42 | 0 | 0.88 | 0.7 | 0.96 |  |  |  |
|  | Approach\% |  |  |  |  | 43\% | 35\% | 0\% | 22\% |  |  |  |  | 39\% | 39\% |  |  |  |  | 18\% | 4\% |  |  |  |  |

Part 2: Automatic Traffic Recorder (ATR) Data

> MassDOT Highway Division WEEKLY SUMMARY FOR LANE
> Starting: $3 / 27 / 2018$

Site Reference: 180060000594
Site ID: 000000000101
Location: RTE. 138 NO. OE PARK AND RIDE LOT Direction: NORTH


Page: 1
$\square$


42
AND 27291
FAC .97(.95)
AD 25,100

MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 1
Page: 1
Starting: 3/27/2018

Site Reference: 180060000153
Site ID: 000000000102
Location: RTE. 138 NO. OF PARK AND RIDE LOT Direction: SOUTH



File: SPD6687_SB.prn
City: CANTON
County: SPEED SB


MassDOT Highway Division WEEKLY SUMMARY FOR LANE

Starting: 3/27/2018

Site Reference: 180060000766
Site ID: 000000000201
Location: RTE. 138 SO. OF BRUSH HILL RD. Direction: ROAD TOTAL

$$
\text { STA. } 2
$$

TOTAL
$\begin{array}{ll}\text { STA, } 2 & \begin{array}{l}\text { File: V2.prn } \\ \text { City: MILTON } \\ \text { County: vOLUME NB\&SB }\end{array}\end{array}$
$\begin{array}{ll}\text { STA, } 2 & \begin{array}{l}\text { File: V2.prn } \\ \text { City: MILTON } \\ \text { County: vOLUME NB\&SB }\end{array}\end{array}$
$\begin{array}{ll}\text { STA, } 2 & \begin{array}{l}\text { File: V2.prn } \\ \text { City: MILTON } \\ \text { County: vOLUME NB\&SB }\end{array}\end{array}$


$$
\begin{aligned}
& \text { UL } \\
& \text { AND } 37037 \\
& \text { FAC } .97(.95) \\
& \text { ADC } 34,100
\end{aligned}
$$

Mass DOT Highway Division WEEKLY SUMMARY FOR LANE 1

Page: 1
Starting: 3/27/2018


Site Reference: 180060000766
Site ID: 000000000201
Location: RTE. 138 SO. OF BRUSH HILL RD. Direction: NORTH


Site Reference: 180060000766
Site ID: 000000000201
Location: RTE. 138 SO. OF BRUSH HILI RD. Direction: SOUTH

$$
S T A \cdot 2 S B
$$

> File: V2.prn City: MILTON County: VOLUME NB\&SB

| TIME | $\begin{array}{r} \text { MON } \\ 2 \end{array}$ | $\begin{array}{r} \text { TUE } \\ 27 \end{array}$ | $\begin{aligned} & \text { NED } \\ & 28 \end{aligned}$ | $\begin{array}{r} \text { THO } \\ 29 \end{array}$ | $\begin{array}{r} \text { FRI } \\ 30 \end{array}$ | $\begin{gathered} \text { WKDAY } \\ \text { AVG } \end{gathered}$ | $\begin{array}{r} \text { SAT } \\ 31 \end{array}$ | $\begin{array}{r} \text { sun } \\ 1 \end{array}$ | WEEK <br> AVG | TOMAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01:00 | 199 |  | 159 | 206 | 240 | 201 | 311 | 335 | 241 | 1450 |
| 02:00 | 94 |  | 85 | - 99 | 116 | 98 | 209 | 216 | 136 | 819 |
| 03:00 | 73 |  | 61 | 62 | 101 | 74 | 123 | 171 | 98 | 591 |
| 04:00 | 78 |  | 69 | 67 | 73 | 71 | 111 | 109 | 84 | 507 |
| 05:00 | 124. |  | 136 | 156 | 145 | 140 | 107 | 71 | 123 | 739 |
| 06:00 | 43 B |  | 405 | 402 | 361 | 401 | 202 | 8日 | 316 | 1896 |
| 07:00 | 714 |  | 809 | 785 | 667 | 743 | 401 | 182 | 593 | 3558 |
| 08:00 | 1194 |  | 1266 | 1240 | 1051 | 1187 | 637 | 317 | 950 | 5705 |
| 09:00 | 1569 |  | 1487 | 1369 | 1157 | 1395 | 848 | 449 | 1146 | 6879 |
| 10:00 | 1123 |  | 964 | 1021 | 1070 | 1044 | 1087 | 698 | 993 | 5963 |
| 11:00 | 1114 |  | 989 | 995 | 1138 | 1059 | 1138 | 932 | 1051 | 6306 |
| 12:00 | 963 | 946 | 1002 | 1049 | 1130 | 1018 | 1293 | 1009 | 1056 | 7392 |
| 13:00 | 1015 | 949 | 1115 | 1254 | 1403 | 1147 | 1515 | 1253 | 1214 | 8504 |
| 14:00 | 1085 | 1143 | 1175 | 1189 | 1608 | 1240 | 1556 | 1413 | 1309 | 9169 |
| 15:00 | 1362 | 1410 | 1448 | 1395 | 1637 | 1450 | 1600 | 1369 | 1460 | 10221 |
| 16:00 | 1762 | 1836 | 1607 | 1681 | 1745 | 1726 | 1509 | 1334 | 1639 | 11474 |
| 17:00 | 1521 | 1822 | 1631 | 1742 | 1706 | 1684 | 1310 | 1159 | 1555 | 10891 |
| 18:00 | 1404 | 1888 | 1661 | 1764 | 1760 | 1695 | 1116 | 1143 | 1533 | 10736 |
| 19:00 | 1160 | 1550 | 1737 | 1664 | 1389 | 1500 | 1140 | 1155 | 1399 | 9795 |
| 20:00 | 961 | 1076 | 1199 | 1331 | 1115 | 1136 | 1050 | 1254 | 1140 | 7986 |
| 21:00 | 766 | 868 | 924 | 915 | 873 | 869 | 874 | 1022 | 891 | 6242 |
| 22:00 | 615 | 708 | 744 | 727 | 822 | 723 | 737 | 727 | 725 | 5080 |
| 23:00 | 465 | 481 | 486 | 520 | 677 | 525 | 671 | 499 | 542 | 3799 |
| 24:00 | 336 | 321 | 337 | 428 | 485 | 381 | 532 | 349 | 398 | 2788 |
| totals | 20135 | 14998 | 21496 | 22061 | 22469 | 21507 | 20077 | 17254 | 20592 | 138490 |
| \% AVG WKDY | 93.6 | 69.7 | 99.9 | 102.5 | 104.4 |  | 93.3 | 80.2 |  |  |
| \% AVG WEEK | 97.7 | 72.8 | 104.3 | 107.1 | 109.1 |  | 97.4 | 83.7 |  |  |
| AM Times | 09:00 | 12:00 | 09:00 | 09:00 | 09:00 | 09:00 | 12:00 | 12:00 | 09:00 | . |
| AM Peaks | 1569 | 946 | 1487 | 1369 | 1157 | 1395 | 1293 | 1009 | 1146 |  |
| PM Times | 16:00 | 18:00 | 19:00 | 18:00 | 18:00 | 16:00 | 15:00 | 14:00 | 16:00 |  |
| PM Peaks | 1762 | 1888 | 1737 | 1764 | 1760 | 1726 | 1600 | 1413 | 1639 |  |

Starting: 3/27/2018

$$
\begin{array}{ll}
5 T A, 3 & \\
\text { TOTALE: v3.prn } \\
\text { City: MILTON } \\
\text { County: VOLUME EBaWB }
\end{array}
$$

Site Reference: 180060000534 Site ID: 000000000303
Location: BRUSH HILL RD. WEST OF RTE. 138 Direction: ROAD TOTAL


$$
\begin{aligned}
& 46 \\
& \text { AND } 6224 \\
& \text { FAC .97(.93) } \\
& \text { ADC } 5,600
\end{aligned}
$$

Page: 1
Starting: 3/27/2018

$$
S T A \cdot 3 E B
$$

Site Reference: 180060000534
Site ID: 000000000303
Location: BRUSH HILL RD. WEST OF RTE. 138 Direction: EAST

| TIME | $\begin{array}{r} \text { MON } \\ 2 \end{array}$ | $\begin{array}{r} \text { TUE } \\ 27 \end{array}$ | $\begin{array}{r} \text { WED } \\ 28 \end{array}$ | $\begin{array}{r} \text { THO } \\ 29 \end{array}$ | $\begin{array}{r} \text { FRI } \\ 30 \end{array}$ | WKDAY AVG | $\operatorname{SAT}_{31}$ | SUN $1$ | WEEK AVG | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01:00 | 14 |  | 10 | 11 | 12 | 11 | 19 | 25 | 15 | 91 |
| 02:00 | 6 |  | 9 | 7 | 7 | 7 | 12 | 20 | 10 | 61 |
| 03:00 | 6 |  | 3 | 4 | 6 | 4 | 8 | 13 | 6 | 40 |
| 04:00 | 1 |  | 10 | 4 | 3 | 4 | 10 | 4 | 5 | 32 |
| 05:00 | 日 |  | 10 | 8 | 6 | 8 | 9 | 10 | 8 | 51 |
| 06:00 | 36 |  | 38 | 32 | 29 | 33 | 11 | 14 | 26 | 160 |
| 07:00 | 84 |  | 80 | 85 | 62 | 77 | 28 | 14 | 58 | 353 |
| 08:00 | 100 |  | 109 | 112 | 72 | 98 | 37 | 32 | 77 | 462 |
| 09:00 | 104 |  | 108 | 100 | 68 | 95 | 57 | 39 | 79 | 476 |
| 10:00 | 79 |  | 89 | 103 | 90 | 90 | 52 | 64 | 79 | 477 |
| 11:00 | 75 |  | 93 | 91 | 102 | 90 | 96 | 77 | 89 | 534 |
| 12:00 | 65 | 84 | 60 | 88 | 95 | 78 | 106 | 80 | 82 | 578 |
| 13:00 | 72 | 101 | 88 | 94 | 118 | 94 | 113 | 129 | 102 | 715 |
| 14:00 | 78 | 78 | 83 | 111 | 95 | 89 | 115 | 134 | 99 | 694 |
| 15:00 | 83 | 95 | 109 | 85 | 103 | 95 | 101 | 107 | 97 | 683 |
| 16:00 | 94 | 102 | 96 | 95 | 78 | 93 | 123 | 93 | 97 | 681 |
| 17:00 | 82 | 85 | 90 | 65 | 87 | 81 | 103 | 92 | 86 | 604 |
| 18:00 | 76 | 75 | 69 | 82 | 65 | 73 | 98 | 104 | 81 | 569 |
| 19:00 | 49 | 87 | 69 | 74 | 70 | 69 | 89 | 96 | 76 | 534 |
| 20:00 | 55 | 52 | 70 | 47 | 58 | 56 | 69 | 129 | 68 | 480 |
| 21:00 | 40 | 48 | 56 | 57 | 65 | 53 | 63 | 93 | 60 | 422 |
| 22:00 | 33 | 44 | 54 | 46 | 51 | 45 | 65 | 54 | 49 | 347 |
| 23:00 | 22 | 29 | 39 | 30 | 44 | 32 | 51 | 37 | 36 | 252 |
| 24:00 | 18 | 29 | 24 | 27 | 36 | 26 | 37 | 32 | 29 | 203 |
| totals | 1280 | 909 | 1466 | 1458 | 1422 | 1401 | 1472 | 1492 | 1414 | 9499 |
| 8 AVG WKDY | 91.3 | 64.8 | 104.6 | 104 | 101.4 |  | 105 | 106.4 |  |  |
| \% AVG WEEK | 90.5 | 64.2 | 103.6 | 103.1 | 100.5 |  | 104.1 | 105.5 |  |  |
| AM Times | 09:00 | 12:00 | 08:00 | 08:00 | 11:00 | 08:00 | 12:00 | 12:00 | 11:00 |  |
| AM Peaks | 104 | 84 | 109 | 112 | 102 | 98 | 106 | 80 | 89 |  |
| PM Times | 16:00 | 16:00 | 15:00 | 14:00 | 13:00 | 15:00 | 16:00 | 14:00 | 13:00 |  |
| PM Peaks | 94 | 102 | 109 | 111 | 118 | 95 | 123 | 134 | 102 |  |

$$
S T A \cdot 3 W B
$$

Site Reference: 180060000534 Site ID: 000000000303
Location: BRUSH HILL RD. WEST OF RTE. 138 Direction: WEST

| TIME | $\begin{array}{r} \text { MON } \\ 2 \end{array}$ | $\begin{array}{r} \text { TUE } \\ 27 \end{array}$ | $\begin{array}{r} \text { WED } \\ 28 \end{array}$ | $\begin{array}{r} \mathrm{THU} \\ 29 \end{array}$ | $\begin{array}{r} \text { FRI } \\ 30 \end{array}$ | WKDAY | $\begin{array}{r} \text { SAT } \\ 31 \end{array}$ | SUN | WEEK AVG | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01:00 | 28 |  | 34 | 26 | 37 | 31 | 54 | 70 | 41 | 249 |
| 02:00 | 10 |  | 17 | 18 | 23 | 17 | 36 | 34 | 23 | 138 |
| 03:00 | 16 |  | 9 | 日 | 13 | 11 | 22 | 27 | 15 | 95 |
| 04:00 | 8 |  | 15 | 10 | 11 | 11 | 22 | 17 | 13 | 83 |
| 05:00 | 19 |  | 19 | 25 | 17 | 20 | 23 | 10 | 18 | 113 |
| 06:00 | 77 |  | 77 | 70 | 76 | 75 | 31 | 13 | 57 | 344 |
| 07:00 | 148 |  | 156 | 148 | 141 | 148 | 75 | 36 | 117 | 704 |
| 08:00 | 252 |  | 279 | 300 | 249 | 270 | 144 | 68 | 215 | 1292 |
| 09:00 | 273 |  | 303 | 306 | 282 | 291 | 225 | 134 | 253 | 1523 |
| 10:00 | 203 |  | 271 | 244 | 249 | 241 | 267 | 217 | 241 | 1451 |
| 11:00 | 226 |  | 205 | 253 | 263 | 236 | 284 | 269 | 250 | 1500 |
| 12:00 | 204 | 242 | 244 | 255 | 266 | 242 | 346 | 291 | 264 | 1848 |
| 13:00 | 233 | 244 | 258 | 266 | 308 | 261 | 353 | 337 | 285 | 1999 |
| 14:00 | 234 | 261 | 295 | 295 | 311 | 279 | 380 | 338 | 302 | 2114 |
| 15:00 | 295 | 320 | 331 | 330 | 414 | 338 | 322 | 333 | 335 | 2345 |
| 16:00 | 387 | 381 | 398 | 378 | 540 | 416 | 346 | 301 | 390 | 2731 |
| 17:00 | 331 | 380 | 424 | 449 | 533 | 423 | 303 | 281 | 385 | 2701 |
| 18:00 | 344 | 377 | 527 | 379 | 484 | 422 | 261 | 282 | 379 | 2654 |
| 19:00 | 260 | 336 | 408 | 389 | 316 | 341 | 266 | 252 | 318 | 2227 |
| 20:00 | 236 | 242 | 257 | 254 | 262 | 250 | 257 | 252 | 251 | 1760 |
| 21:00 | 140 | 169 | 185 | 180 | 192 | 173 | 194 | 202 | 180 | 1262 |
| 22:00 | 120 | 144 | 134 | 150 | 164 | 142 | 180 | 153 | 149 | 1045 |
| 23:00 | 79 | 99 | 114 | 107 | 136 | 107 | 136 | 93 | 109 | 764 |
| 24:00 | 51 | 57 | 60 | 87 | 90 | 69 | 101 | 57 | 71 | 503 |


| totals | 4174 | 3252 | 5020 | 4927 | 5377 | 4814 | 4628 | 4067 | 4661 | 31445 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% AVG WKDY | 86.7 | 67.5 | 104.2 | 102.3 | 111.6 |  | 96.1 | 84.4 |  |  |
| \% AVG WEEK | 89.5 | 69.7 | 107.7 | 105.7 | 115.3 |  | 99.2 | 87.2 |  |  |
| AM Times | 09:00 | 12:00 | 09:00 | 09:00 | 09:00 | 09:00 | 12:00 | 12:00 | 12:00 |  |
| AM Peaks | 273 | 242 | 303 | 306 | 282 | 291 | 346 | 291 | 264 |  |
| PM Times PM Peaks | $16: 00$ 387 | $16: 00$ 381 | $18: 00$ 527 | $17: 00$ 449 | $16: 00$ 540 | 17:00 $\begin{array}{r}423\end{array}$ | $14: 00$ 380 | $14: 00$ 338 | $16: 00$ 390 |  |



Site Reference: 180060000535
Site ID: 000000000501
Location: RTE. 138 NO. OF BRUSH HILL RD. Direction: NORTH


42
AND 22817
FAC .97(.95)
ADT 21,000

```
MassDOT Highway Division
WEEKLY SUMMARY FOR LANNE 1
    Starting: 3/27/201日
    STA.SSB
```

Site Reference: 180060000461
Site ID: 000000000502
Location: RTE. 138 NO. OF BRUSH HILL RD.
Direction: SOUTH

| TIME | $\begin{array}{r} \text { MON } \\ 2 \end{array}$ | $\begin{array}{r} \text { TUE } \\ 27 \end{array}$ | $\begin{array}{r} \text { WED } \\ 28 \end{array}$ | $\begin{array}{r} \mathrm{THU} \\ \hline 29 \end{array}$ | $\begin{array}{r} \text { FRI } \\ 30 \end{array}$ | WKDAY AVG | $\begin{array}{r} \text { SAT } \\ 31 \end{array}$ | SUN $1$ | WEEK <br> AVG | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01:00 | 130 |  | 117 | 145 | 160 | 138 | 213 | 211 | 162 | 976 |
| 02:00 | 64 |  | 64 | 62 | 83 | 68 | 151 | 144 | 94 | 568 |
| 03:00 | 46 |  | 43 | 50 | 73 | 53 | 84 | 116 | 68 | 412 |
| 04:00 | 52 |  | 54 | 42 | 54 | 50 | - 76 | 86 | 60 | 364 |
| 05:00 | 75 |  | 96 | 109 | 114 | 98 | 76 | 45 | 85 | 515 |
| 06:00 | 226 |  | 243 | 218 | 219 | 226 | 130 | 66 | 183 | 1102 |
| 07:00 | 346 |  | 382 | 404 | 377 | 377 | 235 | 121 | 310 | 1865 |
| 08:00 | 542 |  | 542 | 515 | 515 | 528 | 356 | 209 | 446 | 2679 |
| 09:00 | 495 |  | 585 | 565 | 540 | 546 | 445 | 249 | 479 | 2879 |
| 10:00 | 432 |  | 458 | 515 | 516 | 480 | 590 | 390 | 483 | 2901 |
| 11:00 | 426 |  | 508 | 470 | 597 | 500 | 587 | 500 | 514 | 3088 |
| 12:00 | 436 | 454 | 536 | 568 | 604 | 519 | 591 | 560 | 535 | 3749 |
| 13:00 | 492 | 482 | 609 | 613 | 707 | 580 | 704 | 681 | 612 | 4288 |
| 14:00 | 564 | 549 | 591 | 604 | 705 | 602 | 628 | 732 | 624 | 4373 |
| 15:00 | 672 | 681 | 647 | 707 | 613 | 664 | 682 | 715 | 673 | 4717 |
| 16:00 | 676 | 687 | 665 | 670 | 609 | 661 | 707 | 742 | 679 | 4756 |
| 17:00 | 656 | 637 | 632 | 624 | 610 | 631 | 717 | 665 | 648 | 4541 |
| 18:00 | 709 | 627 | 615 | 642 | 620 | 642 | 628 | 642 | 640 | 4483 |
| 19:00 | 581 | 681 | 667 | 607 | 689 | 645 | 663 | 654 | 648 | 4542 |
| 20:00 | 455 | 550 | 650 | 664 | 631 | 590 | 596 | 650 | 599 | 4196 |
| 21:00 | 406 | 488 | 575 | 550 | 510 | 505 | 507 | 574 | 515 | 3610 |
| 22:00 | 349 | 415 | 476 | 464 | 507 | 442 | 393 | 429 | 433 | 3033 |
| 23:00 | 252 | 300 | 299 | 342 | 453 | 329 | 373 | 312 | 333 | 2331 |
| 24:00 | 205 | 217 | 223 | 282 | 330 | 251 | 336 | 211 | 257 | 1804 |
| TOTALS | 9287 | 6768 | 10277 | 10432 | 10836 | 10125 | 10468 | 9704 | 10080 | 67772 |
| \% AVG WKDY | 91.7 | 66.8 | 101.5 | 103 | 107 |  | 103.3 | 95.8 |  |  |
| \% AVG WEEK | 92.1 | 67.1 | 101.9 | 103.4 | 107.5 |  | 103.8 | 96.2 |  |  |
| AM Times | 08:00 | 12:00 | 09:00 | 12:00 | 12:00 | 09:00 | 12:00 | 12:00 | 12:00 |  |
| AM Peaks | 542 | 454 | 585 | 568 | 604 | 546 | 591 | 560 | 535 |  |
| PM Times | 18:00 | 16:00 | 19:00 | 15:00 | 13:00 | 15:00 | 17:00 | 16:00 | 16:00 |  |
| EM Peaks | 709 | 687 | 667 | 707 | 707 | 664 | 717 | 742 | 679 |  |

$$
\text { STA. } 6
$$

ToTAL File: V6.pen
Site Reference: 180060000494
Site ID: 000000000603
Location: NEPONSET VALLEY PKWY WEST OF RTE. 138
City: MILTON County: vOLUME EBEWB
Direction: ROAD TOTAL


MassDOT Highway Division WEEKLY SUMMARY FOR LANE 1

Page: 1
Starting: 3/27/2018

$$
\text { STA. } 6 \text { ES }
$$

Site Reference: 180060000494 Site ID: 000000000603
Location: NEPONSET VALLEY PKWY WEST OE RTE. 138 Direction: EAST


```
MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 2
\[
S T A \cdot 6 W B
\]

Site Reference: 180060000494
Site ID: 000000000603
Location: NEPONSET VALLEY PKWY WEST OF RTE. 138 Direction: WEST

File: V6.prn
City: MILTON
County: vOLUME EBaWB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{aligned}
& \text { WED } \\
& 28
\end{aligned}
\] & \[
\begin{array}{r}
\text { THU } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { ERI } \\
30
\end{array}
\] & WKDAY AVG & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { sun } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline 01:00 & 36 & & 40 & 41 & 48 & 41 & 65 & 53 & 47 & 283 \\
\hline 02:00 & 27 & & 21 & 16 & 29 & 23 & 37 & 36 & 27 & 166 \\
\hline 03:00 & 18 & & 24 & 14 & 21 & 19 & 27 & 32 & 22 & 136 \\
\hline 04:00 & 20 & & 18 & 22 & 18 & 19 & 19 & 20 & 19 & 117 \\
\hline 05:00 & 33 & & 40 & 46 & 47 & 41 & 25 & 11 & 33 & 202 \\
\hline 06:00 & 98 & & 94 & 97 & 84 & 93 & 59 & 21 & 75 & 453 \\
\hline 07:00 & 115 & & 133 & 139 & 129 & 129 & 92 & 39 & 107 & 647 \\
\hline 08:00 & 174 & & 157 & 180 & 173 & 171 & 118 & 63 & 144 & B65 \\
\hline 09:00 & 154 & & 175 & 148 & 155 & 158 & 131 & 67 & 138 & 830 \\
\hline 10:00 & 163 & & 153 & 156 & 156 & 157 & 185 & 101 & 152 & 914 \\
\hline 11:00 & 177 & & 176 & 175 & 222 & 187 & 199 & 168 & 186 & 1117 \\
\hline 12:00 & 136 & 168 & 183 & 186 & 207 & 176 & 214 & 168 & 180 & 1262 \\
\hline 13:00 & 196 & 175 & 179 & 206 & 222 & 195 & 194 & 219 & 198 & 1391 \\
\hline 14:00 & 203 & 213 & 206 & 213 & 249 & 216 & 203 & 235 & 217 & 1522 \\
\hline 15:00 & 202 & 220 & 238 & 237 & 255 & 230 & 232 & 214 & 228 & 1598 \\
\hline 16:00 & 237 & 265 & 267 & 247 & 290 & 261 & 211 & 218 & 247 & 1735 \\
\hline 17:00 & 250 & 281 & 296 & 308 & 295 & 286 & 233 & 178 & 263 & 1841 \\
\hline 18:00 & 263 & 290 & 291 & 268 & 254 & 273 & 180 & 190 & 248 & 1736 \\
\hline 19:00 & 195 & 235 & 253 & 208 & 261 & 230 & 173 & 217 & 220 & 1542 \\
\hline 20:00 & 168 & 173 & 185 & 210 & 186 & 184 & 166 & 170 & 179 & 1258 \\
\hline 21:00 & 122 & 125 & 156 & 135 & 145 & 136 & 140 & 138 & 137 & 961 \\
\hline 22:00 & 97 & 107 & 119 & 114 & 149 & 117 & 120 & 119 & 117 & 825 \\
\hline 23:00 & 73 & 78 & 81 & 83 & 119 & 86 & 103 & 167 & 86 & 604 \\
\hline 24:00 & 57 & 58 & 66 & 81 & 93 & 71 & 100 & 49 & 72 & 504 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrr} 
TOTALS & 3214 & 2388 & 3551 & 3530 & 3807 & 3499 & 3226 & 2793 & 3342 \\
\% AVG WKDY & 91.8 & 68.2 & 101.4 & 100.8 & 108.8 & & 92.1 & 79.8 & \\
\& AVG WEEK & 96.1 & 71.4 & 106.2 & 105.6 & 113.9 & & 96.5 & 83.5 & \\
& & & & & & & & \\
AM Times & \(11: 00\) & \(12: 00\) & \(12: 00\) & \(12: 00\) & \(11: 00\) & \(11: 00\) & \(12: 00\) & \(11: 00\) & \(11: 00\) \\
AM Peaks & 177 & 168 & 183 & 186 & 222 & 187 & 214 & 168 & 186 \\
& & & & & & & & & \\
PM Times & \(18: 00\) & \(18: 00\) & \(17: 00\) & \(17: 00\) & \(17: 00\) & \(17: 00\) & \(17: 00\) & \(14: 00\) & \(17: 00\) \\
PM Peaks & 263 & 290 & 296 & 308 & 295 & 286 & 233 & 235 & 263
\end{tabular}

\title{
MassDOT Highway Division WEEKLY SUMMARY FOR LANE 1 \\ Starting: 3/27/2018
}


Site Reference: 180060000532
Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: NORTH


\section*{42}

AND 15496
\(F A C .97(.95)\)
ADT 14,300

Starting: 3/27/2018
\[
5 T A, 7 S B
\]

Site Reference: 180060000822 Site ID: 000000000702 Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: SOUTH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THU } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{gathered}
\text { WKDAY } \\
\text { AVG }
\end{gathered}
\] & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & sun
\[
1
\] & WEEK & TOTAL \\
\hline 01:00 & 106 & & 74 & 108 & 129 & 104 & 161 & 174 & 125 & 752 \\
\hline 02:00 & 45 & & 41 & 46 & 51 & 45 & 124 & 110 & 69 & 417 \\
\hline 03:00 & 30 & & 22 & 34 & 61 & 36 & 60 & 91 & 49 & 298 \\
\hline 04:00 & 38 & & 35 & 28 & 40 & 35 & 59 & 64 & 44 & 264 \\
\hline 05:00 & 42 & & 66 & 63 & 71 & 60 & 51 & 42 & 55 & 335 \\
\hline 06:00 & 159 & & 171 & 158 & 148 & 159 & 82 & 48 & 127 & 766 \\
\hline 07:00 & 295 & & 339 & 335 & 299 & 317 & 164 & 83 & 252 & 1515 \\
\hline 08:00 & 476 & & 500 & 470 & 417 & 465 & 275 & 156 & 382 & 2294 \\
\hline 09:00 & 482 & & 520 & 476 & 467 & 486 & 346 & 198 & 414 & 2489 \\
\hline 10:00 & 367 & & 364 & 408 & 403 & 385 & 429 & 302 & 378 & 2273 \\
\hline 11:00 & 338 & & 386 & 355 & 456 & 383 & 448 & 371 & 392 & 2354 \\
\hline 12:00 & 375 & & 392 & 443 & 478 & 422 & 437 & 424 & 424 & 2549 \\
\hline 13:00 & 383 & 383 & 520 & 517 & 575 & 475 & 550 & 525 & 493 & 3453 \\
\hline 14:00 & 454 & 442 & 446 & 453 & 604 & 479 & 546 & 587 & 504 & 3532 \\
\hline 15:00 & 566 & 595 & 520 & 563 & 518 & 552 & 523 & 601 & 555 & 3886 \\
\hline 16:00 & 553 & 563 & 506 & 536 & 484 & 528 & 563 & 571 & 539 & 3776 \\
\hline 17:00 & 471 & 462 & 456 & 450 & 436 & 455 & 550 & 526 & 478 & 3351 \\
\hline 18:00 & 497 & 483 & 452 & 482 & 428 & 468 & 491 & 482 & 473 & 3315 \\
\hline 19:00 & 456 & 508 & 512 & 497 & 482 & 491 & 508 & 491 & 493 & 3454 \\
\hline 20:00 & 389 & 449 & 516 & 522 & 475 & 470 & 483 & 531 & 480 & 3365 \\
\hline 21:00 & 356 & 425 & 468 & 463 & 399 & 422 & 409 & 498 & 431 & 3018 \\
\hline 22:00 & 298 & 354 & 407 & 381 & 413 & 370 & 311 & 358 & 360 & 2522 \\
\hline 23:00 & 225 & 249 & 241 & 275 & 358 & 269 & 326 & 266 & 277 & 1940 \\
\hline 24:00 & 168 & 161 & 172 & 213 & 257 & 194 & 274 & 183 & 204 & 1428 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TOTALS & 7569 & 5074 & 8126 & 8276 & 8449 & 8070 & 8170 & 7682 & 7998 & 53346 \\
\hline \% AVG WKDY & 93.7 & 62.8 & 100.6 & 102.5 & 104.6 & & 101.2 & 95.1 & & \\
\hline \% AVG WEEK & 94.6 & 63.4 & 101.6 & 103.4 & 105.6 & & 102.1 & 96 & & \\
\hline AM Times & 09:00 & & 09:00 & 09:00 & 12:00 & 09:00 & 11:00 & 12:00 & 12:00 & \\
\hline AM Peaks & 482 & & 520 & 476 & 478 & 486 & 448 & 424 & 424 & \\
\hline PM Times & \(15: 00\)
566 & \(15: 00\)
595 & \(13: 00\)
520 & \(15: 00\)
563 & \(14: 00\)
604 & 15:00 & \(16: 00\)
563 & \(15: 00\)
601 & \[
\begin{array}{r}
15: 00 \\
555
\end{array}
\] & \\
\hline
\end{tabular}
```

Site Reference: 180060000108
Site ID: 000000000803
Location: MILTON ST. WEST OF RTE. }13
Direction: EAST

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & MON
\[
2
\] & \[
\begin{array}{r}
\text { TOE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { FED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THU } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{aligned}
& \text { WKDAY } \\
& \text { AVG }
\end{aligned}
\] & SAT & SUN & \[
\begin{array}{r}
\text { WEEK } \\
\text { AVG }
\end{array}
\] & TOTAL \\
\hline 01: 00 & 16 & & 9 & 17 & 15 & 14 & 16 & 12 & 14 & 85 \\
\hline 02:00 & 3. & & 3 & B & 8 & 5 & 8 & 14 & 7 & 44 \\
\hline 03:00 & 3 & & 5 & 2 & 3 & 3 & 5 & 7 & 4 & 25 \\
\hline 04:00 & 10 & & 5 & 10 & 3 & 7 & 4 & 5 & 6 & 37 \\
\hline 05:00 & 11 & & 18 & 15 & 11 & 13 & 10 & 2 & 11 & 67 \\
\hline 06:00 & 26 & & 36 & 28 & 25 & 28 & 14 & 5 & 22 & 134 \\
\hline 07:00 & 79 & & 76 & 78 & 60 & 73 & 21 & 7 & 53 & 321 \\
\hline 08:00 & 160 & & 183 & 168 & 88 & 149 & 30 & 23 & 108 & 652 \\
\hline 09:00 & 108 & & 132 & 142 & 90 & 118 & 70 & 40 & 97 & 582 \\
\hline 10:00 & 86 & & 129 & 106 & 82 & 100 & 107 & 61 & 95 & 571 \\
\hline 11:00 & 89 & & 87 & B0 & 115 & 92 & 116 & 67 & 92 & 554 \\
\hline 12:00 & 75 & & 82 & 116 & 109 & 95 & 112 & 65 & 93 & 559 \\
\hline 13:00 & 94 & 89 & 108 & 116 & 115 & 104 & 112 & 87 & 103 & 721 \\
\hline 14:00 & 110 & 127 & 101 & 107 & 140 & 117 & 127 & 89 & 114 & 801 \\
\hline 15:00 & 130 & 141 & 139 & 141 & 153 & 140 & 112 & 87 & 129 & 903 \\
\hline 16:00 & 150 & 187 & 186 & 170 & 167 & 172 & 135 & 53 & 149 & 1048 \\
\hline 17:00 & 193 & 206 & 216 & 192 & 252 & 211 & 111 & 77 & 178 & 1247 \\
\hline 18:00 & 179 & 226 & 274 & 194 & 169 & 208 & 88 & 59 & 169 & 1189 \\
\hline 19:00 & 137 & 189 & 169 & 188 & 136 & 163 & 89 & 73 & 140 & 981 \\
\hline 20:00 & 95 & 87 & 96 & 102 & 92 & 94 & 71 & 73 & 88 & 616 \\
\hline 21:00 & 45 & 76 & 74 & 78 & 57 & 66 & 59 & 45 & 62 & 434 \\
\hline 22:00 & 54 & 59 & 61 & 61 & 55 & 58 & 55 & 33 & 54 & 378 \\
\hline 23:00 & 24 & 19 & 22 & 36 & 47 & 29 & 33 & 20 & 28 & 201 \\
\hline 24:00 & 13 & 17 & 21 & 31 & 26 & 21 & 22 & 15 & 20 & 145 \\
\hline
\end{tabular}


\title{
MassDOT Highway Division
}

WEEKLY SUMMARY FOR LANE 2
Page: 2
Starting: 3/27/2018

Site Reference: 180060000108


Site ID: 000000000803
File: V8.prn
City: MILTON
County: VOLUME EBaWB
Location: MILTON ST. WEST OE RTE. 138 Direction: WEST
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & THU & \[
\begin{array}{r}
\text { ERI } \\
30
\end{array}
\] & WKDAY AVG & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & \[
\begin{gathered}
\text { WEEK } \\
\text { AVG }
\end{gathered}
\] & TOTAL \\
\hline 01:00 & 10 & & 11 & 12 & 17 & 12 & 17 & 13 & 13 & 80 \\
\hline 02:00 & 6 & & 4 & 9 & 12 & 7 & 9 & 14 & 9 & 54 \\
\hline 03:00 & 12 & & 5 & 0 & 8 & 8 & 12 & 9 & 9 & 54 \\
\hline 04:00 & 7 & & 10 & 11 & 8 & 9 & 7 & 12 & 9 & 55 \\
\hline 05:00 & 15 & & 21 & 21 & 13 & 17 & 9 & 5 & 14 & 84 \\
\hline 06:00 & 50 & & 51 & 61 & 44 & 51 & 26 & 7 & 39 & 239 \\
\hline 07:00 & 172 & & 165 & 167 & 132 & 159 & 55 & 25 & 119 & 716 \\
\hline 08:00 & 209 & & 257 & 229 & 121 & 204 & 50 & 32 & 149 & 898 \\
\hline 09:00 & 159 & & 161 & 181 & 140 & 160 & 97 & 45 & 130 & 783 \\
\hline 10:00 & 102 & & 118 & 121 & 131 & 118 & 91 & 58 & 103 & 621 \\
\hline 11:00 & 81 & & 105 & 104 & 106 & 99 & 93 & 70 & 93 & 559 \\
\hline 12:00 & 80 & & 85 & 112 & 124 & 100 & 143 & 73 & 102 & 617 \\
\hline 13:00 & 100 & 95 & 125 & 130 & 137 & 117 & 112 & 84 & 111 & 783 \\
\hline 14:00 & 115 & 97 & 102 & 120 & 124 & 111 & 123 & 89 & 110 & 770 \\
\hline 15:00 & 102 & 106 & 116 & 117 & 141 & 116 & 111 & 91 & 112 & 784 \\
\hline 16:00 & 154 & 160 & 144 & 162 & 177 & 159 & 108 & 90 & 142 & 995 \\
\hline 17:00 & 153 & 185 & 158 & 196 & 186 & 175 & 119 & 70 & 152 & 1067 \\
\hline 18:00 & 163 & 202 & 170 & 190 & 187 & 182 & 10 B & 78 & 156 & 1098 \\
\hline 19:00 & 140 & 151 & 175 & 190 & 119 & 155 & 99 & 96 & 138 & 970 \\
\hline 20:00 & 86 & 89 & 112 & 122 & 103 & 102 & 78 & 82 & 96 & 672 \\
\hline 21:00 & 81 & 90 & 98 & 79 & 60 & 81 & 64 & 66 & 76 & 538 \\
\hline 22:00 & 57 & 62 & 64 & 74 & 67 & 64 & 53 & 44 & 60 & 421 \\
\hline 23:00 & 28 & 23 & 29 & 48 & 48 & 35 & 41 & 27 & 34 & 244 \\
\hline 24:00 & 20 & 21 & 19 & 26 & 29 & 23 & 29 & 19 & 23 & 163 \\
\hline totals & 2102 & 1281 & 2305 & 2490 & 2234 & 2264 & 1654 & 1199 & 1999 & 13265 \\
\hline \% AVG WKDY & 92.8 & 56.5 & 101.日 & 109.9 & 98.6 & & 73 & 52.9 & & \\
\hline \% AVG WEEK & 105.1 & 64 & 115.3 & 124.5 & 111.7 & & 82.7 & 59.9 & & \\
\hline AM Times & 08:00 & & 08:00 & 08:00 & 09:00 & 08:00 & 12:00 & 12:00 & 08:00 & \\
\hline AM Peaks & 209 & & 257 & 229 & 140 & 204 & 143 & 73 & 149 & \\
\hline PM Times & 18:00 & 18:00 & 19:00 & 17:00 & 18:00 & 18:00 & 14:00 & 19:00 & 18:00 & \\
\hline PM Peaks & 163 & 202 & 175 & 196 & 187 & 182 & 123 & 96 & 156 & \\
\hline
\end{tabular}



46

WB.ONLY
EB「NO DATA.
```

STA.10

```
Site Reference: 180060000423
Site ID: 000000001001
Location: RTE. 138 NO. OE MILTON ST. Direction: ROAD TOTAL


\section*{42}
\[
\begin{aligned}
& \text { AND } 17816 \\
& \text { FAC } .97(.95) \\
& \text { ADC } 16,400
\end{aligned}
\]

MassDOT Highway Division

File: V10.prn
City: MILTON
County: VOLUME NB\&SB

Site Reference: 180060000423 Site ID: 000000001001
Location: RTE. 138 NO. OF MILTON ST. Direction: NORTH

```

MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 2
Starting: 3/27/2018
STA,IOSB
City: MITTON

```

Page: 2
Site Reference: 180060000423
Site ID: 000000001001
Location: RTE. 138 NO. OF MILTON ST.
Direction: SOUTH

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Site Refere \\
Site ID: 00 \\
Location: B \\
Direction:
\end{tabular} & \begin{tabular}{l}
: 1800 \\
00110304 \\
DLEE RD \\
TOTA
\end{tabular} & \begin{tabular}{l}
\[
0000742
\] \\
WEST
\end{tabular} & RTE. 13 & & \multicolumn{2}{|l|}{TOTAC} & \multicolumn{3}{|r|}{\begin{tabular}{l}
File: V11.prn \\
City: MILTON
\end{tabular}} & \\
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\mathrm{TOE} \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\mathrm{THU} \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{aligned}
& \text { WKDAY } \\
& \text { AVG }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & SUN & \[
\begin{aligned}
& \text { WEEK } \\
& \text { AVG }
\end{aligned}
\] & TOTAL \\
\hline 01:00 & 20 & & 26 & 25 & 38 & 27 & 33 & 40 & 30 & 182 \\
\hline 02:00 & 10 & & 3 & 6 & 14 & 8 & 24 & 30 & 14 & 87 \\
\hline 03:00 & 3 & & 6 & 6 & 8 & 5 & 22 & 16 & 10 & 61 \\
\hline 04:00 & 9 & & 1 & 1 & 4 & 3 & 13 & 10 & 6 & 38 \\
\hline 05:00 & 16 & & 16 & 12 & 19 & 15 & 10 & 6 & 13 & 79 \\
\hline 06:00 & 39 & & 32 & 42 & 33 & 36 & 10 & 9 & 27 & 165 \\
\hline 07:00 & 93 & & 84 & 96 & 83 & 89 & 23 & 18 & 66 & 397 \\
\hline 00:00 & 170 & & 172 & 140 & 102 & 146 & 50 & 26 & 110 & 660 \\
\hline 09:00 & 121 & & 128 & 122 & 117 & 122 & 75 & 63 & 104 & 626 \\
\hline 10:00 & 87 & & 110 & 106 & 109 & 103 & 119 & 71 & 100 & 602 \\
\hline 11:00 & 78 & & 97 & 85 & 114 & 93 & 125 & 108 & 101 & 607 \\
\hline 12:00 & 84 & & 80 & 112 & 123 & 99 & 140 & 131 & 111 & 670 \\
\hline 13:00 & 89 & & 103 & 128 & 110 & 109 & 135 & 135 & 118 & 708 \\
\hline 14:00 & 125 & 92 & 103 & 106 & 119 & 109 & 169 & 136 & 121 & 850 \\
\hline 15:00 & 131 & 137 & 120 & 121 & 141 & 130 & 147 & 141 & 134 & 938 \\
\hline 16:00 & 140 & 139 & 145 & 139 & 181 & 148 & 171 & 116 & 147 & 1031 \\
\hline 17:00 & 153 & 155 & 147 & 173 & 184 & 162 & 159 & 134 & 157 & 1105 \\
\hline 18:00 & 143 & 144 & 142 & 165 & 141 & 147 & 126 & 135 & 142 & 996 \\
\hline 19:00 & 118 & 114 & 140 & 121 & 149 & 128 & 144 & 157 & 134 & 943 \\
\hline 20:00 & 114 & 103 & 117 & 107 & 115 & 111 & 142 & 139 & 119 & 837 \\
\hline 21:00 & 91 & 90 & 98 & 109 & 97 & 97 & 118 & 123 & 103 & 726 \\
\hline 22:00 & 56 & 80 & 91 & 72 & 98 & 79 & 80 & 76 & 79 & 553 \\
\hline 23:00 & 35 & 37 & 46 & 71 & 70 & 51 & - 70 & 55 & 54 & 384 \\
\hline 24:00 & 29 & 29 & 25 & 35 & 41 & 31 & 57 & 27 & 34 & 243 \\
\hline TOTALS & 1954 & 1120 & 2032 & 2100 & 2218 & 2048 & 2162 & 1902 & 2034 & 13488 \\
\hline \% AVG WKDY & 95.4 & 54.6 & 99.2 & 102.5 & 108.3 & & 105.5 & 92.8 & & \\
\hline \% AVG WEEK & 96 & 55 & 99.9 & 103.2 & 109 & & 106.2 & 93.5 & & \\
\hline AM Times & 08:00 & & 08:00 & 09:00 & 12:00 & 08:00 & 12:00 & 12:00 & 12:00 & \\
\hline AM Peaks & 170 & & 172 & 140 & 123 & 146 & 140 & 131 & 111 & \\
\hline PM Times & 17:00 & 17:00 & 17:00 & 17:00 & 17:00 & 17:00 & 16:00 & 19:00 & 17:00 & \\
\hline PM Peaks & 153 & 155 & 147 & 173 & 184 & 162 & 171 & 157 & 157 & - \\
\hline
\end{tabular}
\[
\text { STA. } \| E B
\]

Site Reference: 180060000742
Site ID: 000000110304
File: Vll.prn
City: MILTON
Location: BRADLEE RD, WEST OF RTE. 138
County: VOLUME EB\&WB Direction: EAST
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THO } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{aligned}
& \text { WKDAY } \\
& \text { AVG }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline 01:00 & 12 & & 20 & 19 & 22 & 18 & 23 & 27 & 20 & 123 \\
\hline 02:00 & 4 & & 2 & 4 & 13 & 5 & 14 & 20 & 9 & 57 \\
\hline 03:00 & 2 & & 4 & 2 & 6 & 3 & 13 & 10 & 6 & 37 \\
\hline 04:00 & 6 & & 1 & 0 & 1 & 2 & 9 & 8 & 4 & 25 \\
\hline 05:00 & 7 & & 6 & 3 & 7 & 5 & 5 & 4 & 5 & 32 \\
\hline 06:00 & 19 & & 18 & 26 & 20 & 20 & 5 & 4 & 15 & 92 \\
\hline 07:00 & 57 & & 48 & 52 & 50 & 51 & 10 & 9 & 37 & 226 \\
\hline 08:00 & 101 & & 108 & 79 & 48 & 84 & 19 & 11 & 61 & 366 \\
\hline 09:00 & 77 & & 81 & 72 & 67 & 74 & 32 & 31 & 60 & 360 \\
\hline 10:00 & 47 & & 71 & 55 & 58 & 57 & 49 & 41 & 53 & 321 \\
\hline 11:00 & 42 & & 59 & 45 & 50 & 49 & 65 & 61 & 53 & 322 \\
\hline 12:00 & 52 & & 45 & 61 & 70 & 57 & 72 & 56 & 59 & 356 \\
\hline 13:00 & 50 & & 56 & 70 & 63 & 59 & 83 & 75 & 66 & 397 \\
\hline 14:00 & 66 & 51 & 65 & 68 & 67 & 63 & 86 & 80 & 69 & 483 \\
\hline 15:00 & 77 & 76 & 70 & 68 & 92 & 76 & 84 & 86 & 79 & 553 \\
\hline 16:00 & 71 & 79 & 90 & 82 & 92 & 82 & 98 & 69 & 83 & 581 \\
\hline 17:00 & 90 & 79 & 76 & 98 & 104 & 89 & 84 & 67 & 85 & 598 \\
\hline 18:00 & 83 & 64 & 69 & 84 & 74 & 74 & 82 & 74 & 75 & 530 \\
\hline 19:00 & 67 & 50 & 74 & 62 & 88 & 68 & 89 & 79 & 72 & 509 \\
\hline 20:00 & 61 & 56 & 67 & 66 & 65 & 63 & 89 & 81 & 69 & 485 \\
\hline 21:00 & 58 & 61 & 61 & 75 & 53 & 61 & 69 & 67 & 63 & 444 \\
\hline 22:00 & 34 & 48 & 53 & 43 & 54 & 46 & 42 & 49 & 46 & 323 \\
\hline 23:00 & 22 & 20 & 20 & 38 & 46 & 29 & 46 & 33 & 32 & 225 \\
\hline 24:00 & 16 & 16 & 16 & 25 & 28 & 20 & 36 & 13 & 21 & 150 \\
\hline TOTALS & 1121 & 600 & 1180 & 1197 & 1238 & 1155 & 1204 & 1055 & 1142 & 7595 \\
\hline 8 AVG WKDY & 97 & 51.9 & 102.1 & 103.6 & 107.1 & & 104.2 & 91.3 & & \\
\hline \% AVG WEEK & 98.1 & 52.5 & 103.3 & 104.8 & 108.4 & & 105.4 & 92.3 & & \\
\hline AM Times & 08:00 & & 08:00 & 08:00 & 12:00 & 08:00 & 12:00 & 11:00 & 08:00 & \\
\hline AM Peaks & 101 & & 108 & 79 & 70 & 84 & 72 & 61 & 61 & \\
\hline PM Times & 17:00 & 16:00 & 16:00 & 17:00 & 17:00 & 17:00 & 16:00 & 15:00 & 17:00 & \\
\hline EM Peaks & 90 & 79 & 90 & 98 & 104 & 89 & 98 & 86 & 85 & \\
\hline
\end{tabular}

\title{
STA. 11 WB
}
\begin{tabular}{ll} 
Site Reference: 180060000742 & File: V11.prn \\
Site ID: 000000110304 & City: MILTON \\
Location: BRADLEE RD. WEST OF RTE. 138 & County: VOLOME EBGWB
\end{tabular}
Direction: WEST
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{gathered}
\text { WED } \\
28
\end{gathered}
\] & \[
\begin{array}{r}
\text { THO } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{aligned}
& \text { WKDAY } \\
& \text { AVG }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline & 01:00 & 8 & & 6 & 6 & 16 & 9 & 10 & 13 & 9 & 59 \\
\hline & 02:00 & 6 & & 1 & 2 & 1 & 2 & 10 & 10 & 5 & 30 \\
\hline & 03:00 & 1 & & 2 & 4 & 2 & 2 & 9 & 6 & 4 & 24 \\
\hline & 04:00 & 3 & & 0 & 1 & 3 & 1 & 4 & 2 & 2 & 13 \\
\hline & 05:00 & 9 & & 10 & 9 & 12 & 10 & 5 & 2 & 7 & 47 \\
\hline & 06:00 & 20 & & 14 & 16 & 13 & 15 & 5 & 5 & 12 & 73 \\
\hline & 07:00 & 36 & & 36 & 44 & 33 & 37 & 13 & 9 & 28 & 171 \\
\hline & 06:00 & 69 & & 64 & 61 & 54 & 62 & 31 & 15 & 49 & 294 \\
\hline & 09:00 & 44 & & 47 & 50 & 50 & 47 & 43 & 32 & 44 & 266 \\
\hline & 10:00 & 40 & & 39 & 51 & 51 & 45 & 70 & 30 & 46 & 281 \\
\hline & 11:00 & 36 & & 38 & 40 & 64 & 44 & 60 & 47 & 47 & 285 \\
\hline & 12:00 & 32 & & 35 & 51 & 53 & 42 & 68 & 75 & 52 & 314 \\
\hline & 13:00 & 39 & & 47 & 58 & 55 & 49 & 52 & 60 & 51 & 311 \\
\hline & 14:00 & 59 & 41 & 38 & 38 & 52 & 45 & 83 & 56 & 52 & 367 \\
\hline & 15:00 & 54 & 61 & 50 & 53 & 49 & 53 & 63 & 55 & 55 & 385 \\
\hline & 16:00 & 69 & 60 & 55 & 57 & 89 & 66 & 73 & 47 & 64 & 450 \\
\hline & 17:00 & 63 & 76 & 71 & 75 & 80 & 73 & 75 & 67 & 72 & 507 \\
\hline & 18:00 & 60 & 80 & 73 & 81 & 67 & 72 & 44 & 61 & 66 & 466 \\
\hline & 19:00 & 51 & 64 & 66 & 59 & 61 & 60 & 55 & 78 & 62 & 434 \\
\hline & 20:00 & 53 & 47 & 50 & 41 & 50 & 48 & 53 & 58 & 50 & 352 \\
\hline & 21:00 & 33 & 29 & 37 & 34 & 44 & 35 & 49 & 56 & 40 & 282 \\
\hline & 22:00 & 22 & 32 & 38 & 29 & 44 & 33 & 38 & 27 & 32 & 230 \\
\hline & 23:00 & 13 & 17 & 26 & 33 & 24 & 22 & 24 & 22 & 22 & 159 \\
\hline & 24:00 & 13 & 13 & 9 & 10 & 13 & 11 & 21 & 14 & 13 & 93 \\
\hline & TALS & 833 & 520 & 852 & 903 & 980 & 883 & 958 & 847 & 884 & 5893 \\
\hline & AVG WKDY & 94.3 & 58.8 & 96.4 & 102.2 & 110.9 & & 108.4 & 95.9 & & \\
\hline & AVG WEEK & 94.2 & 58.8 & 96.3 & 102.1 & 110.8 & & 108.3 & 95.8 & & \\
\hline & Times & 08:00 & & 08:00 & 08:00 & 11:00 & 08:00 & 10:00 & 12:00 & 12:00 & \\
\hline & Peaks & 69 & & 64 & 61 & 64 & 62 & 70 & 75 & 52 & \\
\hline PM & Times & 16:00 & 18:00 & 18:00 & 18:00 & 16:00 & 17:00 & 14:00 & 19:00 & 17:00 & \\
\hline & Peaks & 69 & 80 & 73 & 81 & 89 & 73 & 83 & 78 & 72 & \\
\hline
\end{tabular}



\[
46
\]
\[
\begin{aligned}
& \text { AWD } 1930 \\
& \text { FAC. } 97(.93) \\
& \text { ADT } 1,700
\end{aligned}
\]

\begin{tabular}{lll} 
& \begin{tabular}{c} 
MassDOT Highway Division \\
WEERLY SUMMARY FOR LANE \\
Starting: \(3 / 27 / 2018\)
\end{tabular} & 2
\end{tabular}\(\quad\) Page: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THU } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & WKDAY
AVG & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline 01:00 & 9 & & 9 & 15 & 14 & 11 & 16 & 15 & 13 & 78 \\
\hline 02:00 & 2 & & 6 & 6 & 8 & 5 & 9 & 7 & 6 & 38 \\
\hline 03:00 & 2 & & 3 & 2 & 3 & 2 & 4 & 10 & 4 & 24 \\
\hline 04:00 & 4 & & 2 & 1 & 1 & 2 & 7 & 5 & 3 & 20 \\
\hline 05:00 & 2 & & 6 & 2 & 2 & 3 & 2 & 5 & 3 & 19 \\
\hline 06:00 & 20 & & 20 & 28 & 17 & 21 & 2 & 3 & 15 & 90 \\
\hline 07:00 & 58 & & 56 & 57 & 46 & 54 & 10 & 10 & 39 & 237 \\
\hline 08:00 & 145 & & 110 & 106 & 66 & 106 & 22 & 8 & 76 & 457 \\
\hline 09:00 & 108 & & 124 & 119 & 78 & 107 & 30 & 21 & 80 & 480 \\
\hline 10:00 & 76 & & 90 & 84 & 57 & 76 & 43 & 24 & 62 & 374 \\
\hline 11:00 & 56 & & 54 & 47 & 47 & - 51 & 57 & 44 & 50 & 305 \\
\hline 12:00 & 40 & & 56 & 76 & 54 & 56 & 59 & 56 & 56 & 341 \\
\hline 13:00 & 49 & & 67 & 66 & 69 & 62 & 65 & 47 & 60 & 363 \\
\hline 14:00 & 56 & 45 & 58 & 57 & 78 & 58 & 72 & 65 & 61 & 431 \\
\hline 15:00 & 62 & 66 & 65 & 66 & 68 & 65 & 68 & 56 & 64 & 451 \\
\hline 16:00 & 78 & 77 & 95 & 80 & 69 & 79 & 69 & 55 & 74 & 523 \\
\hline 17:00 & 96 & 91 & 77 & 92 & 87 & 88 & 43 & 46 & 76 & 532 \\
\hline 18:00 & 70 & 93 & 77 & 90 & 66 & 79 & 60 & 73 & 75 & 529 \\
\hline 19:00 & 58 & 54 & 71 & 57 & 66 & 61 & 54 & 76 & 62 & 436 \\
\hline 20:00 & 40 & 51 & 62 & 62 & 38 & 50 & 45 & 74 & 53 & 372 \\
\hline 21:00 & 38 & 46 & - 53 & 53 & 38 & 45 & 40 & 60 & 46 & 328 \\
\hline 22:00 & 19 & 35 & 38 & 42 & 33 & 33 & 36 & 44 & 35 & 247 \\
\hline 23:00 & 21 & 16 & 22 & 23 & 39 & 24 & 25 & 29 & 25 & 175 \\
\hline 24:00 & 12 & 13 & 13 & 24 & 25 & 17 & 24 & 11 & 17 & 122 \\
\hline TOTALS & 1121 & 587 & 1234 & 1255 & 1069 & 1155 & 862 & 844 & 1055 & 6972 \\
\hline \% AVG WKDY & 97 & 50.8 & 106.8 & 108.6 & 92.5 & & 74.6 & 73 & & \\
\hline \% AVG WEEK & 106.2 & 55.6 & 116.9 & 118.9 & 101.3 & & 81.7 & 80 & & \\
\hline AM Times & 08:00 & & 09:00 & 09:00 & 09:00 & 09:00 & 12:00 & 12:00 & 09:00 & \\
\hline AM Peaks & 145 & & 124 & 119 & 78 & 107 & 59 & 56 & 80 & \\
\hline PM Times & 17:00 & 18:00 & 16:00 & 17:00 & 17:00 & 17:00 & 14:00 & 19:00 & 17:00 & \\
\hline PM Peaks & 96 & 93 & 95 & 92 & 87 & 8 B & 72 & 76 & 76 & \\
\hline
\end{tabular}

Mass DOT Highway Division
Starting: 3/27/2018
STA. 13 NB
Site Reference: 180060000787 Site ID: 000000001301
Location: RTE 138 NORTH OF BRIDLE RD. Direction: NORTH

\[
\begin{aligned}
& \text { AND } 13297 \\
& \text { FAC } .97 \\
& \text { AD } 12,900
\end{aligned}
\]

MassDOT Highway Division WEEKLY SUMMARY EOR LANE 1

Page: 1
Starting: 3/27/2018
\[
S T A \cdot 13 S B
\]

Site Reference: 180060000554
Site ID: 000000001302
Location: RTE 138 NORTH OF BRADLEE RD. Direction: SOUTH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THO } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{aligned}
& \text { WKDAY } \\
& \text { AVG }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline 01:00 & 79 & & 63 & 93 & 97 & 83 & 149 & 158 & 106 & 639 \\
\hline 02:00 & 33 & & 33 & 36 & 52 & 38 & 115 & 100 & 61 & 369 \\
\hline 03:00 & 28 & & 23 & 32 & 55 & 34 & 57. & 85 & 46 & 280 \\
\hline 04:00 & 29 & & 32 & 25 & 38 & 31 & 60 & 71 & 42 & 255 \\
\hline 05:00 & 45 & & 60 & 65 & 71 & 60 & 51 & 43 & 55 & 335 \\
\hline 06:00 & 147 & & 153 & 137 & 135 & 143 & 79 & 38 & 114 & 689 \\
\hline 07:00 & 258 & & 292 & 295 & 267 & 278 & 145 & 78 & 222 & 1335 \\
\hline 00:00 & 422 & & 463 & 442 & 392 & 429 & 246 & 145 & 351 & 2110 \\
\hline 09:00 & 440 & & 491 & 438 & 414 & 445 & 305 & 179 & 377 & 2267 \\
\hline 10:00 & 330 & & 294 & 360 & 325 & 327 & 353 & 274 & 322 & 1936 \\
\hline 11:00 & 283 & & 291 & 296 & 354 & 306 & 366 & 311 & 316 & 1901 \\
\hline 12:00 & 298 & & 329 & 345 & 364 & 334 & 321 & 358 & 335 & 2015 \\
\hline 13:00 & 294 & & 350 & 375 & 403 & 355 & 465 & 441 & 388 & 2328 \\
\hline 14:00 & 327 & 346 & 348 & 337 & 454 & 362 & 442 & 504 & 394 & 2758 \\
\hline 15:00 & 423 & 473 & 429 & 455 & 411 & 438 & 427 & 525 & 449 & 3143 \\
\hline 16:00 & 421 & 453 & 417 & 422 & 453 & 433 & 488 & 520 & 453 & 3174 \\
\hline 17:00 & 347 & 358 & 366 & 373 & 351 & 359 & 459 & 445 & 385 & 2699 \\
\hline 18:00 & 414 & 398 & 374 & 382 & 366 & 386 & 419 & 399 & 393 & 2752 \\
\hline 19:00 & 340 & 372 & 431 & 415 & 379 & 387 & 435 & 373 & 392 & 2745 \\
\hline 20:00 & 304 & 351 & 410 & 405 & 404 & 374 & 389 & 411 & 382 & 2674 \\
\hline 21:00 & 278 & 308 & 331 & 329 & 350 & 319 & 351 & 414 & 337 & 2361 \\
\hline 22:00 & 220 & 289 & 281 & 311 & 343 & 288 & 265 & 286 & 285 & 1995 \\
\hline 23:00 & 188 & 213 & 211 & 228 & 317 & 231 & 304 & 227 & 241 & 1688 \\
\hline 24:00 & 143 & 134 & 158 & 177 & 233 & 169 & 249 & 155 & 178 & 1249 \\
\hline totals & 6091 & 3695 & 6630 & 6773 & 7028 & 6609 & 6940 & 6540 & 6624 & 43697 \\
\hline \% AVG WKDY & 92.1 & 55.9 & 100.3 & 102.4 & 106.3 & & 105 & 98.9 & & \\
\hline \% AVG WEEK & 91.9 & 55.7 & 100 & 102.2 & 106 & & 104.7 & 98.7 & & \\
\hline AM Times & 09:00 & & 09:00 & 08:00 & 09:00 & 09:00 & 11:00 & 12:00 & 09:00 & \\
\hline AM Peaks & 440 & & 491 & 442 & 414 & 445 & 366 & 358 & 377 & \\
\hline PM Times & 15:00 & 15:00 & 19:00 & 15:00 & 14:00 & 15:00 & 16:00 & 15:00 & 16:00 & \\
\hline PM Peaks & 423 & 473 & 431 & 455 & 454 & 438 & 488 & 525 & 453 & \\
\hline
\end{tabular}

MassDOT Highway Division
```

STA.14 EB
File: D0327029.pmn
City: Milton
County: Volume EB

```
Site Reference: 180060000448
Site ID: 000000001403
Location: Robbins St. EB, east of Rte. 138
Direction: EAST

\begin{tabular}{lrrrrrrrrrr} 
TOTALS & 510 & 372 & 599 & 592 & 575 & 564 & 469 & 368 & 518 & 3485 \\
TH V WKLY & 90.4 & 65.9 & 106.2 & 104.9 & 101.9 & & 83.1 & 65.2 & \\
\& AVG WEEK & 98.4 & 71.8 & 115.6 & 114.2 & 111 & & 90.5 & 71 & \\
AM Times & \(09: 00\) & & \(12: 00\) & \(10: 00\) & \(09: 00\) & \(09: 00\) & \(11: 00\) & \(12: 00\) & \(09: 00\) \\
AM Peaks & 46 & & 54 & 43 & 47 & 44 & 37 & 33 & 36 \\
& & & & & & & & \\
PM Times & \(17: 00\) & \(18: 00\) & \(17: 00\) & \(18: 00\) & \(14: 00\) & \(18: 00\) & \(18: 00\) & \(14: 00\) & \(18: 00\) \\
PM Peaks & 59 & 82 & 66 & 60 & 56 & 57 & 43 & 34 & 50
\end{tabular}
\[
\begin{aligned}
& \text { AND } 1215 \\
& \text { FAC .97(.93) } \\
& \text { ADC } 1,100
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & Mass WEE & OT High
\[
\begin{aligned}
& \text { Y SUMMA } \\
& \text { arting: }
\end{aligned}
\] & ay Divis Y FOR LA 3/27/201 &  & & P & e: 1 \\
\hline & & & & & \(J A\) & \(4 w\) & B & & & \\
\hline \begin{tabular}{l}
Site Refere \\
Site ID: 00
\end{tabular} & \[
\begin{aligned}
& \text { e: } 1800 \\
& 0000140
\end{aligned}
\] & \[
0000668
\] & & & & & & \[
\begin{aligned}
& \text { e: D032 } \\
& y: ~ M i l t
\end{aligned}
\] & \[
030 . \mathrm{prn}
\] & \\
\hline Location: R Direction: & bins St.
\[
S T
\] & wB, eas & \[
t \text { of Rte }
\] & & & & & nty: Vo & ume WB & \\
\hline TIME & MON & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & WED 28 & \[
\begin{array}{r}
\mathrm{THU} \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & WKDAY AVG & SAT & SUN & \begin{tabular}{l}
WEEK \\
AVG
\end{tabular} & TOTAL \\
\hline 01:00 & 5 & & 1 & 3 & 5 & 3 & 3 & 5 & 3 & 22 \\
\hline 02:00 & 2 & & 1 & 0 & 2 & 1 & 4 & 7 & 2 & 16 \\
\hline 03:00 & 1 & & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 6 \\
\hline 04:00 & 1 & & 1 & 1 & 1 & 1 & 0 & 2 & 1 & 6 \\
\hline 05:00 & 1 & & 0 & 3 & 3 & 1 & 0 & 2 & 1 & 9 \\
\hline 06:00 & 3 & & 4 & 2 & 4 & 3 & 2 & 3 & 3 & 18 \\
\hline 07:00 & 12 & & 20 & 11 & B & 12 & 2 & 6 & 9 & 59 \\
\hline 09:00 & 59 & & 68 & 64 & 34 & 56 & 18 & 4 & 41 & 247 \\
\hline 09:00 & 67 & & 62 & 70 & 56 & 63 & 26 & 15 & 49 & 296 \\
\hline 10:00 & 36 & & 39 & 48 & 37 & 40 & 35 & 21 & 36 & 216 \\
\hline 11:00 & 18 & & 34 & 27 & 50 & 32 & 37 & 19 & 30 & 185 \\
\hline 12:00 & 32 & & 37 & 35 & 36 & 35 & 50 & 37 & 37 & 227 \\
\hline 13:00 & 29 & & 31 & 32 & 49 & 35 & 49 & 46 & 39 & 236 \\
\hline 14:00 & 31 & 28 & 27 & 42 & 43 & 34 & 34 & 32 & 33 & 237 \\
\hline 15:00 & 39 & 35 & 35 & 40 & 53 & 40 & 37 & 29 & 38 & 268 \\
\hline 16:00 & 48 & 47 & 49 & 59 & 41 & 48 & 49 & 31 & 46 & 324 \\
\hline 17:00 & 58 & 66 & 59 & 74 & 43 & 60 & 42 & 33 & 53 & 375 \\
\hline 18:00 & 44 & 53 & 49 & 57 & 51 & 50 & 38 & 33 & 46 & 325 \\
\hline 19:00 & 44 & 33 & 51 & 49 & 45 & 44 & 35 & 32 & 41 & 289 \\
\hline 20:00 & 25 & 36 & 29 & 30 & 29 & 29 & 20 & 22 & 27 & 191 \\
\hline 21:00 & 16 & 39 & 39 & 32 & 26 & 30 & 27 & 23 & 28 & 202 \\
\hline 22:00 & 12 & 17 & 18 & 20 & 25 & 18 & 24 & 9 & 17 & 125 \\
\hline 23:00 & 11 & 8 & 9 & 10 & 20 & 11 & 10 & 10 & 11 & 78 \\
\hline 24:00 & 4 & 3 & 8 & 8 & 5 & 5 & 12 & 4 & 6 & 44 \\
\hline totals & 598 & 365 & 672 & 717 & 667 & 651 & 555 & 427 & 598 & 4001 \\
\hline \% AVG WKDY & 91.8 & 56 & 103.2 & 110.1 & 102.4 & & 85.2 & 65.5 & & \\
\hline \% AVG WEEK & 100 & 61 & 112.3 & 119.8 & 111.5 & & 92.8 & 71.4 & & \\
\hline AM Times & 09:00 & & 08:00 & 09:00 & 09:00 & 09:00 & 12:00 & 12:00 & 09:00 & \\
\hline AM Peaks & 67 & & 68 & 70 & 56 & 63 & 50 & 37 & 49 & \\
\hline PM Times & 17:00 & 17:00 & 17:00 & 17:00 & 15:00 & 17:00 & 13:00 & 13:00 & 17:00 & \\
\hline PM Peaks & 58 & 66 & 59 & 74 & 53 & 60 & 49 & 46 & 53 & \\
\hline
\end{tabular}

MassDOT Highway Division WEEKLY SUMMARY FOR LANE

Page: 1 Starting: 3/27/2018

Site Reference: 180060000400
Site ID: 000000150304
Location: ROBBINS ST. WEST OF RTE. 138 Direction: ROAD TOTAI
\[
\begin{aligned}
& \text { STA. } 15 \\
& \text { TOTAL }
\end{aligned}
\]

File: V15.prn
City: MILTON County: VOLUME EBGWB

no

AND 885
FAC. \(97(.93)\)
AD 800


\begin{tabular}{|c|c|c|c|}
\hline & MassDOT Highway Division WEEKLY SUMMARY FOR LANE Starting: 3/27/2018 & & Page: \\
\hline & STA.16 & & \\
\hline Site Reference: 180060000874 & & File: V16.prn & \\
\hline Site ID: 000000001601 & TOTAL & City: MILTON & \\
\hline Location: RTE. 138 NORTH OF ROBBINS ST. & & County: VOLUME & B6SB \\
\hline
\end{tabular}

Direction: ROAD TOTAL


Page: 1
Starting: 3/27/2018
\[
5 T A \cdot 16 N B
\]

Site Reference: 180060000874
Site ID: 000000001601
Location: RTE. 138 NORTH OF ROBEINS ST. Direction: NORTH

File: V16.prn
City: MILTON County: voLume nbasb


MassDOT Highway Division

\title{
STAA. 16 SB
}

> File: V16.prn City: MILTON County: VOLUME NB\&SB

Site Reference: 160060000074 Site ID: 00000001601 Location: RTE. 138 NORTH OF ROBBINS ST. Direction: SOUTH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
2 \theta
\end{array}
\] & \[
\begin{array}{r}
\text { THO } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & \[
\begin{gathered}
\text { WKDAY } \\
\text { AVG }
\end{gathered}
\] & \[
\begin{gathered}
\text { SAT } \\
31
\end{gathered}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & WEEK AVG & TOTAL \\
\hline 01:00 & 68 & & 69 & 76 & 83 & 74 & 130 & 139 & 94 & 565 \\
\hline 02:00 & 34 & & 37 & 38 & 63 & 43 & 60 & 99 & 55 & 331 \\
\hline 03:00 & 25 & & 23 & 28 & 31 & 26 & 73 & 85 & 44 & 265 \\
\hline 04:00 & 37 & & 28 & 34 & 29 & 32 & 66 & 51 & 40 & 245 \\
\hline 05:00 & 65 & & 65 & 58 & 75 & 65 & 42 & 28 & 55 & 333 \\
\hline 06:00 & 302 & & 308 & 304 & 260 & 293 & 78 & 47 & 216 & 1299 \\
\hline 07:00 & 451 & & 458 & 465 & 405 & 444 & 147 & 93 & 336 & 2019 \\
\hline 08:00 & 547 & & 543 & 553 & 450 & 523 & 177 & 136 & 401 & 2406 \\
\hline 09:00 & 461 & & 507 & 508 & 437 & 478 & 317 & 194 & 404 & 2424 \\
\hline 10:00 & 393 & & 427 & 428 & 353 & 400 & 362 & 318 & 380 & 2281 \\
\hline 11:00 & 311 & & 357 & 412 & 339 & 354 & 363 & 400 & 363 & 2182 \\
\hline 12:00 & 291 & & 308 & 336 & 344 & 319 & 351 & 358 & 331 & 1988 \\
\hline 13:00 & 266 & & 306 & 308 & 398 & 319 & 378 & 314 & 328 & 1970 \\
\hline 14:00 & 248 & & 324 & 320 & 397 & 322 & 425 & 344 & 343 & 2058 \\
\hline 15:00 & 308 & 348 & 332 & 325 & 384 & 339 & 410 & 375 & 354 & 2482 \\
\hline 16:00 & 364. & 395 & 373 & 470 & 396 & 399 & 418 & 380 & 399 & 2796 \\
\hline 17:00 & 371 & 394 & 396 & 402 & 439 & 400 & 408 & 366 & 396 & 2776 \\
\hline 18:00 & 388 & 452 & 442 & 439 & 447 & 433 & 371 & 361 & 414 & 2900 \\
\hline 19:00 & 323 & 376 & 362 & 411 & 465 & 387 & 379 & 442 & 394 & 2758 \\
\hline 20:00 & 243 & 245 & 330 & 282 & 300 & 280 & 330 & 426 & 308 & 2156 \\
\hline 21:00 & 220 & 258 & 267 & 266 & 265 & 255 & 281 & 378 & 276 & 1935 \\
\hline 22:00 & 205 & 213 & 251 & 241 & 269 & 235 & 268 & 314 & 251 & 1761 \\
\hline 23:00 & 152 & 176 & 206 & 205 & 279 & 203 & 265 & 191 & 210 & 1474 \\
\hline 24:00 & 102 & 107 & 118 & 142 & 164 & 126 & 214 & 135 & 140 & 9 B 2 \\
\hline totals & 6175 & 2964 & 6837 & 7051 & 7072 & 6749 & 6313 & 5974 & 6532 & 423日6 \\
\hline \% AVG WKDY & 91.4 & 43.9 & 101.3 & 104.4 & 104.7 & & 93.5 & 88.5 & & \\
\hline \% AVG WEEK & 94.5 & 45.3 & 104.6 & 107.9 & 108.2 & & 96.6 & 91.4 & & \\
\hline AM Times & 08:00 & & 08:00 & 08:00 & 08:00 & 08:00 & 11:00 & 11:00 & 09:00 & \\
\hline AM Peaks & 547 & & 543 & 553 & 450 & 523 & 363 & 400 & 404 & \\
\hline PM Times & 18:00 & 18:00 & 18:00 & 16:00 & 19:00 & 18:00 & 14:00 & 19:00 & 18:00 & \\
\hline BM Peaks & 388 & 452 & 442 & 470 & 465 & 433 & 425 & 442 & 414 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & \[
\begin{array}{r}
\text { MON } \\
2
\end{array}
\] & \[
\begin{array}{r}
\text { TUE } \\
27
\end{array}
\] & \[
\begin{array}{r}
\text { WED } \\
28
\end{array}
\] & \[
\begin{array}{r}
\text { THU } \\
29
\end{array}
\] & \[
\begin{array}{r}
\text { FRI } \\
30
\end{array}
\] & WKDAY AVG & \[
\begin{array}{r}
\text { SAT } \\
31
\end{array}
\] & \[
\begin{array}{r}
\text { SUN } \\
1
\end{array}
\] & \begin{tabular}{l}
NEEK \\
AVG
\end{tabular} & TOTAL \\
\hline 01:00 & 10 & . & 12 & 9 & 17 & 12 & 18 & 22 & 14 & 88 \\
\hline 02:00 & 3 & & 4 & 5 & \(\theta\) & 5 & 11 & 17 & 8 & 48 \\
\hline 03:00 & 8 & , & 2 & 4 & 4 & 4 & 8 & B & 5 & 34 \\
\hline 04:00 & 8 & & 6 & 4 & 5 & 5 & 7 & 3 & 5 & 33 \\
\hline 05:00 & 6 & & 9 & 5 & 7 & 6 & 1 & 3 & 5 & 31 \\
\hline 06:00 & 21 & & 16 & 19 & 16 & 18 & 6 & 5 & 13 & 83 \\
\hline 07:00 & 64 & & 81 & 65 & 51 & 65 & 16 & 9 & 47 & 286 \\
\hline 08:00 & 230 & & 243 & 246 & 93 & 203 & 36 & 30 & 146 & 878 \\
\hline 09:00 & 169 & & 179 & 167 & 111 & 156 & 56 & 45 & 121 & 727 \\
\hline 10:00 & 64 & & 94 & 101 & 80 & 84 & B2 & 63 & 80 & 494 \\
\hline 11:00 & 74 & & 76 & 89 & 77 & 79 & 114 & 77 & 84 & 507 \\
\hline 12:00 & 60 & & 70 & 81 & 107 & 79 & 114 & 87 & 86 & 519 \\
\hline 13:00 & 70 & & 79 & 91 & 101 & B5 & 100 & 79 & 86 & 520 \\
\hline 14:00 & 84 & & 02 & 75 & 104 & 86 & 112 & 109 & 94 & 566 \\
\hline 15:00 & 132 & 124 & 133 & 108 & 97 & 118 & 89 & 83 & 109 & 766 \\
\hline 16:00 & 137 & 126 & 167 & 137 & 119 & 137 & 105 & 91 & 126 & 882 \\
\hline 17:00 & 147 & 165 & 151 & 141 & 125 & 145 & 105 & 77 & 130 & 911 \\
\hline 18:00 & 165 & 171 & 161 & 153 & 142 & 158 & 99 & 78 & 138 & 969 \\
\hline 19:00 & 129 & 141 & 137 & 137 & 131 & 135 & 76 & 79 & 118 & 830 \\
\hline 20:00 & 82 & 79 & 91 & 84 & 95 & 86 & 102 & 95 & 89 & 628 \\
\hline 21:00 & 65 & 73 & 67 & 94 & 76 & 75 & 66 & 52 & 70 & 493 \\
\hline 22:00 & 37 & 58 & 50 & 50 & 73 & 53 & 50 & 42 & 51 & 360 \\
\hline 23:00 & 22 & 25 & 33 & 37 & 55 & 34 & 43 & 32 & 35 & 247 \\
\hline 24:00 & 24 & 18 & 19 & 27 & 21 & 21 & 36 & 11 & 22 & 156 \\
\hline
\end{tabular}

\[
\text { STA. } 18 \text { ES }
\]

Site Reference: 180060000513
Site ID: 000000180304
Location: BLUE HILL TERRACE ST. EAST OF RTE. 138 Direction: EAST

MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 2
Starting: \(3 / 27 / 2018\)






Site Reference: 180060000535
Site ID: 000000000501
Docation: RTE. 138 NO. OF BRUSH HILL RD. Direction: NORTH Lane: 1
\begin{tabular}{lllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}


Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 21.6 mph & 85th Percentile Speed 30.3 mph \\
\hline Median Speed
\[
26.2 \mathrm{mph}
\] & Average Speed 26.0 mph \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
19 mph to 29 mph \\
9866 vehicles in pace \\
Representing 77.5\% of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
13 \\
0.1 \%
\end{gathered}
\] \\
\hline
\end{tabular}

SPEED SUMMARY
Page: 3
Thu 3/29/2018

Site Reference: 180060000535
Site ID: 000000000501
Location: RTE. 138 NO. OF BRUSH hILL RD. Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 3 & 27 & 76 & 30 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 137 \\
\hline 02:00 & 0 & 3 & 19 & 25 & 11 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 59 \\
\hline 03:00 & 0 & 1 & 14 & 14 & 9 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 42 \\
\hline 04:00 & 0 & 1 & 18 & 27 & 13 & 3 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 64 \\
\hline 05:00 & 1 & 4 & 68 & 85 & 22 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 184 \\
\hline 06:00 & 14 & 204 & 292 & 148 & 16 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 678 \\
\hline 07:00 & 23 & 347 & 450 & 80 & 5 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 907 \\
\hline 08:00 & 35 & 382 & 429 & 86 & 5 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 939 \\
\hline 09:00 & 60 & 214 & 492 & 71 & 9 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 849 \\
\hline 10:00 & 61 & 193 & 394 & 113 & 6 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 769 \\
\hline 11:00 & 33 & 119 & 348 & 157 & 12 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 672 \\
\hline 12:00 & 23 & 91 & 359 & 139 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 619 \\
\hline 13:00 & 6 & 139 & 339 & 123 & 12 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 621 \\
\hline 14:00 & 18 & 122 & 369 & 125 & 9 & 0 & 1 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 2 & 652 \\
\hline 15:00 & - 40 & 130 & 368 & 111 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 666 \\
\hline 16:00 & 38 & 239 & 429 & 66 & 6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 779 \\
\hline 17:00 & 44 & 226 & 372 & 94 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 740 \\
\hline 18:00 & 29 & 257 & 358 & 77 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 729 \\
\hline 19:00 & 55 & 255 & 288 & 78 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 681 \\
\hline 20:00 & 54 & 219 & 191 & 63 & 6 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 538 \\
\hline 21:00 & 8 & 106 & 302 & 83 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 511 \\
\hline 22:00 & 7 & 92 & 283 & 98 & 5 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 487 \\
\hline 23:00 & 7 & 67 & 174 & 103 & 21 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 374 \\
\hline 24:00 & 5 & 23 & 126 & 96 & 10 & 2 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 265 \\
\hline Y total & 561 & 3437 & 6509 & 2138 & 247 & 23 & 7 & 4 & 6 & 6 & 4 & 8 & 0 & 1 & 11 & 12962 \\
\hline RCENTS & 4.48 & 26.6\% & 50.3\% & 16.58 & 2.08 & 0.2\% & 0.0\% & 0.0\% & 0.0\% & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


SPEED SUMMARY
Page: 4
Fri 3/30/2018

Site Reference: 180060000535
Site ID: 000000000501
Location: RTE. 138 NO. OF BRUSH HILL RD.
Direction: NORTH
Lane: 1
\begin{tabular}{llllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 日6+ & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 3 & 9 & 65 & 58 & 19 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 157 \\
\hline 02:00 & 2 & 3 & 39 & 42 & 12 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 99 \\
\hline 03:00 & 1 & 1 & 13 & 23 & 17 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 57 \\
\hline 04:00 & 0 & 0 & 12 & 27 & 14 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 54 \\
\hline 05:00 & 2 & 15 & 48 & 84 & 13 & 3 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 168 \\
\hline 06:00 & 17 & 98 & 205 & 173 & 2 C & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 525 \\
\hline 07:00 & 43 & 293 & 380 & 107 & 15 & 1 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 844 \\
\hline 08:00 & 34 & 214 & 376 & 103 & 4 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 734 \\
\hline 09:00 & 30 & 198 & 444 & 112 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 795 \\
\hline 10:00 & 11 & 273 & 340 & 95 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 728 \\
\hline 11:00 & 3 & 92 & 363 & 191 & 12 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . 664 \\
\hline 12:00 & 32 & 119 & 376 & 158 & 13 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 700 \\
\hline 13:00 & 43 & 208 & 403 & 102 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 761 \\
\hline 14:00 & 21 & 272 & 377 & 69 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 747 \\
\hline 15:00 & 37 & 383 & 267 & 56 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 747 \\
\hline 16:00 & 8 & 291 & 380 & 60 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 742 \\
\hline 17:00 & 139 & 213 & 302 & 54 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 709 \\
\hline 18:00 & 77 & 264 & 406 & 58 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 807 \\
\hline 19:00 & 14 & 217 & 409 & 137 & 11 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 789 \\
\hline 20:00 & 14 & 190 & 295 & 76 & 11 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 587 \\
\hline 21:00 & 2 & 141 & 315 & 92 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 556 \\
\hline 22:00 & 3 & 174 & 286 & 86 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 550 \\
\hline 23:00 & 6 & 85 & 278 & 91 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 464 \\
\hline 24:00 & 0 & 32 & 175 & 109 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 332 \\
\hline DAY TOTAL & 542 & 3785 & 6554 & 2163 & 243 & 18 & 4 & 0 & 5 & 1 & \({ }^{4}\) & 1 & 0 & 0 & 4 & 13324 \\
\hline PERCENTS & 4.18 & 28.5\% & 49.28 & 16.3\% & 1.8\% & 0.1\% & \(0.0 \%\) & 0.0\% & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 20.9 mph & 85th Eercentile Speed 30.0 mph \\
\hline \(\begin{aligned} & \text { Median } \text { Speed } \\ & 25.8 \mathrm{mph}\end{aligned}\) & \[
\begin{array}{ll}
\text { Average Speed } \\
& 25.5 \mathrm{mph}
\end{array}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
19 mph to 29 mph \\
10339 vehicles in pace \\
Representing \(77.5 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
9 \\
0.1 \%
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Sat 3/31/2018
Page: 5

File: SPD501.prn
City: MILTON
County: SPEED NB
Site Reference: 180060000535
Site ID: 000000000501
Location: RTE. 138 NO. OF BRUSH HILI RD.
Direction: NORTH

\section*{Lane: 1}
\begin{tabular}{lllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}


Statistical Information...


Page: 6 Sun 4/1/2018

Site Reference: 180060000535
Site ID: 000000000501
Location: RTE. 138 NO. OF BRUSH HILL RD. Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 2 & 8 & 137 & 104 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 268 \\
\hline 02:00 & 0 & 8 & 72 & 72 & 30 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 185 \\
\hline 03:00 & 1 & 1 & 43 & 55 & 13 & 5 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 121 \\
\hline 04:00 & 0 & 2 & 32 & 42 & 13 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 91 \\
\hline 05:00 & 0 & 1 & 17 & 36 & 13 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 71 \\
\hline 06:00 & 0 & 0 & 28 & 39 & 18 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 89 \\
\hline 07:00 & 0 & 0 & 45 & 77 & 46 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 176 \\
\hline 08:00 & 0 & 7 & 76 & 127 & 39 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 256 \\
\hline 09:00 & 1 & 9 & 94 & 200 & 57 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 367 \\
\hline 10:00 & 0 & 16 & 286 & 224 & 36 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 567 \\
\hline 11:00 & 5 & 69 & 364 & 261 & 37 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 737 \\
\hline 12:00 & 4 & 69 & 368 & 258 & 38 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 739 \\
\hline 13:00 & 2 & 63 & 459 & 226 & 13 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 765 \\
\hline 14:00 & 20 & 184 & 494 & 130 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 839 \\
\hline 15:00 & 5 & 118 & 525 & 155 & 9 & 4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 817 \\
\hline 16:00 & 15 & 154 & 408 & 158 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 749 \\
\hline 17:00 & 2 & 73 & 426 & 202 & 15 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 719 \\
\hline 18:00 & 7 & 112 & 479 & 188 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 800 \\
\hline 19:00 & 11 & 230 & 491 & 134 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 876 \\
\hline 20:00 & - 45 & 428 & 391 & 72 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 941 \\
\hline 21:00 & 40 & 300 & 383 & 60 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 789 \\
\hline 22:00 & 2 & 124 & 320 & 124 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 580 \\
\hline 23:00 & 0 & 41 & 201 & 130 & 18 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 391 \\
\hline 24:00 & 0 & 14 & 130 & 90 & 22 & 4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 261 \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 23.1 mph & 65th Percentile Speed 32.0 mph \\
\hline Median Speed 27.1 mph & \[
\begin{aligned}
& \text { Average Speed } \\
& 27.3 \mathrm{mph}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
24 mph to 34 mph \\
9433 vehicles in pace \\
Representing 77.3\% of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
30.0 \text { 울 }
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Mon 4/2/2018
Page: 7


\title{
MassDOT Highway Division
}

SPEED SUMMARY
Page: 8
Tue 4/3/2018

```

MassDOT Highway Division
SPEED SUMMARY
Page: 1
Tue 3/27/2018

```
Site Reference: 180060000461
STA. 5 SB
Site ID: 000000000502
Location: RTE. 138 NO. OE BRUSH HILL RD.
Direction: SOUTH
Lane: 1
    \(\begin{array}{lllllllllllllllllll}\text { TIME } & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 86+ & \text { Total }\end{array}\)
 Statistical Information...
\begin{tabular}{cc} 
15th Percentile Speed \\
8.8 mph & 85th Percentile Speed \\
28.1 mph
\end{tabular}

File: SPD502.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000461 Site ID: 000000000502 Location: RTE. 138 NO. OE BRUSH HILL RD. Direction: SOUTH Lane: 1
\begin{tabular}{llllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 2 & 21 & 51 & 42 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 117 \\
\hline 02:00 & 3 & 5 & 22 & 20 & 12 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 64 \\
\hline 03:00 & 1 & 2 & 14 & 18 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 43 \\
\hline 04:00 & 2 & 6 & 23 & 16 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 54 \\
\hline 05:00 & 9 & 12 & 35 & 27 & 10 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 96 \\
\hline 06:00 & 12 & 39 & 117 & 71 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 243 \\
\hline 07:00 & 40 & 92 & 167 & 77 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 382 \\
\hline 08:00 & 34 & 171 & 263 & 70 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 542 \\
\hline 09:00 & 51 & 189 & 283 & 56 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 585 \\
\hline 10:00 & 14 & 108 & 253 & 76 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 458 \\
\hline 11:00 & 37 & 162 & 249 & 50 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 508 \\
\hline 12:00 & 32 & 143 & 277 & 78 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 536 \\
\hline 13:00 & 59 & 183 & 297 & 60 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 609 \\
\hline 14:00 & 48 & 194 & 287 & 58 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 591 \\
\hline 15:00 & 227 & 187 & 180 & 50 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 647 \\
\hline 16:00 & 292 & 137 & 194 & 40 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 665 \\
\hline 17:00 & 617 & 3 & 9 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 632 \\
\hline 18:00 & 612 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 615 \\
\hline 19:00 & 663 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 667 \\
\hline 20:00 & 108 & 268 & 237 & 34 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 650 \\
\hline 21:00 & 22 & 229 & 285 & 38 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 575 \\
\hline 22:00 & 22 & 158 & 228 & 61 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 476 \\
\hline 23:00 & 8 & 71 & 161 & 53 & 4 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 299 \\
\hline 24:00 & 7 & 24 & 113 & 70 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 223 \\
\hline DAY TOTAL & 2922 & 2406 & 3748 & 1066 & 114 & 15 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10277 \\
\hline PERCENTS & 28.5\% & 23.5\% & 36.5\% & 10.38 & 1.1\% & 0.1\% & 0.0\% & 0.08 & 0.0\% & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 10.0 mph & B5th Percentile Speed 20.6 mph \\
\hline Median Speed 23.6 mph & Average Speed 21.2 mph \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
19 mph to 29 mph \\
6154 vehicles in pace \\
Representing \(59.8 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
0 \\
0.0 \%
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Thu 3/29/2018
Page: 3


Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 9.4 mph & 85th Percentile Speed 28.5 mph \\
\hline \[
\begin{aligned}
& \text { Median Speed } \\
& 23.1 \mathrm{mph}
\end{aligned}
\] & Average Speed 20.6 mph \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
19 mph to 29 mph \\
6083 vehicles in pace \\
Representing \(58.3 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
2 \\
0.08
\end{gathered}
\] \\
\hline
\end{tabular}

Site Reference: 180060000461
Site ID: 000000000502
Location: RTE. 138 NO. OF BRUSH HILL RD. Direction: SOUTH
\begin{tabular}{lllllll} 
TIME & 19 & 24 & 29 & 34 & 39
\end{tabular}

File: SPD502.prn City: MILTON
County: SPEED SB Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 5 & 35 & 75 & 41 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 160 \\
\hline 02:00 & 0 & 20 & 34 & 17 & 11 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B3 \\
\hline 03:00 & 1 & 10 & 27 & 29 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 73 \\
\hline 04:00 & 1 & 2 & 24. & 21 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 54 \\
\hline 05:00 & 4 & 14 & 34 & 47 & 11 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0. & 114 \\
\hline 06:00 & 9 & 41 & 88 & 63 & 12 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 219 \\
\hline 07:00 & 15 & 63 & 215 & 79 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 377 \\
\hline 08:00 & 78 & 198 & 199 & 36 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 515 \\
\hline 09:00 & 137 & 150 & 196 & 50 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 540 \\
\hline 10:00 & 59 & 174 & 222 & 58 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 516 \\
\hline 11:00 & 74 & 178 & 284 & 57 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 597 \\
\hline 12:00 & 68 & 175 & 304 & 55 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 604 \\
\hline 13:00 & 261 & 194 & 217 & 32 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 707 \\
\hline 14:00 & 473 & 140 & 82 & 8 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 705 \\
\hline 15:00 & 608 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 613 \\
\hline 16:00 & 603 & 1 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 609 \\
\hline 17:00 & 597 & 10 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 610 \\
\hline 18:00 & 607 & 7 & 2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 620 \\
\hline 19:00 & 188 & 238 & 223 & 38 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 689 \\
\hline 20:00 & 68 & 260 & 267 & 35 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 631 \\
\hline 21:00 & 54 & 199 & 209 & 42 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 510 \\
\hline 22:00 & 40 & 161 & 266 & 36 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 507 \\
\hline 23:00 & 3 & 138 & 251 & 57 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 453 \\
\hline 24:00 & 18 & 51 & 197 & 57 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 330 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline day total & 3971 & 2459 & 3419 & 860 & 100 & 14 & 9 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 10836 \\
\hline PERCENTS & 36.7\% & 22.7\% & 31.6\% & 8.0\% & 0.9\% & 0.18 & 0.0\% & 0.08 & 0.08 & 0.0\% & \(0.0 \%\) & 0.0\% & 0.08 & 0.08 & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


File: SPD502.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000461
Site ID: 000000000502
Location: RTE. 138 NO. OF BRUSH HILL RD.
Direction: SOUTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 4 & 37 & 115 & 50 & 4 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 213 \\
\hline 02:00 & 5 & 21 & 73 & 40 & 8 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 151 \\
\hline 03:00 & 0 & 7 & 36 & 32 & 8 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 84 \\
\hline 04:00 & 0 & 8 & 27 & 27 & 8 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 76 \\
\hline 05:00 & - 0 & 7 & 33 & 18 & 15 & 2 & \(\pm\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 76 \\
\hline 06:00 & 3 & 16 & 51 & 43 & 14 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 130 \\
\hline 07:00 & 2 & 22 & 109 & 72 & 25 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 235 \\
\hline 08:00 & 8 & 25 & 161 & 132 & 28 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 356 \\
\hline 09:00 & 14 & 54 & 220 & 135 & 19 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 445 \\
\hline 10:00 & 20 & 105 & 335 & 117 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 590 \\
\hline 11:00 & 56 & 131 & 301 & 94 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 587 \\
\hline 12:00 & 42 & 93 & 330 & 121 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 591 \\
\hline 13:00 & 75 & 188 & 322 & 110 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 704 \\
\hline 14:00 & 418 & 67 & 116 & 25 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 628 \\
\hline 15:00 & 434 & 82 & 136 & 25 & 0 & 1 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 682 \\
\hline 16:00 & 187 & 166 & 278 & 70 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 707 \\
\hline 17:00 & 67 & 165 & 398 & 84 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 717 \\
\hline 18:00 & 62 & 149 & 306 & 100 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 628 \\
\hline 19:00 & 35 & 201 & 345 & 72 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 663 \\
\hline 20:00 & 58 & 252 & 241 & 41 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 596 \\
\hline 21:00 & 42 & 232 & 202 & 25 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 507 \\
\hline 22:00 & 14 & 116 & 206 & 51 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 393 \\
\hline 23:00 & 14 & 109 & 208 & 40 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 373 \\
\hline 24:00 & 9 & 70 & 192 & 60 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 336. \\
\hline DAY TOTAL & 1569 & 2323 & 4741 & 1584 & 210 & 29 & B & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10468 \\
\hline PERCENTS & 15.0\% & \(22.2 \%\) & 45.3\% & 15.28 & 2.18 & 0.28 & 0.0\% & \(0.0 \%\) & 0.0\% & 0.0\% & \(0.0 \%\) & \(0.0 \%\) & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


Site Reference: 180060000461
Site ID: 000000000502
Location: RTE. 138 NO. OF BRUSH HILL RD. Direction: SOUTH
Lane: 1
\begin{tabular}{llllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}


Statistical Information...
\begin{tabular}{lr} 
15th Percentile Speed \\
20.5 mph & 85th Percentile Speed \\
30.1 mph
\end{tabular}

File: SPD502.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000461
Site ID: 000000000502
Location: RTE. 136 NO. OF BRUSH HILL RD. Direction: SOUTH Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 14 & 72 & 37 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 130 \\
\hline 02:00 & 0 & 3 & 24 & 29 & 6 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 64 \\
\hline 03:00 & 0 & 5 & 16 & 14 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 46 \\
\hline 04:00 & 0 & 7 & 19 & 21 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 52 \\
\hline 05:00 & 1 & 5 & 21 & 34 & 13 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 75 \\
\hline 06:00 & 3 & 37 & 101 & 58 & 23 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 226 \\
\hline 07:00 & 9 & 42 & 163 & 119 & 12 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 08:00 & 26 & 150 & 278 & 78 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 542 \\
\hline 09:00 & 110 & 141 & 194 & 46 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 495 \\
\hline 10:00 & 11 & 97 & 246 & 75 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 432 \\
\hline 11:00 & 28 & 127 & 196 & 69 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 426 \\
\hline 12:00 & 35 & 77 & 230 & 88 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 436 \\
\hline 13:00 & 36 & 110 & 262 & 78 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 492 \\
\hline 14:00 & 147 & 148 & 202 & 62 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 564 \\
\hline 15:00 & 174 & 200 & 245 & 46 & 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 672 \\
\hline 16:00 & 170 & 192 & 273 & 36 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 676 \\
\hline 17:00 & 257 & 114 & 221 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 656 \\
\hline 18:00 & 79 & 220 & 321 & 86 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 709 \\
\hline 19:00 & 21 & 165 & 301 & 87 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 581 \\
\hline 20:00 & 25 & 137 & 242 & 47 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 455 \\
\hline 21:00 & 7 & 98 & 242 & 50 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 406 \\
\hline 22:00 & 6 & 78 & 197 & 64 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 349 \\
\hline 23:00 & 5 & 47 & 142 & 53 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 252 \\
\hline 24:00 & 3 & 25 & 105 & 60 & 10 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 205 \\
\hline DAY TOTAL & 1153 & 2239 & 4313 & 1401 & 162 & 16 & \(0{ }^{2}\) & \({ }^{0}\) & 0 & - 1 & \({ }^{0}\) & 0 & 0 & 0 & - 0 & 9287 \\
\hline PERCENTS & 12.5\% & 24.2\% & 46.5\% & 15.08 & 1.7\% & \(0.1 \%\) & 0.08 & 0.0\% & 0.0\% & 0.08 & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


\section*{MassDOT Highway Division \\ SPEED SUMMARY}

Page: 8
Tue 4/3/2018


Site Reference: 180060000532
Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY
Direction: NORTH
Lane: 1

File: SPDB028_NB.prn
City: MILTON
County: SPEED NB

Lane: 1
TIME \(\quad 19 \quad 24\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 9 & 4 & 16 & 36 & 12 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 79 \\
\hline 02:00 & 2 & 0 & 5 & 14 & 7 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 30 \\
\hline 03:00 & 2 & 1 & 11 & 8 & 5 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 \\
\hline 04:00 & 2 & 0 & 6 & 9 & 7 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 28 \\
\hline 05:00 & 5 & 5 & 8 & 35 & 24 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 80 \\
\hline 06:00 & 19 & 30 & 108 & 120 & 34 & 8 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 322 \\
\hline 07:00 & 30 & 23 & 128 & 206 & 39 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 2 & 433 \\
\hline 08:00 & 44 & 39 & 208 & 180 & 36 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 4 & 518 \\
\hline 09:00 & 28 & 33 & 225 & 203 & 29 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 519 \\
\hline 10:00 & 32 & 40 & 212 & 180 & 37 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 504 \\
\hline 11:00 & 33 & 22 & 162 & 164 & 27 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 410 \\
\hline 12:00 & 35 & 5 & 78 & 153 & 43 & 1 & 0 & 1 & 0 & 0 & 5 & 2 & 0 & 0 & 0 & 323 \\
\hline 13:00 & 35 & 8 & 107 & 147 & 50 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 351 \\
\hline 14:00 & 38 & \(B\) & 82 & 196 & 55 & 2 & 0 & 0 & 0 & 0 & 3 & 2 & 0 & 0 & 0 & 386 \\
\hline 15:00 & 28 & 5 & 95 & 156 & 55 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 344 \\
\hline 16:00 & 46 & 20 & 128 & 183 & 44 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 1 & 0 & 0 & 425 \\
\hline 17:00 & 21 & 15 & 139 & 178 & 40 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 393 \\
\hline 18:00 & 43 & 12 & 128 & 178 & 37 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 1 & 2 & 1 & 407 \\
\hline 19:00 & 24 & 30 & 161 & 160 & 17 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 393 \\
\hline 20:00 & 21 & 15 & 143 & 154 & 23 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 358 \\
\hline 21:00 & 11 & 25 & 114 & 138 & 38 & 5 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 333 \\
\hline 22:00 & 17 & 12 & 93 & 149 & 30 & 5 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 308 \\
\hline 23:00 & 17 & 10 & 48 & 120 & 29 & 7 & 2 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 236 \\
\hline 24:00 & 4 & 0 & 39 & 68 & 12 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 128 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrrrr} 
DAY TOTAL & 546 & 362 & 2444 & 3135 & 730 & 53 & 12 & 5 & 6 & 6 & 14 & 6 & 5 & 2 & 12 \\
PERCENTS & \(7.5 \%\) & \(5.0 \%\) & \(33.4 \%\) & \(42.8 \%\) & \(10.0 \%\) & \(0.8 \%\) & \(0.2 \%\) & \(0.1 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(0.1 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(0.1 \%\) \\
\hline
\end{tabular}

Statistical Information...
15th Percentile Speed
\(\quad 24.4 \mathrm{mph}\)
Median Speed

29.5 mph
10 MPH Pace Speed

24 mph to 34 mph

5579 vehicles in pace
Representing \(76.0 \%\) of the total vehicles
85th Percentile Speed
33.6 mph
Average \begin{tabular}{c} 
Speed \\
28.5 mph \\
Vehicles \(>\) \\
39 \\
0.55 MRH \\
\(0.5 \%\)
\end{tabular}


SPEED SUMMARY
Fri 3/30/2018
Page: 4

Site Reference: 180060000532 Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: NORTH Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & 19 & 24 & 29 & 34 & 39 & 44 & 9 & 54 & 59 & 64 & 69 & 74 & 9 & 85 & \(6+\) & Tota \\
\hline 01:00 & 2 & 6 & 30 & 39 & 23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 100 \\
\hline 02:00 & 1 & 2 & 14 & 36 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 67 \\
\hline 03:00 & 4 & 2 & 6 & 11 & 10 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 38 \\
\hline 04:00 & 3 & 0 & 3 & 14 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 38 \\
\hline 05:00 & 4 & 1 & 9 & 41 & 16 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 79 \\
\hline 06:00 & 16 & 6 & 67 & 129 & 42 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 270 \\
\hline 07:00 & 41 & 32 & 134 & 171 & 47 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 431 \\
\hline 08:00 & 41 & 31 & 181 & 169 & 35 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 461 \\
\hline 09:00 & 42 & 18 & 178 & 197 & 39 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 475 \\
\hline 10:00 & 27 & 32 & 146 & 202 & 30 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 439 \\
\hline 11:00 & 26 & 6 & 101 & 210 & 61 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 406 \\
\hline 12:00 & 33 & 15 & 121 & 200 & 54 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 427 \\
\hline 13:00 & 22 & 31 & 153 & 185 & 48 & 4 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 449 \\
\hline 14:00 & 16 & 37 & 145 & 211 & 35 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 448 \\
\hline 15:00 & 27 & 63 & 229 & 118 & 14 & 1 & 0 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 455 \\
\hline 16:00 & 25 & 44 & 215 & 140 & 19 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 446 \\
\hline 17:00 & 40 & 67 & 226 & 110 & 17 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 462 \\
\hline 18:00 & 26 & 54 & 217 & 190 & 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 502 \\
\hline 19:00 & 34 & 21 & 160 & 222 & 68 & 0 & 0 & 0 & - 0 & 0 & 0 & 0 & 0 & 0 & 0 & 505 \\
\hline 20:00 & 22 & 20 & 122 & 152 & 29 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 21:00 & 21 & 20 & 125 & 138 & 19 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 328 \\
\hline 22:00 & 18 & 19 & 133 & 135 & 20 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 327 \\
\hline 23:00 & 11 & 9 & 111 & 152 & 22 & 3 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 310 \\
\hline 24:00 & 9 & 1 & 57 & 86 & 28 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 183 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY TOTAL & 511 & 537 & 2883 & 3258 & 723 & 47 & 6 & 3 & 4 & 3 & 2 & 7 & 1 & 2 & 5 & 7992 \\
\hline PERCENTS & 6.48 & 6.8\% & 36.18 & 40.8\% & 9.18 & \(0.6 \%\) & 0.1\% & 0.1\% & 0.08 & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.08 & 0.0\% & 1008 \\
\hline
\end{tabular}

Statistical Information...
\(\left.\begin{array}{l}\text { 15th Percentile Speed } \\
\\
24.3 \mathrm{mph}\end{array}\right\}\)\begin{tabular}{rl} 
Median Speed \\
& 29.1 mph \\
10 MPH & Pace Speed \\
24 mph to 34 mph \\
& 6141 vehicles in pace \\
Representing \(76.8 \%\) of the total vehicles
\end{tabular}

File: SPD802B_NB.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000532 Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: NORTH Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 6 & 5 & 28 & 80 & 30 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 152 \\
\hline 02:00 & 6 & 1 & 15 & 37 & 17 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 78 \\
\hline 03:00 & 4 & 1 & 18 & 34 & 17 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 78 \\
\hline 04:00 & 2 & 1 & 15 & 33 & 1日 & 3 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 74 \\
\hline 05:00 & 3 & 0 & 11 & 24 & 13 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 58 \\
\hline 06:00 & 7 & 0 & 11 & 30 & 25 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 79 \\
\hline 07:00 & 11 & 1 & 16 & 85 & 44 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 161 \\
\hline 09:00 & 14 & 0 & 33 & 107 & 45 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 203 \\
\hline 09:00 & 34 & 12 & 48 & 165 & 76 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 10:00 & 24 & 8 & 52 & 185 & 84 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 356 \\
\hline 11:00 & 38 & 6 & 83 & 184 & 78 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 397 \\
\hline 12:00 & 23 & 11 & 74 & 207 & 70 & 16 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 402 \\
\hline 13:00 & 25 & 9 & 121 & 212 & 66 & 4 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 1 & 442 \\
\hline 14:00 & 45 & 11 & 135 & 232 & 66 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 491 \\
\hline 15:00 & 39 & 12 & 110 & 230 & - 53 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 445 \\
\hline 16:00 & 31 & 10 & 118 & 237 & 89 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 493 \\
\hline 17:00 & 39 & 6 & 116 & 239 & 64 & 3 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 468 \\
\hline 18:00 & 27 & 4 & 76 & 205 & 105 & 14 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 433 \\
\hline 19:00 & 31 & 5 & 91 & 256 & 68 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 456 \\
\hline 20:00 & 19 & 12 & 102 & 203 & 42 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 380 \\
\hline 21:00 & 18 & 23 & 113 & 127 & 44 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 329 \\
\hline 22:00 & 11 & 8 & 120 & 138 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 294 \\
\hline 23:00 & 21 & 13 & 105 & 140 & 19 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 306 \\
\hline 24:00 & 14 & 4 & 62 & 116 & 32 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 230 \\
\hline DAY TOTAL & 492 & 163 & 1673 & 3506 & 1182 & 114 & 10 & 3 & 0 & 0 & 5 & 0 & 0 & 2 & 1 & 7151 \\
\hline PERCENTS & 6.9\% & 2.38 & 23.4. & 49.1\% & 16.6\% & 1.6\% & 0.1\% & 0.0\% & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...
\(\left.\begin{array}{lr}\text { 15th Percentile Speed } \\ 25.3 \mathrm{mph} & \text { 日5th Percentile Speed } \\ 35.0 \mathrm{mph}\end{array}\right)\)

File: SPD8028_NB.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000532
Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY RKWY Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 13 & 2 & 36 & 95 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 164 \\
\hline 02:00 & 5 & 1 & 32 & 61 & 14 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 118 \\
\hline 03:00 & 2 & 3 & 23 & 34 & 17 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 84 \\
\hline 04:00 & 4 & 3 & 11 & 25 & 11 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 57 \\
\hline 05:00 & 3 & 0 & 4 & 17 & 11 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 39 \\
\hline 06:00 & 2 & 1 & 3 & 21 & 18 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 47 \\
\hline 07:00 & 6 & 3 & 8 & 28 & 43 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 95 \\
\hline 08:00 & 12 & 4 & 17 & 55 & 48 & 10 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 150 \\
\hline 09:00 & 12 & 1 & 18 & 107 & 73 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 218 \\
\hline 10:00 & 21 & 2 & 49 & 167 & 90 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 339 \\
\hline 11:00 & 40 & 0 & 80 & 223 & 84 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 438 \\
\hline 12:00 & 39 & 5 & 46 & 203 & 96 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 399 \\
\hline 13:00 & 23 & 1 & 81 & 198 & 79 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 389 \\
\hline 14:00 & 31 & 14 & 124 & 223 & 54 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 455 \\
\hline 15:00 & 29 & 11 & 135 & 221 & 60 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 458 \\
\hline 16:00 & 24 & 8 & 119 & 206 & 59 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 423 \\
\hline 17:00 & 40 & 5 & 70 & 246 & 66 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 432 \\
\hline 18:00 & 41 & 14 & 98 & 207 & 66 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 432 \\
\hline 19:00 & 33 & 26 & 161 & 247 & 61 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 529 \\
\hline 20:00 & 26 & 39 & 242 & 202 & 44 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 557 \\
\hline 21:00 & 24 & 45 & 223 & 157 & 22 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 474 \\
\hline 22:00 & 12 & 28 & 137 & 178 & 25 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 383 \\
\hline 23:00 & 13 & 14 & 94 & 103 & 33 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 259 \\
\hline 24:00 & 10 & 1 & 40 & 81 & 26 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 165 \\
\hline dAY total & 465 & 231 & 1851 & 3305 & \({ }_{1}^{1116}\) & 107 & 22 & 0 & \(0^{3}\) & 0.1 & 0 & 0 & 0 & 0 & 0.08 & 7104 \\
\hline PERCENTS & 6.6\% & 3.3\% & 26.18 & 46.5\% & 15.7\% & 1.5\% & 0.3\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.08 & 1008 \\
\hline
\end{tabular}

Statistical Information...


File: SPD8028_NB.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000532
Site ID: 000000000701
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: NORTH Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 3 & 1 & 22 & 47 & 15 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 91 \\
\hline 02:00 & 3 & 3 & 4 & 11 & 13 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 \\
\hline 03:00 & 3 & 0 & 5 & 18 & 日 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 \\
\hline 04:00 & 1 & 1 & 6 & 20 & 12 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 46 \\
\hline 05:00 & 8 & 1 & 4 & 31 & 24 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 74 \\
\hline 06:00 & 25 & 15 & 78 & 139 & 48 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 311 \\
\hline 07:00 & 33 & 15 & 168 & 179 & 51 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 450 \\
\hline 08:00 & 44 & 41 & 214 & 194 & 48 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 543 \\
\hline 09:00 & 32 & 30 & 206 & 208 & 31 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 507 \\
\hline 10:00 & 19 & 22 & 192 & 210 & 34 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 477 \\
\hline 11:00 & 19 & 22 & 134 & 175 & 37 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 391 \\
\hline 12:00 & 23 & 6 & 106 & 177 & 37 & 4 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 355 \\
\hline 13:00 & 20 & 7 & 100 & 156 & 43 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 329 \\
\hline 14:00 & 22 & 7 & 67 & 187 & 62 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 15:00 & 23 & 5 & 78 & 216 & 50 & 3 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 379 \\
\hline 16:00 & 20 & 13 & 142 & 189 & 42 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 408 \\
\hline 17:00 & 24. & 13 & 120 & 197 & 48 & 4 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 408 \\
\hline 18:00 & 30 & 12 & 115 & 204 & 48 & 4 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 415 \\
\hline 19:00 & 26 & 8 & 59 & 196 & 65 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 359 \\
\hline 20:00 & 12 & 10 & 79 & 154 & 47 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 306 \\
\hline 21:00 & 11 & 2 & 86 & 132 & 23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 254 \\
\hline 22:00 & 14 & 11 & 74 & 114 & 47 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 261 \\
\hline 23:00 & 10 & 3 & 37 & 76 & 40 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 168 \\
\hline 24:00 & 7 & 3 & 21 & 66 & 18 & 5 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 122 \\
\hline DAY TOTAL & 432 & 251 & 2117 & 3296 & 891 & 72 & 3 & 0 & 4 & 3 & 2 & 4 & 0 & 0 & 0 & 7075 \\
\hline PERCENTS & 6.28 & 3.6\% & 30.0\% & \(46.6 \%\) & 12.6\% & 1.0\% & 0.0\% & 0.0\% & 0.0\% & 0.08 & 0.0\% & 0.0\% & \(0.0 \%\) & 0.0\% & 0.0\% & \(100 \%\) \\
\hline
\end{tabular}

\section*{Statistical Information...}


File: SPD8028_NB.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000532
Site ID: 000000000701
Location: RTE. 138 NO. Of NEPONSET VALLEY PKWY Direction: NORTH Lane: 1
\begin{tabular}{lllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 4 & 0 & 19 & 50 & 12 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 86 \\
\hline 02:00 & 0 & 0 & 8 & 20 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 37 \\
\hline 03:00 & 0 & 0 & 9 & 21 & 7 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 \\
\hline 04:00 & 1 & 0 & 5 & 14 & 16 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 \\
\hline 05:00 & 1 & 4 & 9 & 36 & 22 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 75 \\
\hline 06:00 & 20 & 4 & 74 & 153 & 57 & 6 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 319 \\
\hline 07:00 & 26 & 19 & 163 & 238 & 52 & 7 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 509 \\
\hline 08:00 & 37 & 40 & 186 & 197 & 44 & 2 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 512 \\
\hline 09:00 & 55 & 56 & 204 & 193 & 51 & 6 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 567 \\
\hline 10:00 & 36 & 36 & 140 & 225 & 61 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 502 \\
\hline DAY TOTAL & 180 & 159 & 817 & 1147 & 331 & 32 & 2 & 4 & 1 & 2 & 4 & 4 & 1 & 2 & 1 & 2687 \\
\hline PERCENTS & 6.78 & \(6.0 \%\) & 30.5\% & 42.7\% & 12.4\% & 1.2\% & 0.18 & 0.2\% & 0.0\% & 0.0\% & 0.18 & 0.1\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

\section*{Statistical Information...}


85th Percentile Speed
33.9 mph

Average Speed
28.9 mph

Vehicles > 65 MPH
12
\(0.4 \%\)
    Representing \(73.0 \%\) of the total vehicles


Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 31.2 mph & 85th Percentile Speed 43.4 mph \\
\hline Median Speed 37.9 mph & Average Speed 37.1 mph \\
\hline ```
10 MPH Pace Speed
    34 mph to 44 mph
    3354 vehicles in pace
    Representing 66.1% of the total vehicles
``` & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
2 \\
0.0 \%
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{MassDOT Highway Division}

SPEED SUMMARY
Wed 3/28/2018
Page: 2
Site Reference: 180060000822
Site ID: 000000000702
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY
Direction: SOUTH
Lane: 1

File: SPD8028.prn
City: MILTON
County: SPEED SB

Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota \\
\hline 01:00 & 0 & 0 & 0 & 2 & 12 & 33 & 22 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 74 \\
\hline 02:00 & 0 & 0 & 0 & 1 & 7 & 9 & 12 & 8 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 41 \\
\hline 03:00 & 0 & 0 & 0 & 1 & 0 & 6 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 22 \\
\hline 04:00 & 0 & 0 & 0 & 1 & 6 & 3 & 16 & 7 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 35 \\
\hline 05:00 & 0 & 0 & 0 & 2 & 10 & 22 & 18 & 8 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 66 \\
\hline 06:00 & 0 & 0 & 1 & 4 & 32 & 82 & 35 & 14 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 171 \\
\hline 07:00 & 0 & 1 & 6 & 19 & 99 & 125 & 66 & 22 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 339 \\
\hline 08:00 & 0 & 0 & 6 & 55 & 182 & 177 & 68 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 500 \\
\hline 09:00 & 0 & 0 & 4 & 72 & 215 & 170 & 53 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 520 \\
\hline 10:00 & 0 & 0 & 1 & 43 & 128 & 128 & 57 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 364 \\
\hline 11:00 & 0 & 5 & 6 & 61 & 135 & 127 & 42 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 386 \\
\hline 12:00 & 0 & 0 & 5 & 50 & 136 & 140 & 49 & 11 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 392 \\
\hline 13:00 & 0 & 1 & 7 & 54 & 181 & 198 & 62 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 520 \\
\hline 14:00 & 1 & 0 & 4 & 68 & 142 & 164 & 58 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 446 \\
\hline 15:00 & 1 & 1 & 14 & 78 & 208 & 160 & 46 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 520 \\
\hline 16:00 & 29 & 25 & 35 & 91 & 149 & 117 & 51 & 7 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 506 \\
\hline 17:00 & 15 & 36 & 88 & 141 & 131 & 34 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 456 \\
\hline 10:00 & 119 & 28 & 61 & 88 & 91 & 47 & 9 & 3 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 452 \\
\hline 19:00 & 236 & 79 & 85 & 63 & 39 & 4 & 4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 512 \\
\hline 20:00 & 0 & 1 & 8 & 63 & 226 & 167 & 43 & 5 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 516 \\
\hline 21:00 & 0 & 0 & 4 & 62 & 219 & 152 & 25 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 468 \\
\hline 22:00 & 0 & 0 & 0 & 41 & 176 & 146 & 38 & 3 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 407 \\
\hline 23:00 & 0 & 0 & 0 & 11 & 60 & 116 & 44 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 241 \\
\hline 24:00 & 0 & 0 & 0 & 0 & 21 & 70 & 61 & 13 & 5 & 0 & 1 & 1 & 0 & 0 & 0 & 172 \\
\hline DAY TOTAL & 401 & 177 & 335 & 1071 & 2605 & 2397 & 893 & 196 & 35 & 8 & 4 & 2 & 0 & 0 & 2 & 8126 \\
\hline PERCENTS & 5.08 & 2.2\% & 4.2\% & 13.2\% & 32.18 & 29.5\% & 11.0\% & 2.4\% & 0.4\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


File: SPD8028.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000822
Site ID: 000000000702
Location: RTE. 138 NO. OF NEPONSET VALLEY RKWY Direction: SOUTH Lane: 1
\begin{tabular}{llllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 1 & 0 & 1 & 21 & 40 & 34 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 108 \\
\hline 02:00 & 0 & 0 & 0 & 1 & 5 & 19 & 13 & 5 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 46 \\
\hline 03:00 & 0 & 0 & 0 & 1 & 6 & 7 & 11 & 7 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 34 \\
\hline 04:00 & 0 & 0 & 0 & 1 & 4 & 4 & 9 & 6 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 28 \\
\hline 05:00 & 0 & 0 & 0 & 1 & 3 & 20 & 18 & 15 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 63 \\
\hline 06:00 & 0 & 0 & 0 & 1 & 22 & 56 & 49 & 22 & 6 & 1 & 1 & 0 & 0 & 0 & 0 & 158 \\
\hline 07:00 & 1 & 0 & 0 & 17 & 68 & 147 & 91 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 335 \\
\hline 08:00 & 1 & 0 & 17 & 51 & 152 & 177 & 62 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 470 \\
\hline 09:00 & 0 & 0 & 8 & 52 & 112 & 202 & 81 & 20 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 476 \\
\hline 10:00 & 0 & 0 & 13 & 50 & 143 & 138 & 56 & 7 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 408 \\
\hline 11:00 & 0 & 1 & 8 & 60 & 101 & 127 & 49 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 355 \\
\hline 12:00 & 0 & 4 & 16 & 56 & 165 & 150 & 42 & 7 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 443 \\
\hline 13:00 & 3 & 2 & 11 & 63 & 231 & 161 & 41 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 517 \\
\hline 14:00 & 9 & 3 & 14 & 71 & 157 & 152 & 40 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 453 \\
\hline 15:00 & 1 & 2 & 22 & 95 & 220 & 181 & 33 & 5 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 563 \\
\hline 16:00 & 4 & 1 & 34 & 89 & 225 & 144 & 32 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 536 \\
\hline 17:00 & 33 & 24 & 29 & 日1 & 158 & 95 & 29 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 450 \\
\hline 10:00 & 34 & 17 & 58 & 93 & 172 & 79 & 27 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 482 \\
\hline 19:00 & 465 & 13 & 5 & 10 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 497 \\
\hline 20:00 & 18 & 0 & 12 & 101 & 239 & 126 & 24 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 522 \\
\hline 21:00 & 0 & 0 & 1 & 81 & 216 & 114 & 46 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 463 \\
\hline 22:00 & 0 & 0 & 7 & 34 & 173 & 120 & 43 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 381 \\
\hline 23:00 & 0 & 0 & 0 & 30 & 108 & 99 & 31 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 275 \\
\hline 24:00 & 0 & 0 & 0 & 6 & 63 & 96 & 38 & 9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 213 \\
\hline DAY TOTAL & 569
6.98 & \[
\begin{array}{r}
68 \\
0.98
\end{array}
\] & \[
255
\] & \[
\begin{array}{r}
1046 \\
12.7 \%
\end{array}
\] & \[
\begin{array}{r}
2764 \\
33.49
\end{array}
\] & \[
\begin{array}{r}
2454 \\
29.78
\end{array}
\] & \[
\begin{array}{r}
899 \\
10.8 \%
\end{array}
\] & \[
\begin{array}{r}
175 \\
2.18
\end{array}
\] & \[
\begin{array}{r}
34 \\
0.48
\end{array}
\] & \[
\begin{array}{r}
6 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
5 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
0.08
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{aligned}
& 8276 \\
& 100 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 30.7 mph & 85th Percentile Speed 43.8 mph \\
\hline Median Speed 38.0 mph & \[
\begin{aligned}
& \text { Average Speed } \\
& 36.6 \mathrm{mph}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
34 mph to 44 mph \\
5218 vehicles in pace \\
Representing \(63.0 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
6 \\
0.18
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Site Reference: 180060000822 & File: SPD8028.prn \\
Site ID: 000000000702 & City: MILTON
\end{tabular}

Location: RTE. \(\pm 38\) NO. OF NEPONSET VALLEY RKWY Direction: SOUTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 0 & 0 & 4 & 32 & 58 & 21 & 11 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 129 \\
\hline 02:00 & 0 & 0 & 0 & 3 & 15 & 17 & 11 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 51 \\
\hline 03:00 & 0 & 0 & 0 & 9 & 9 & 12 & 19 & 9 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 61 \\
\hline 04:00 & 0 & 0 & 0 & 1 & 6 & 7 & 17 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 40 \\
\hline 05:00 & 0 & 0 & 0 & 3 & 7 & 16 & 21 & 17 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 71 \\
\hline 06:00 & 0 & 0 & 2 & 8 & 19 & 44 & 45 & 25 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 148 \\
\hline 07:00 & 0 & 0 & 0 & 4 & 73 & 150 & 50 & 18 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 299 \\
\hline 08:00 & 3 & 3 & 18 & 53 & 148 & 119 & 57 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 417 \\
\hline 09:00 & 0 & 0 & 22 & 68 & 153 & 159 & 59 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 467 \\
\hline 10:00 & 0 & 11 & 12 & 60 & 135 & 140 & 40 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 403 \\
\hline 11:00 & 0 & 0 & 22 & 59 & 167 & 145 & 49 & 13 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 456 \\
\hline 12:00 & 0 & 1 & 4 & 49 & 189 & 172 & 56 & 4 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 478 \\
\hline 13:00 & 0 & 3 & 17 & 97 & 253 & 167 & 34 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 575 \\
\hline 14:00 & 17 & 9 & 44 & 116 & 241 & 136 & 37 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 604 \\
\hline 15:00 & 442 & 27 & 18 & 13 & B & 3 & 2 & 3 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 518 \\
\hline 16:00 & 471 & 2 & 2 & 4 & 0 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 484 \\
\hline 17:00 & 407 & 2 & 2 & 12 & 4 & 6 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 436 \\
\hline 18:00 & 292 & 17 & 35 & 27 & 40 & 9 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 428 \\
\hline 19:00 & 0 & 6 & 24 & 66 & 194 & 156 & 30 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 482 \\
\hline 20:00 & 0 & 0 & 4 & 86 & 222 & 135 & 26 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 475 \\
\hline 21:00 & 0 & 0 & 4 & 66 & 185 & 114 & 28 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 399 \\
\hline 22:00 & 0 & 0 & 12 & 52 & 167 & 144 & 28 & 9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 413 \\
\hline 23:00 & 0 & 0 & 1 & 45 & 132 & 124 & 49 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 358 \\
\hline 24:00 & 0 & 0 & 0 & 17 & 88 & 95 & 42 & 14 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 257 \\
\hline dAY total & 1632 & 81 & 243 & 922 & 2487 & 2129 & 725 & 186 & 33 & 4 & 0 & 3 & 2 & 1 & 1 & 8449 \\
\hline PERCENTS & 19.4\% & 1.08 & 2.9\% & 11.0\% & 29.5\% & 25.2\% & 8.5\% & 2.2\% & 0.3\% & 0.0\% & 0.08 & 0.0\% & \(0.0 \%\) & 0.08 & 0.08 & 1008 \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 14.8 mph & B5th Percentile Speed 43.3 mph \\
\hline \[
\begin{aligned}
& \text { Median Speed } \\
& 36.7 \mathrm{mph}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Average Speed } \\
& 32.9 \mathrm{mph}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
34 mph to 44 mph \\
4616 vehicles in pace \\
Representing 54.6\% of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
7 \\
0.1 \%
\end{gathered}
\] \\
\hline
\end{tabular}

Site Reference: 180060000822
Site ID: 000000000702
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY Direction: SOUTH Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 5 & \(86+\) & Tota \\
\hline 01:00 & 0 & 1 & 0 & 15 & 40 & 64 & 34 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 161 \\
\hline 02:00 & 0 & 0 & 0 & 5 & 29 & 48 & 27 & 11 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 124 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 14 & 19 & 16 & 8 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 60 \\
\hline 04:00 & 0 & 0 & 0 & 1 & 6 & 17 & 19 & 8 & 6 & 1 & 1 & 0 & 0 & 0 & 0 & 59 \\
\hline 05:00 & 0 & 0 & 0 & 0 & 6 & 15 & 13 & 11 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 51 \\
\hline 06:00 & 0 & 0 & 0 & 1 & 8 & 27 & 28 & 14 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 82 \\
\hline 07:00 & 0 & 0 & 0 & 3 & 34 & 53 & 40 & 28 & 4 & 1 & 1 & 0 & 0 & 0 & 0 & 164 \\
\hline 08:00 & 1 & 0 & 0 & 5 & 43 & 119 & 67 & 29 & 8 & 3 & 0 & 0 & 0 & 0 & 0 & 275 \\
\hline 09:00 & 0 & 0 & 2 & 17 & 83 & 121 & 95 & 25 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 10:00 & 0 & 0 & 0 & 17 & 141 & 174 & 81 & 13 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 429 \\
\hline 11:00 & 0 & 0 & 0 & 13 & 124 & 198 & 94 & 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 448 \\
\hline 12:00 & 3 & 0 & 6 & 19 & 139 & 181 & 75 & 10 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 437 \\
\hline 13:00 & 0 & 1 & 0 & 33 & 181 & 226 & 91 & 15 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 550 \\
\hline 14:00 & 3 & 6 & 15 & 81 & 209 & 182 & 44 & 4 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 546 \\
\hline 15:00 & 1 & 2 & 21 & 95 & 185 & 148 & 59 & 10 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 523 \\
\hline 16:00 & 0 & 0 & 1 & 68 & 185 & 229 & 71 & 7 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 563 \\
\hline 17:00 & 0 & 1 & 3 & 38 & 188 & 233 & 71 & 14 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 550 \\
\hline 18:00 & 0 & 0 & 0 & 58 & 185 & 171 & 67 & 9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 491 \\
\hline 19:00 & 0 & 1 & 5 & 70 & 221 & 161 & 42 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 508 \\
\hline 20:00 & 0 & 0 & 3 & 55 & 241 & 135 & 41 & B & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 483 \\
\hline 21:00 & 0 & 0 & 4 & 74 & 185 & 113 & 25 & 7 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 409 \\
\hline 22:00 & 0 & 0 & 0 & 22 & 106 & 140 & 38 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 311 \\
\hline 23:00 & 0 & 0 & 2 & 32 & 131 & 116 & 39 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 326 \\
\hline 24:00 & 0 & 0 & 3 & 16 & 84 & 113 & 50 & 7 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 274 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY TOTAL & 8 & 12 & 65 & 738 & 2768 & 3003 & 1227 & 292 & 46 & 17 & 3 & 0 & 0 & 1 & 0 & 8170 \\
\hline PERCENTS & \(0.1 \%\) & 0.2\% & 0.8\% & 9.1安 & 33.9\% & 36.8\% & 15.0\% & 3.4\% & 0.58 & 0.2\% & 0.08 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...

\begin{tabular}{ll} 
Site Reference: 180060000022 & File: SPD8028.prn \\
Site ID: 000000000702 & City: MILTON \\
Location: RTE. 138 NO. OF NEPONSET VALLEY PKWY & County: SEEED SB \\
Direction: SOUTH &
\end{tabular}

\section*{Lane: 1}
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}

Mon 4/2/2018

File: SPDE02B.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000822
Site ID: 000000000702
Location: RTE. 138 NO. OE NEPONSET VALLEY PKWY Direction: SOUTH
Lane: 1
\begin{tabular}{llllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 日6+ & Tota
\end{tabular}


Statistical Information...
15th Percentile Speed

34.5 mph
Median Speed


39.5 mph
10 MPH Pace Speed

34 mph to 44 mph


Representing \(70.9 \%\) of the total vehicles

85th Percentile Speed
44.9 mph

Average Speed
39.6 mph

Vehicles > 65 MPH
6
0.18

Statistical Information...
\begin{tabular}{lr} 
15th Percentile Speed \\
34.8 mph & 85th Percentile Speed \\
46.2 mph \\
Median Speed & Average Speed \\
40.3 mph & 40.3 mph \\
10 MPH Pace Speed \\
34 mph to 44 mph & Vehicles \(>65 \mathrm{MPH}\) \\
1467 vehicles in pace \\
Representing 67.48 of the total vehicles & 2
\end{tabular}


MassDOT Highway Division
SPEED SUMMARY
Page: 2
Wed 3/28/2018

File: SPD1301.prn
City: MILTON
County: SPEED NB
Site Reference: 180060000787
Site ID: 000000001301
Location: RTE 138 NORTH OF BRADLEE RD. Direction: NORTH

\section*{Lane: 1}
\(\begin{array}{lllllllllllllllllllll}\text { TIME } & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 86+ & \text { Tota }\end{array}\)


Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 26.8 mph & 85th Percentile Speed 38.2 mph \\
\hline Median Speed 33.3 mph & \[
\begin{aligned}
\text { Average } & \text { Speed } \\
& 31.6 \mathrm{mph}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
29 mph to 39 mph \\
4918 vehicles in pace \\
Representing 72.7\% of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
2 \\
0.0 \%
\end{gathered}
\] \\
\hline
\end{tabular}

File: SPD1301.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000787
Site ID: 000000001301
Location: RTE 138 NORTH OF BRADLEE RD. Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 86+ & Tota
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Fri 3/30/2018
Page: 4

File: SPD1301.prn
City: MILTON
County: SPEED NB

Site Reference: 180060000787
Site ID: 000000001301
Location: RTE 138 NORTH OF BRADLEE RD. Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}


Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 25.7 mph & \[
\begin{gathered}
\text { 85th Percentile Speed } \\
38.0 \mathrm{mph}
\end{gathered}
\] \\
\hline Median Speed & Average Speed \\
\hline 32.9 mph & 31.1 mph \\
\hline 10 MPH Pace Speed & Vehicles > 65 MPH \\
\hline 29 mph to 39 mph & 0 \\
\hline 4930 vehicles in pace & 0.0\% \\
\hline Representing 70.5\% of the total vehicles & \\
\hline
\end{tabular}

\title{
MassDOT Highway Division
}

SPEED SUMMARY
Sat 3/31/2018
Page: 5


Site Reference: 180060000787
Site ID: 000000001301
Location: RTE 138 NORTH OF BRADLEE RD. Direction: NORTH
Lane: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 86+ & Tota \\
\hline 01:00 & 4 & 0 & 4 & 49 & 65 & 16 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 142 \\
\hline 02:00 & 3 & 0 & 5 & 40 & 43 & 13 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 108 \\
\hline 03:00 & 4 & 1 & 7 & 26 & 35 & 14 & 2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 93 \\
\hline 04:00 & 1 & 0 & 5 & 16 & 29 & 10 & 0 & 0 & 0 & 1 & 0 & - 0 & 0 & 1 & 0 & 63 \\
\hline 05:00 & 1 & 0 & 0 & 7 & 10 & 6 & 7 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 33 \\
\hline 06:00 & 3 & 0 & 1 & 8 & 22 & 9 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 51 \\
\hline 07:00 & 5 & 2 & 1 & 14 & 36 & 22 & 12 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 97 \\
\hline 08:00 & 9 & 2 & 4 & 21 & 59 & 33 & 4 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 136 \\
\hline 09:00 & 20 & 3 & 7 & 37 & 110 & 26 & 4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 208 \\
\hline 10:00 & 28 & 4 & 15 & 72 & 152 & 49 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 327 \\
\hline 11:00 & 72 & 5 & 4 & 115 & 163 & 32 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 397 \\
\hline 12:00 & 96 & 10 & 9 & 91 & 108 & 33 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 357 \\
\hline 13:00 & 82 & 7 & 10 & 85 & 133 & 27 & 0 & 4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 349 \\
\hline 14:00 & 82 & 5 & 25 & 131 & 86 & 38 & 7 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 378 \\
\hline 15:00 & 79 & 1 & 26 & 106 & 122 & 45 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 387 \\
\hline 16:00 & 51 & 5 & 14 & 124 & 147 & 31 & 9 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 382 \\
\hline 17:00 & 63 & 4 & 28 & 123 & 117 & 35 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 373 \\
\hline 18:00 & 47 & 3 & 14 & 112 & 133 & 49 & 5 & 2 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 371 \\
\hline 19:00 & 36 & 3 & 23 & 181 & 161 & 28 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 438 \\
\hline 20:00 & 30 & 10 & 65 & 212 & 125 & 15 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 460 \\
\hline 21:00 & 日 & 16 & 45 & 209 & 86 & 26 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 392 \\
\hline 22:00 & 7 & 0 & 28 & 160 & 113 & 11 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 321 \\
\hline 23:00 & 2 & 3 & 15 & 78 & 85 & 14 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 203 \\
\hline 24:00 & 5 & 1 & 8 & 34 & 71 & 21 & 8 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 152 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY TOTAL & 738 & 85 & 363 & 2051 & 2211 & 603 & 121 & 29 & 6 & 8 & 0 & 2 & 0 & 1 & 0 & 6218 \\
\hline PERCENTS & 11.9\% & 1.4\% & 5.9\% & 33.0\% & 35.6\% & 9.78 & 2.08 & 0.48 & 0.08 & 0.18 & 0.08 & 0.08 & 0.08 & 0.0\% & 0.08 & 100\% \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 25.5 mph & 85th Percentile Speed 38.6 mph \\
\hline Median Speed 33.7 mph & Average Speed 31.7 mph \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
29 mph to 39 mph \\
4262 vehicles in pace \\
Representing \(68.5 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
3 \\
0.0 \%
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Mon 4/2/2018
Page: 7

Site Reference: 180060000787
Site ID: 000000001301
Location: RTE 138 NORTH OF BRADLEE RD.
Direction: NORTH
Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 1 & 1 & 5 & 25 & 31 & 9 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 75 \\
\hline 02:00 & 0 & 1 & 2 & 6 & 16 & 10 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 38 \\
\hline 03:00 & 0 & 0 & 0 & 5 & 11 & 7 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 28 \\
\hline 04:00 & 1 & 1 & 0 & 10 & 15 & 9 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 37 \\
\hline 05:00 & 3 & 0 & 0 & 6 & 29 & 18 & 6 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 65 \\
\hline 06:00 & 16 & 4 & 12 & 73 & 134 & 53 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 299 \\
\hline 07:00 & 50 & 3 & 12 & 147 & 150 & 48 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 412 \\
\hline 00:00 & 50 & 6 & 41 & 185 & 184 & 32 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 501 \\
\hline 09:00 & 30 & 5 & 37 & 145 & 170 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 411 \\
\hline 10:00 & 24 & 11 & 58 & 156 & 114 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 376 \\
\hline 11:00 & 10 & 2 & 44 & 145 & 104 & 15 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 322 \\
\hline 12:00 & 22 & 11 & 31 & 107 & 99 & 15 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 291 \\
\hline 13:00 & 24 & 2 & 13 & 110 & 106 & 23 & 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 282 \\
\hline 14:00 & 27 & 3 & 14 & 83 & 99 & 31 & 10 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 269 \\
\hline 15:00 & 40 & 8 & 26 & 87 & 102 & 36 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 302 \\
\hline 16:00 & 26 & 2 & 35 & 149 & 121 & 20 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 360 \\
\hline 17:00 & 34 & 8 & 30 & 160 & 122 & 22 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 379 \\
\hline 18:00 & 20 & 4 & 25 & 135 & 170 & 42 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 399 \\
\hline 19:00 & 32 & 3 & 7 & 111 & 133 & 38 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 330 \\
\hline 20:00 & 4 & 3 & 19 & 118 & 88 & 31 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 269 \\
\hline 21:00 & 5 & 0 & 34 & 103 & 76 & 18 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 238 \\
\hline 22:00 & 3 & 1 & 21 & 121 & 69 & 10 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 227 \\
\hline 23:00 & 5 & 10 & 34 & 59 & 41 & 13 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 164 \\
\hline 24:00 & 3 & 0 & 1 & 37 & 42 & 16 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 103 \\
\hline DAY TOTAL & 430 & 89 & 501 & 2283 & 2226 & 552 & 71 & 14 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 6177 \\
\hline PERCENTS & 7.0\% & 1.5\% & B.2\% & 37.0\% & 36.0\% & 8.9\% & 1.1\% & 0.28 & 0.18 & 0.0\% & 0.0\% & \(0.0 \%\) & 0.0\% & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


MassDOT Highway Division
SPEED SUMMARY
Page: 8
Tue 4/3/2018


Site Reference: 180060000554 Site ID: 000000001302 Location: RTE 138 NORTH OF BRADLEE RD. Direction: SOUTH Lane: 1
\(\begin{array}{llllll}\text { TIME } & 19 & 24 & 29 & 34 & 39\end{array}\)

Eile: SPD1302.pIn
City: MILTON
County: SPEED SB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & 86+ & Tota \\
\hline 14:00 & 0 & 1 & 1 & 1 & 22 & 110 & 130 & 63 & 17 & 1 & 0 & 0 & 0 & 0 & 0 & 346 \\
\hline 15:00 & 4 & 0 & 0 & 8 & 39 & 147 & 155 & 94 & 19 & 3 & 1 & 0 & 1 & 0 & 2 & 473 \\
\hline 16:00 & 2 & 0 & 1 & 8 & 41 & 130 & 175 & 77 & 16. & 1 & 0 & 0 & 0 & 0 & 2 & 453 \\
\hline 17:00 & 0 & 0 & 1 & 12 & 19 & 105 & 149 & 56 & 14 & 2 & 0 & 0 & 0 & 0 & 0 & 358 \\
\hline 18:00 & 1 & 1 & 2 & 3 & 18 & 105 & 179 & 68 & 20 & 0 & 0 & 1 & 0 & 0 & 0 & 398 \\
\hline 19:00 & 1 & 1 & 1 & 12 & 27 & 114 & 149 & 60 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 372 \\
\hline 20:00 & 0 & 0 & 0 & 5 & 29 & 125 & 130 & 49 & 10 & 2 & 0 & 0 & 0 & 0 & 1 & 351 \\
\hline 21:00 & 0 & 0 & 0 & 5 & 46 & 125 & 97 & 32 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 308 \\
\hline 22:00 & 1 & 0 & 0 & 18 & 56 & 100 & 75 & 30 & 3 & 5 & 0 & 1 & 0 & 0 & 0 & 289 \\
\hline 23:00 & 0 & 0 & 0 & 0 & 9 & 88 & 77 & 26 & 10 & 2 & 0 & 1 & 0 & 0 & 0 & 213 \\
\hline 24:00 & 0 & 0 & 0 & 1 & 6 & 41 & 62 & 16 & 5 & 1 & 1 & 1 & 0 & 0 & 0 & 134 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY TOTAL & 9 & 3 & 6 & 73 & 312 & 1190 & 1378 & 571 & 122 & 19 & 2 & 4 & 1 & 0 & 5 & 3695 \\
\hline PERCENTS & 0.3\% & 0.18 & 0.2\% & 2.08 & 8.54 & 32.3\% & 37.2\% & 15.4\% & 3.3\% & 0.5\% & 0.0\% & 0.1\% & 0.08 & 0.0\% & 0.18 & 100\% \\
\hline
\end{tabular}

\section*{Statistical Information...}


MassDOT Highway Division
SPEED SUMMARY
Page: 2
Wed 3/28/2018

Site Reference: 180060000554
Site ID: 000000001302
Location: RTE 138 NORTH OF BRADLEE RD. Direction: SOUTH Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 0 & 0 & 0 & 3 & 13 & 34 & 6 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 63 \\
\hline 02:00 & 0 & 0 & 0 & 0 & 3 & 9 & 6 & 9 & 4 & 0 & 2 & 0 & 0 & 0 & 0 & 33 \\
\hline 03:00 & 0 & 0 & 1 & 0 & 0 & 5 & 3 & 4 & 7 & 2 & 1 & 0 & 0 & 0 & 0 & 23 \\
\hline 04:00 & 0 & 0 & 0 & 0 & 1 & 5 & 4 & 12 & 5 & 4 & 1 & 0 & 0 & 0 & 0 & 32 \\
\hline 05:00 & 0 & 0 & 0 & 0 & 0 & 7 & 15 & 17 & 12 & 5 & 3 & 1 & 0 & 0 & 0 & 60 \\
\hline 06:00 & 0 & 0 & 0 & 2 & 0 & 32 & 57 & 43 & 15 & 4 & 0 & 0 & 0 & 0 & 0 & 153 \\
\hline 07:00 & 0 & 0 & 2 & 6 & 17 & 87 & 103 & 56 & 15 & 5 & 0 & 0 & 0 & 1 & 0 & 292 \\
\hline 08:00 & 0 & 0 & 0 & 8 & 36 & 179 & 175 & 56 & 5 & 1 & 1 & 0 & 0 & 0 & 2 & 463 \\
\hline 09:00 & 2 & 3 & 4 & 23 & 39 & 188 & 152 & 66 & 10 & 1 & 3 & 0 & 0 & 0 & 0 & 491 \\
\hline 10:00 & 0 & 1 & 0 & 2 & 26 & 104 & 99 & 53 & -8 & 0 & 1 & 0 & 0 & 0 & 0 & 294 \\
\hline 11:00 & 0 & 1 & 1 & 3 & 10 & 76 & 141 & 46 & 7 & 3 & 3 & 0 & 0 & 0 & 0 & 291 \\
\hline 12:00 & 0 & 0 & 1 & 1 & 27 & 85 & 154 & 53 & 6 & 0 & 2 & 0 & 0 & 0 & 0 & 329 \\
\hline 13:00 & 2 & 0 & 1 & 1 & 10 & 116 & 146 & 55 & 17 & 1 & 0 & 0 & 1 & 0 & 0 & 350 \\
\hline 14:00 & 5 & 0 & 1 & 8 & 23 & 120 & 136 & 42 & 8 & 1 & 2 & 0 & 0 & 0 & 2 & 348 \\
\hline 15:00 & 2 & 1 & 0 & 11 & 23 & 138 & 167 & 59 & 20 & 7 & 0 & 0 & 0 & 0 & 1 & 429 \\
\hline 16:00 & 2 & 0 & 0 & 6 & 19 & 105 & 194 & 78 & 9 & 2 & 2 & 0 & 0 & 0 & 0 & 417 \\
\hline 17:00 & 2 & 0 & 2 & 3 & 26 & 124 & 135 & 58 & 13 & 2 & 1 & 0 & 0 & 0 & 0 & 366 \\
\hline 18:00 & 3 & 0 & 3 & 12 & 16 & 96 & 174 & 60 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 374 \\
\hline 19:00 & 0 & 0 & 0 & 13 & 38 & 138 & 178 & 53 & 9 & 2 & 0 & 0 & 0 & 0 & 0 & 431 \\
\hline 20:00 & 0 & 0 & 0 & 12 & 34 & 162 & 151 & 43 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 410 \\
\hline 21:00 & 0 & 0 & 1 & 7 & 23 & 144 & 118 & 32 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 331 \\
\hline 22:00 & 0 & 0 & 0 & 5 & 39 & 96 & 92 & 34 & 9 & 5 & 1 & 0 & 0 & 0 & 0 & 281 \\
\hline 23:00 & 0 & 0 & 0 & 1 & 9 & 75 & 72 & 42 & 10 & 2 & 0 & 0 & 0 & 0 & 0 & 211 \\
\hline 24:00 & 0 & 0 & 0 & 0 & 8 & 33 & 61 & 36 & 13 & 2 & 2 & 1 & 1 & 1 & 0 & 158 \\
\hline DAY TOTAL & 18 & 6 & 17 & 124 & 430 & 2137 & 2567 & 1013 & 230 & 52 & 25 & 2 & 2 & 2 & 5 & 6630 \\
\hline PERCENTS & 0.38 & 0.1咅 & \(0.3 \%\) & 1.9\% & 6.5\% & 32.3\% & 38.8\% & 15.3\% & 3.5\% & 0.7\% & 0.3\% & 0.0\% & 0.08 & 0.08 & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 39.9 mph & 85th Percentile Speed 50.7 mph \\
\hline Median Speed 45.1 mph & Average Speed 45.1 mph \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
39 mph to 49 mph \\
4704 vehicles in pace \\
Representing \(70.9 \%\) of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
36 \\
0.5 \%
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SJMMARY
Thu 3/29/2018
Page: 3


Statistical Information...


MassDOT Highway Division
SPEED SUMMARY Fri 3/30/2018

Page: 4

Site Reference; 180060000554
Site ID: 000000001302
Iocation: RTE 138 NORTH OF BRADIEE RD.
File: SPD1302.prn
City: MILTON
County: SPEED SB Direction: SOUTH Lane: 1
\begin{tabular}{lllllllllllllllllll} 
TIME & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59 & 64 & 69 & 74 & 79 & 85 & \(86+\) & Tota
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 0 & 0 & 5 & 6 & 18 & 36 & 19 & 3 & 4 & 4 & 2 & 0 & 0 & 0 & 97 \\
\hline 02:00 & 0 & 0 & 0 & 0 & 4 & 17 & 19 & 4 & 6 & 2 & 0 & 0 & 0 & 0 & 0 & 52 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 7 & 11 & 13 & 15 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 55 \\
\hline 04:00 & 0 & 0 & 0 & 2 & 2 & 3 & 13 & 10 & 4 & 3 & 0 & 1 & 0 & 0 & 0 & 38 \\
\hline 05:00 & 0 & 0 & 1 & 0 & 6 & 6 & 19 & 21 & 14 & 1 & 0 & 2 & 1 & 0 & 0 & 71 \\
\hline 06:00 & 0 & 0 & 0 & 1 & 3 & 15 & 49 & 39 & 20 & 8 & 0 & 0 & 0 & 0 & 0 & 135 \\
\hline 07:00 & 1 & 0 & 0 & 1 & 13 & 42 & 132 & 55 & 14 & 5 & 3 & 1 & 0 & 0 & 0 & 267 \\
\hline 08:00 & 3 & 0 & 1 & 1 & 14 & 122 & 162 & 69 & 19 & 1 & 0 & 0 & 0 & 0 & 0 & 392 \\
\hline 09:00 & 0 & 1 & 10 & 30 & 64 & 127 & 134 & 37 & 11 & 0 & 0 & 0 & 0 & 0 & 0 & 414 \\
\hline 10:00 & 4 & 5 & 9 & 15 & 43 & 111 & 94 & 37 & 4 & 2 & 1 & 0 & 0 & 0 & 0 & 325 \\
\hline 11:00 & 1 & 0 & 1 & 2 & 20 & 105 & 154 & 57 & 13 & 0 & 1 & 0 & 0 & 0 & 0 & 354 \\
\hline 12:00 & 1. & 1 & 1 & 3 & 19 & 116 & 166 & 47 & 7 & 0 & 3 & 0 & 0 & 0 & 0 & 364 \\
\hline 13:00 & 1 & 1 & 0 & 1 & 31 & 140 & 175 & 50 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 403 \\
\hline 14:00 & 0 & 0 & 2 & 6 & 34 & 147 & 192 & 67 & 3 & 1 & 0 & 2 & 0 & 0 & 0 & 454 \\
\hline 15:00 & 4 & 1 & 1 & 4 & 50 & 148 & 137 & 56 & 8 & 1 & 0 & 0 & 0 & 0 & 1 & 411 \\
\hline 16:00 & 0 & 0 & 1 & 6 & 44 & 135 & 184 & 65 & 14 & 3 & 1 & 0 & 0 & 0 & 0 & 453 \\
\hline 17:00 & 0 & 0 & 1 & 4 & 18 & 79 & 168 & 70 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 351 \\
\hline 18:00 & 0 & 0 & 0 & 7 & 33 & 132 & 129 & 51 & 12 & 2 & 0 & 0 & 0 & 0 & 0 & 366 \\
\hline 19:00 & 0 & 0 & 0 & 6 & 46 & 129 & 142 & 46 & 9 & 1 & 0 & 0 & 0 & 0 & 0 & 379 \\
\hline 20:00 & 0 & 0 & 0 & 11 & 64 & 167 & 125 & 32 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 404 \\
\hline 21:00 & 0 & 0 & 0 & 2 & 40 & 149 & 126 & 29 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 350 \\
\hline 22:00 & 0 & 0 & 3 & 8 & 33 & 154 & 112 & 27 & 3 & 2 & 0 & 1 & 0 & 0 & 0 & 343 \\
\hline 23:00 & 0 & 0 & 1 & 7 & 41 & 118 & 103 & 37 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 317 \\
\hline 24:00 & 0 & 0 & 0 & 6 & 18 & 70 & 83 & 37 & 14 & 5 & 0 & 0 & 0 & 0 & 0 & 233 \\
\hline DAY TOTAL & 15 & 9 & 32 & 128 & 653 & 2261 & 2667 & 977 & 214 & 48 & 13 & 9 & 1 & 0 & 1 & 7028 \\
\hline PERCENTS & 0.3\% & 0.28 & 0.58 & 1.98 & 9.38 & 32.2\% & 37.9\% & 13.9\% & \(3.0 \%\) & 0.68 & 0.18 & 0.18 & 0.0\% & 0.08 & \(0.0 \%\) & 100\% \\
\hline
\end{tabular}

Statistical Information...


File: SPD1302.prn
City: MILTON
County: SPEED SB

Site Reference: 180060000554
Site ID: 000000001302
Location: RTE 138 NORTH OF BRADLEE RD. Direction: SOUTH
Lane: 1


Statistical Information...
\begin{tabular}{lr} 
15th Percentile Speed & 85th Percentile Speed \\
40.3 mph & 51.7 mph \\
Median Speed & Average Speed \\
45.9 mph & 45.8 mph \\
10 MPH Pace Speed & Vehicles \(>65 \mathrm{MPH}\) \\
39 mph to 49 mph & 40 \\
4665 vehicles in pace \\
Representing \(67.2 \%\) of the total vehicles & \(0.6 \%\)
\end{tabular}

File: SPD1302.prn
City: MILTON
County: SPEED sB

Site Reference: 180060000554
Site ID: 000000001302
Location: RTE 138 NORTH OF GRADLEE RD. Direction: SOUTH
Lane: 1
TIME 19 24-29

01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00
24:00

\section*{DAY TOTAL \\ PERCENTS}
\(\begin{array}{rrr}8 & 7 & 18 \\ 0.2 \% & 0.28 & 0.38\end{array}\)
\(\begin{array}{rrrrrr}66 & 507 & 2026 & 2489 & 1077 & 256 \\ 1.18 & 7.88 & 31.08 & 38.18 & 16.48 & 3.98\end{array}\)
\(\begin{array}{rr}0.88 & 19 \\ 0.28\end{array}\)
5
\(0.0 \%\)
0.08
\(0.0{ }^{2}\)
\(\begin{array}{rr}2 & 6540 \\ 0.0 \% & 100 \%\end{array}\)
Statistical Information...
\begin{tabular}{|c|c|}
\hline 15th Percentile Speed 39.9 mph & 85th Percentile Speed 51.0 mph \\
\hline Median Speed 45.3 mph & \[
\begin{aligned}
& \text { Average Speed } \\
& 45.3 \mathrm{mph}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
10 MPH Pace Speed \\
39 mph to 49 mph \\
4515 vehicles in pace \\
Representing 69.0\% of the total vehicles
\end{tabular} & \[
\begin{gathered}
\text { Vehicles }>65 \mathrm{MPH} \\
29 \\
0.4 \%
\end{gathered}
\] \\
\hline
\end{tabular}

MassDOT Highway Division
SPEED SUMMARY
Fage: 7
Mon 4/2/2018

Site Reference: 180060000554
Site ID: 000000001302
Location: RTE 138 NORTH OF BRADLEE RD. Direction: SOUTH
Lane: 1
\(\begin{array}{llllllllll}\text { TIME } & 19 & 24 & 29 & 34 & 39 & 44 & 49 & 54 & 59\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01:00 & 0 & 0 & 0 & 0 & 3 & 25 & 22 & 20 & 4 & 2 & 3 & 0 & 0 & 0 & 0 & 79 \\
\hline 02:00 & 0 & 0 & 0 & 1 & 1 & 4 & 12 & 10 & 2 & 2 & 0 & 0 & 1 & 0 & 0 & 33 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 1 & 4 & 7 & 8 & 4 & 2 & 0 & 0 & 2 & 0 & 0 & 28 \\
\hline 04:00 & 0 & 0 & 0 & 0 & 3 & 7 & 6 & 6 & 4 & 2 & 1 & 0 & 0 & 0 & 0 & 29 \\
\hline 05:00 & 0 & 0 & 0 & 1 & 0 & 0 & 12 & 17 & 10 & 3 & 2 & 0 & 0 & 0 & 0 & 45 \\
\hline 06:00 & 0 & 0 & 1 & 1 & 3 & 21 & 53 & 37 & 23 & 5 & 1 & 1 & 1 & 0 & 0 & 147 \\
\hline 07:00 & 0 & 0 & 1 & 1 & 3 & 63 & 105 & 59 & 21 & 5 & 0 & 0 & 0 & 0 & 0 & 258 \\
\hline 08:00 & 2 & 1 & 4 & 6 & 44 & 135 & - 170 & 44 & 10 & 4 & 1 & 1 & 0 & 0 & 0 & 422 \\
\hline 09:00 & 0 & 0 & 2 & 10 & 38 & 155 & 172 & 53 & 9 & 0 & 1 & 0 & 0 & 0 & 0 & 440 \\
\hline 10:00 & 0 & 0 & 0 & 5 & 30 & 94 & 138 & 49 & 11 & 2 & 1 & 0 & 0 & 0 & 0 & 330 \\
\hline 11:00 & 0 & 0 & 0 & 9 & 48 & 81 & 92 & 45 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 283 \\
\hline 12:00 & 0 & 0 & 0 & 1 & 27 & 73 & 135 & 49 & 12 & 0 & 1 & 0 & 0 & 0 & 0 & 298 \\
\hline 13:00 & 0 & 1 & 0 & 1 & 17 & 65 & 131 & 64 & 10 & 3 & 2 & 0 & 0 & 0 & 0 & 294 \\
\hline 14:00 & 0 & 1 & 9 & 9 & 27 & 99 & 114 & 53 & 12 & 2 & 0 & 0 & 1 & 0 & 0 & 327 \\
\hline 15:00 & 0 & 0 & 1 & 0 & 37 & 147 & 171 & 56 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 423 \\
\hline 16:00 & 2 & 4 & 2 & 6 & 28 & 112 & 174 & 86 & 6 & 0 & 0 & 1 & 0 & 0 & 0 & 421 \\
\hline 17:00 & 0 & 0 & 0 & 2 & 10 & 80 & 168 & 68 & 15 & 3 & 1 & 0 & 0 & 0 & 0 & 347 \\
\hline 18:00 & 1 & 0 & 4 & 9 & 41 & 134 & 149 & 69 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 414 \\
\hline 19:00 & 2 & 0 & 0 & 0 & 12 & 144 & 125 & 47 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 340 \\
\hline 20:00 & 0 & 0 & 0 & 0 & 24 & 120 & 115 & 36 & 7 & 2 & 0 & 0 & 0 & 0 & 0 & 304 \\
\hline 21:00 & 0 & 1 & 0 & 5 & 14 & 102 & 125 & 26 & 3 & 1 & 1 & 0 & 0 & 0 & 0 & 278 \\
\hline 22:00 & 0 & 0 & 0 & 1 & 18 & 93 & 78 & 27 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 220 \\
\hline 23:00 & 27 & 8 & 15 & 10 & 14 & 43 & 36 & 26 & 4 & 5 & 0 & 0 & 0 & 0 & 0 & 188 \\
\hline 24:00 & 0 & 0 & 0 & 1 & 6 & 30 & 42 & 45 & 10 & 6 & 2 & 1 & 0 & 0 & 0 & 143 \\
\hline DAY TOTAL & 34 & 16 & 39 & 79 & 449 & 1831 & 2352 & 1000 & 210 & 55 & 17 & 4 & 5 & 0 & 0 & 6091 \\
\hline PERCENTS & 0.68 & 0.38 & 0.78 & 1.3\% & 7.48 & 30.18 & 38.7\% & 16.4\% & 3.4\% & 0.9\% & 0.2\% & 0.0\% & 0.08 & 0.0\% & 0.0\% & 100\% \\
\hline
\end{tabular}

Statistical Information...


\title{
MassDOT Highway Division
}

SPEED SUMMARY
Page: 8
Tue 4/3/2018


\section*{Appendix C: Traffic Signal Data}
1. Existing Signal Timing Plans
2. Signal Warrant Analysis

\section*{Part 1: Existing Signal Timing Plans}

\section*{MILTON}

TRA゙FFに SUGNAL LAYOUY
Scale：\(\left.\right|^{\prime \prime}=40^{\prime}\)
Signal No．8－508
\＆BRUSH HILL RD：

SEQUENCE AND TIMING


MAJJR：ITEMS REQUIRECD
\begin{tabular}{|c|c|}
\hline NUMBER & ITEMS \\
\hline 2 & Starand Signal Posis（8） \\
\hline 2 & Mos：arms \(\left(1-25^{\prime}, 1-30^{\prime}\right)\) \\
\hline 3 & 2 vi＝： \(1-4,5-3\) Lens HousingAll 12 ＂ \\
\hline 2 & \(1 \mathrm{w}=3\) Lens Housings All \(12^{\prime \prime}\) \\
\hline 1 & ［ Wi， 4 Lens Mousings All \(12{ }^{\text {＂1 }}\) \\
\hline 1 & Cortraller Type？ \\
\hline 2 & Moge etic Defectors \\
\hline 1 & M10うごに Detector Reloy \\
\hline 2 & \(12 \times\) P Pull Boxes \\
\hline 2 & \(8 \times 2\) Pull Boxes \\
\hline 1 & Sers－e Connection \\
\hline & \\
\hline & Neressiary Duct，Cable，Misc．Material， \\
\hline & Lou－S Equipment To Compiete \\
\hline & The installation． \\
\hline
\end{tabular}

NOTES

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
2 \\
SIGNAL PCST \\
FULL BOX（Szxe Spscified） COITROL HETER \\
WOODEN POLE
MAST AFTM \\
SONIC TE ECTTOR \\
PRESSJFE DETECTOR \\
MAGNE＂C DETECTOR \\
\(\otimes\) PEDESTRIK \(\Rightarrow 15 \mathrm{H}\) BUTTON
\end{tabular}} & \multirow[t]{6}{*}{} & \multirow[t]{6}{*}{\begin{tabular}{l}
SIGMAL OR FLASHER HOUSING \\
\(R=\) RED \(\quad W=\) WALK \\
\(\mathrm{Y}=\) YELLOW \(F D W=F L A S H\) DON＇ \\
Z \(G=\) GREEN \(\quad D W=\) DON＇T WALK \\
\(.7^{\circ} \mathrm{VA}=\) VERTICAL＂ARROW \\
\(\sim\) LA＝LEFT ARROW \\
\(\rightarrow\) RA \(=\) RIGHT•ARROM \\
．．．．－PROPOSED CONDUIT \\
－－．EXISTING CONDUIT \\
．．．．－OVERHEAD CABLE
\end{tabular}} &  & OOP DETEC ALK－DON＇T ESTRIAN HO SHER \＆ME＇T & \begin{tabular}{l}
OR \\
WALK \\
JSING \\
R PEDE
\end{tabular} & \\
\hline & & & & ， & Da＇te & By \\
\hline & & & & Madé & & \\
\hline & & & & Checked & & \\
\hline & & & & Mcde & 8／18／72 & c． \\
\hline & & & & Checked & 10／30179 & \\
\hline
\end{tabular}


Q S1GFAL 1035
a Pull cos mize see:ifer,
4. MyORU-
(1t whe ER
Chrguth role Crust ALA
- Suce

HTZ Presshne getecirok N. MAOMETIC DET:CTOR O. PEDCSTAHA, F'SH: DU1T0:

6 तLE A M M K
\(\mathrm{V}+\mathrm{Y} \mathrm{CABR}, \mathrm{B}=\mathrm{B}=\mathrm{BO}\)


- NOLET Nowom

- Ewopargoboiout
\(\ldots-\) Existacogenoult
- - overutche cndie


\begin{tabular}{|l|l|l|}
\hline .6 & \(\boxed{ }\) & \\
& & \\
& & \\
\hline
\end{tabular}

SEQUENCE AND TIMING FOR PRETIMED/PUSHBUTTON ACTUATED CONTROL (ISOLATED)


PREFERENTIAL PHASING SEQUENCE


SEQUENCE AND TIMING


\section*{MAJOR ITEMS REQUIRED}


NOTES

SIGNAL OPERATION CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{PHASE} & \multicolumn{3}{|c|}{\(\emptyset 1\)} & \multicolumn{3}{|c|}{\(\emptyset 2\)} & \multicolumn{3}{|c|}{\(\emptyset 3\)} & \multicolumn{3}{|c|}{\(\emptyset 4\)} & FLASHING \\
\hline STREET & DIRECTION & MOVEMENT & HOUSING & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & FLASHING \\
\hline ROUTE 138 & NB & ALL & A, B & R & R & & G & & & & & & & 11 & 12 & OPERATION \\
\hline --ROUTE 138 & SB & ALL & & R & & & G & Y & R & R & R & R & R & R & R & \(Y\) \\
\hline BLUE HILL TERR. & WB & ALL & & R & R & & G & \(Y\) & R & R & R & R & R & R & R & \(Y\) \\
\hline CHEEVER ST. & EB & ALL & & R & R & & R & R & R & G & Y & R & R & R & R & R \\
\hline PEDESTRIAN & & ALL & E,F & R & R & & R & R & R & R & R & R & G & Y & R & R \\
\hline & EB/WB & ALL & P1, P2 & W & FDW & & DW & \\
\hline
\end{tabular}

TIMING IN SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MINIMUM & & & & & & & & & & & \\
\hline VEHICLE EXTENSION & & & 6 & & & 4 & & & 4 & & \\
\hline MAXIMUM \# 1 (FOR AM PEAK HOURS) & & & 2 & & & 2 & & & 2 & & \\
\hline MAXIM \# 1 (FOR AM PEAK HOURS) & & & 28 & & & 6 & & & 6 & & \\
\hline MAXIMUM \# 2 (FOR PM PEAK HOURS) & & & 23 & & & 6 & & & 6 & & \\
\hline MAXIMUM \# 3 & & & & & & & & & & & \\
\hline MAXIMUM \# 4 & & & & & & & & & & & \\
\hline YELLOW CLEARANCE & & & & & & & & & & & \\
\hline RED CLEARANCE & & & & 5 & & & 5 & & & 5 & \\
\hline PEDESTRIAN & & & & & 2 & & & 2 & & & 2 \\
\hline DETECTOR & 6 & 10 & & & & & & & & & \\
\hline & \multicolumn{2}{|r|}{LOCK} & \multicolumn{3}{|l|}{NON-LOCK} & \multicolumn{3}{|l|}{NON-LOCK} & \multicolumn{3}{|l|}{NON-LOCK} \\
\hline RECALL & \multicolumn{2}{|r|}{OFF} & \multicolumn{3}{|c|}{ON} & \multicolumn{3}{|c|}{OFF} & & \multicolumn{2}{|l|}{OFF} \\
\hline
\end{tabular}

NOTES: 1. IF THE ASSIGNED RIGHT OF WAY FOR ANY TRAFFIC MOVEMENT IS TO REMAIN IN EFFECT DURING THE NEXT CALLED
2. ANY PHASE NOT CALLED WILL BE SKIPPED. THAT TRAFFIC MOVEMENT WILL NOT CHANGE DURING THE CLEARANCE INTERVALS.
3. THE RIGHT NOT CALLED WLL BE SKIPPED.
4. IF CALLS EXIST ON ALL PHASES, THE ASSIGNMENT OF RIGHT OF OR ANY COMBINATION OF NON-CONFLICTING PHASES. PHASING SEQUENCE.

\section*{MIL TON}

TRAFFIC SIGNAL 1 AVOUT BLUE HILL AVE. (ROUTE 138) AT BROOK ROAD.
Scale: \(1^{\prime \prime}=40^{\circ} \quad\) Signal Mo. B-277 Dove: March 21,5967 SEQUENCE AND TIMING




PW NH. \(810 \cdot R\)

\section*{Part 2: Signal Warrant Analysis}

Table D-1
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Brush Hill Road, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{Brush Hill Road
EB} & \multicolumn{2}{|l|}{\[
\frac{\text { Brush Hill Road }}{\text { WB }}
\]} & \multirow{3}{*}{Warrant
\[
1
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Warrant } \\
& 2
\end{aligned}
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{SB
Volume} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\text { Crossing } \\
\text { Peds }
\end{array}
\]} & \multicolumn{2}{|l|}{EB} & \multicolumn{2}{|l|}{WB} & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 1,229 & 797 & 0 & 152 & 1.3 & 173 & 9.2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 7:00 & 1,320 & 1,253 & 0 & 290 & Error & 286 & 284.1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 8:00 & 1,227 & 1,428 & 0 & 305 & Error & 280 & 167.0 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 9:00 & 1,061 & 993 & - & 258 & - & 219 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 10:00 & 867 & 992 & - & 229 & - & 223 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 11:00 & 703 & 999 & - & 247 & - & 197 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & 0.4 \\
\hline 12:00 & 735 & 1,106 & - & 256 & - & 199 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & correct- \\
\hline 13:00 & 755 & 1,169 & - & 284 & - & 202 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & able \\
\hline 14:00 & 767 & 1,418 & - & 327 & - & 247 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & per year \\
\hline 15:00 & 866 & 1,708 & 0 & 386 & 67.5 & 278 & Error & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & 2011-15 \\
\hline 16:00 & 813 & 1,732 & 0 & 418 & 16.4 & 314 & 435.5 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 17:00 & 847 & 1,771 & 0 & 428 & 26.0 & 322 & Error & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 18:00 & 767 & 1,650 & - & 378 & - & 294 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 19:00 & 630 & 1,202 & - & 251 & - & 135 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline & & & & & & & & MET & MET & MET & NOT MET & NOT MET \\
\hline
\end{tabular}
\(\mathrm{EB}=\) eastbound. \(\mathrm{NB}=\) northbound. \(\mathrm{Peds}=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-2
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Neponset Valley Parkway, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{\begin{tabular}{l}
Hourly period \\
starting
\end{tabular}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Major Street}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline Minor Street \\
\hline Neponset Valley Parkway \\
\hline EB \\
\hline
\end{tabular}}} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{2}{|r|}{Route 138} & & & & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant 2} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { NB } \\
\text { Volume }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SB } \\
\text { Volume }
\end{gathered}
\]} & \multirow[t]{2}{*}{Crossing Peds} & & & & & & & \\
\hline & & & & Volume & Delay & & & & & \\
\hline 6:00 & 462 & 337 & 0 & 136 & 1.0 & & & & & \\
\hline 7:00 & 524 & 485 & 0 & 169 & 2.6 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 8:00 & 548 & 498 & 0 & 162 & 1.5 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 9:00 & 503 & 386 & - & 155 & - & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 10:00 & 443 & 371 & - & 176 & - & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 11:00 & 362 & 418 & - & 179 & - & \(\checkmark\) & \(\checkmark\) & & & 1.8 \\
\hline 12:00 & 369 & 473 & - & 187 & - & \(\checkmark\) & \(\checkmark\) & & & correct- \\
\hline 13:00 & 368 & 447 & - & 211 & - & \(\checkmark\) & \(\checkmark\) & & & able \\
\hline 14:00 & 390 & 559 & - & 232 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & per year \\
\hline 15:00 & 447 & 535 & 0 & 260 & 59.0 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & 2011-15 \\
\hline 16:00 & 433 & 456 & 0 & 295 & 37.4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 17:00 & 445 & 472 & 0 & 283 & 38.6 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 18:00 & 412 & 506 & - & 232 & - & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 19:00 & 335 & 496 & - & 189 & - & \(\checkmark\) & \(\checkmark\) & & & \\
\hline & & & & & & MET & MET & MET & \[
\begin{aligned}
& \hline \text { NOT } \\
& \text { MET } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { NOT } \\
& \text { MET } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\(E B=\) eastbound. \(\mathrm{NB}=\) northbound. \(\mathrm{Peds}=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.

\section*{Notes:}
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-3
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Dollar Lane and Milton Street, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Milton Street
EB}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Dollar Lane
WB}} & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant
\[
2
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{SB Volume} & \multirow[t]{2}{*}{Crossing Peds} & & & & & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 462 & 392 & 0 & 77 & 1.2 & 174 & 3.0 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 7:00 & 524 & 585 & 0 & 176 & Error & 280 & 21.1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 8:00 & 548 & 545 & 0 & 137 & 12.3 & 230 & 14.8 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 9:00 & 503 & 399 & - & 118 & - & 135 & - & & \(\checkmark\) & & & \\
\hline 10:00 & 443 & 375 & - & 84 & - & 105 & - & & & & & \\
\hline 11:00 & 362 & 455 & - & 99 & - & 103 & - & & & & & 1.4 \\
\hline 12:00 & 369 & 491 & - & 104 & - & 115 & - & & & & & correct- \\
\hline 13:00 & 368 & 474 & - & 112 & - & 109 & - & & & & & able \\
\hline 14:00 & 390 & 602 & - & 140 & - & 126 & - & & \(\checkmark\) & & & per year \\
\hline 15:00 & 447 & 605 & 1 & 181 & 16.8 & 167 & 8.6 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & 2011-15 \\
\hline 16:00 & 433 & 478 & 0 & 205 & 19.3 & 168 & 11.0 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 17:00 & 445 & 490 & 0 & 231 & 22.0 & 198 & 9.4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 18:00 & 412 & 665 & - & 182 & - & 152 & - & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 19:00 & 335 & 583 & - & 95 & - & 94 & - & & & & & \\
\hline & & & & & & & & NOT MET & MET & MET & NOT MET & NOT MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(\mathrm{NB}=\) northbound. Peds \(=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-4
Summary of Hourly Volumes and Warrant Analyses Route 138 at Bradlee Road and Atherton Street, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Bradlee Road}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atherton Street
WB}} & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant
\[
2
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{SB Volume} & \multirow[t]{2}{*}{Crossing Peds} & & & & & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 527 & 294 & 0 & 40 & 0.2 & 57 & 0.3 & & & & & \\
\hline 7:00 & 628 & 453 & 0 & 63 & 0.5 & 108 & 0.7 & & \(\checkmark\) & & & \\
\hline 8:00 & 630 & 465 & 0 & 49 & 0.4 & 122 & 0.8 & & \(\checkmark\) & & & \\
\hline 9:00 & 570 & 327 & - & 45 & - & 87 & - & & & & & \\
\hline 10:00 & 496 & 294 & - & 39 & - & 51 & - & & & & & \\
\hline 11:00 & 404 & 338 & - & 43 & - & 66 & - & & & & & 1.0 \\
\hline 12:00 & 399 & 367 & - & 53 & - & 67 & - & & & & & correct- \\
\hline 13:00 & 394 & 345 & - & 39 & - & 53 & - & & & & & able \\
\hline 14:00 & 409 & 455 & - & 55 & - & 66 & - & & & & & per year \\
\hline 15:00 & 502 & 433 & 0 & 57 & 0.5 & 84 & 0.6 & & & & & 2011-15 \\
\hline 16:00 & 480 & 366 & 0 & 74 & 0.6 & 87 & 0.6 & & & & & \\
\hline 17:00 & 517 & 385 & 1 & 78 & 0.6 & 87 & 0.6 & & & & & \\
\hline 18:00 & 494 & 406 & - & 63 & - & 61 & - & & & & & \\
\hline 19:00 & 400 & 389 & - & 46 & - & 58 & - & & & & & \\
\hline & & & & & & & & NOT MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(\mathrm{NB}=\) northbound. Peds \(=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-5
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Robbins Street, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Robbins Street
EB}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Robbins Street
WB}} & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant
\[
2
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SB } \\
\text { Volume }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Crossing } \\
& \text { Peds }
\end{aligned}
\]} & & & & & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 441 & 462 & 0 & 12 & 0.1 & 10 & 0.0 & & & & & \\
\hline 7:00 & 484 & 548 & 0 & 30 & 0.2 & 61 & 0.5 & & & & & \\
\hline 8:00 & 459 & 508 & 1 & 39 & 0.2 & 58 & 0.5 & & & & & \\
\hline 9:00 & 410 & 428 & - & 23 & - & - & - & & & & & \\
\hline 10:00 & 364 & 385 & - & 17 & - & - & - & & & & & \\
\hline 11:00 & 323 & 322 & - & 26 & - & - & - & & & & & 0.0 \\
\hline 12:00 & 317 & 307 & - & 18 & - & - & - & & & & & correct- \\
\hline 13:00 & 309 & 322 & - & 26 & - & - & - & & & & & able \\
\hline 14:00 & 342 & 335 & - & 28 & - & - & - & & & & & per year \\
\hline 15:00 & 407 & 413 & 0 & 32 & 0.2 & 48 & 0.3 & & & & & 2011-15 \\
\hline 16:00 & 392 & 397 & 1 & 34 & 0.1 & 58 & 0.4 & & & & & \\
\hline 17:00 & 430 & 444 & 0 & 40 & 0.1 & 44 & 0.3 & & & & & \\
\hline 18:00 & 397 & 383 & - & 38 & - & - & - & & & & & \\
\hline 19:00 & 307 & 286 & - & 28 & - & - & - & & & & & \\
\hline & & & & & & & & NOT & NOT & NOT & NOT & NOT \\
\hline & & & & & & & & MET & MET & MET & MET & MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(\mathrm{NB}=\) northbound. Peds \(=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-6
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Blue Hill Terrace Street and Cheever Street, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cheever Street
EB}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Blue Hill Terrace
WB}} & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant
\[
2
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{SB Volume} & \multirow[t]{2}{*}{Crossing Peds} & & & & & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 229 & 462 & 0 & 52 & 0.0 & 47 & 0.3 & & & & & \\
\hline 7:00 & 347 & 548 & 2 & 156 & 0.2 & 153 & 13.1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 8:00 & 436 & 508 & 0 & 119 & 0.1 & 108 & 1.5 & & \(\checkmark\) & & & \\
\hline 9:00 & 265 & 428 & - & 57 & - & - & - & & & & & \\
\hline 10:00 & 203 & 385 & - & 46 & - & - & - & & & & & \\
\hline 11:00 & 224 & 322 & - & 52 & - & - & - & & & & & 0.4 \\
\hline 12:00 & 229 & 307 & - & 47 & - & - & - & & & & & correct- \\
\hline 13:00 & 163 & 322 & - & 48 & - & - & - & & & & & able \\
\hline 14:00 & 179 & 335 & - & 66 & - & - & - & & & & & per year \\
\hline 15:00 & 226 & 413 & 7 & 77 & 0.1 & 59 & 0.5 & & & & & 2011-15 \\
\hline 16:00 & 192 & 397 & 3 & 78 & 0.1 & 65 & 0.5 & & & & & \\
\hline 17:00 & 177 & 444 & 1 & 74 & 0.1 & 77 & 0.8 & & & & & \\
\hline 18:00 & 222 & 383 & - & 61 & - & - & - & & & & & \\
\hline 19:00 & 186 & 286 & - & 48 & - & - & - & & & & & \\
\hline & & & & & & & & NOT MET & NOT MET & MET & NOT MET & NOT MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(\mathrm{NB}=\) northbound. Peds \(=\) pedestrians. \(\mathrm{SB}=\) southbound. \(\mathrm{WB}=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

Table D-7
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Oak Street, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{4}{|c|}{Minor Street} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Oak Street } \\
\hline \text { EB }
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Oak Street WB}} & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{\[
\begin{gathered}
\text { Warrant } \\
2
\end{gathered}
\]} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{NB Volume} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SB } \\
\text { Volume }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { Crossing } \\
\text { Peds }
\end{array}
\]} & & & & & & & & & \\
\hline & & & & Volume & Delay & Volume & Delay & & & & & \\
\hline 6:00 & 229 & 462 & 1 & 3 & 0.0 & 11 & 0.0 & & & & & \\
\hline 7:00 & 347 & 548 & 5 & 15 & 0.1 & 25 & 0.2 & & & & & \\
\hline 8:00 & 436 & 508 & 19 & 14 & 0.1 & 7 & 0.1 & & & & & \\
\hline 9:00 & 265 & 428 & - & 5 & - & - & - & & & & & \\
\hline 10:00 & 203 & 385 & - & 5 & - & - & - & & & & & \\
\hline 11:00 & 224 & 322 & - & 6 & - & - & - & & & & & 0.2 \\
\hline 12:00 & 229 & 307 & - & 4 & - & - & - & & & & & correct- \\
\hline 13:00 & 163 & 322 & - & 8 & - & - & - & & & & & able \\
\hline 14:00 & 179 & 335 & - & 8 & - & - & - & & & & & per year \\
\hline 15:00 & 226 & 413 & 66 & 13 & 0.1 & 9 & 0.1 & & & & & 2011-15 \\
\hline 16:00 & 192 & 397 & 8 & 7 & 0.0 & 19 & 0.1 & & & & & \\
\hline 17:00 & 177 & 444 & 3 & 12 & 0.0 & 54 & 0.3 & & & & & \\
\hline 18:00 & 222 & 383 & - & 12 & - & - & - & & & & & \\
\hline 19:00 & 186 & 286 & - & 9 & - & - & - & & & & & \\
\hline & & & & & & & & NOT & NOT & NOT & NOT & NOT \\
\hline & & & & & & & & MET & MET & MET & MET & MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(N B=\) northbound. Peds \(=\) pedestrians. \(S B=\) southbound. \(W B=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.
- This intersection is near a school (Oak Street School) which may make it eligible for Warrant 5 - School Crossing. However, this warrant requires a separate engineering study to assess property.

Table D-8
Summary of Hourly Volumes and Warrant Analyses
Route 138 at Brook Road, Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Hourly period starting} & \multicolumn{3}{|c|}{Major Street} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Minor Street Brook Road}} & \multicolumn{5}{|c|}{Warrants Satisfied} \\
\hline & \multicolumn{3}{|c|}{Route 138} & & & \multirow{3}{*}{Warrant 1} & \multirow{3}{*}{Warrant 2} & \multirow{3}{*}{Warrant 3} & \multirow{3}{*}{Warrant 4} & \multirow{3}{*}{Warrant 7} \\
\hline & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { NB } \\
\text { Volume }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SB } \\
\text { Volume }
\end{gathered}
\]} & \multirow[t]{2}{*}{Crossing Peds} & \multicolumn{2}{|l|}{Brook Road} & & & & & \\
\hline & & & & Volume & Delay & & & & & \\
\hline 6:00 & 465 & 255 & 2 & 75 & 0.2 & & & & & \\
\hline 7:00 & 530 & 434 & 3 & 180 & 2.3 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 8:00 & 508 & 383 & 3 & 163 & 1.5 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 9:00 & - & - & - & - & - & & & & & \\
\hline 10:00 & - & - & - & - & - & & & & & \\
\hline 11:00 & - & - & - & - & - & & & & & 1.0 \\
\hline 12:00 & - & - & - & - & - & & & & & correct- \\
\hline 13:00 & - & - & - & - & - & & & & & able \\
\hline 14:00 & - & - & - & - & - & & & & & per year \\
\hline 15:00 & 454 & 480 & 2 & 171 & 2.2 & \(\checkmark\) & \(\checkmark\) & & & 2011-15 \\
\hline 16:00 & 401 & 435 & 6 & 207 & 2.7 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 17:00 & 437 & 482 & 6 & 186 & 1.4 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 18:00 & - & - & - & - & - & & & & & \\
\hline 19:00 & - & - & - & - & - & & & & & \\
\hline & & & & & & NOT MET & MET & NOT MET & NOT MET & NOT MET \\
\hline
\end{tabular}
\(E B=\) eastbound. \(N B=\) northbound. Peds \(=\) pedestrians. \(S B=\) southbound. \(W B=\) westbound.
Notes:
- Automatic Traffic Recorder (ATR) counts were conducted over a three-day period between 11 AM Tuesday 3/27/18 and 12 AM Friday 3/30/18.
- Turning Movement Counts (TMC) were conducted on Thursday 3/29/18 and are used for pedestrian volumes, vehicle delay, and peak hour volumes where ATR data isn't available.
- Dashes indicate where hourly data is not available.
- Vehicle delay is in vehicle-hours and is calculated using Highway Capacity Manual 2010 Two-Way Stop Controlled methodology.

\section*{Appendix D: Bus Schedules}

\(\square\)

\section*{Route \(\mathbf{7 1 6}\) Cobbs Corner - Mattapan Station}


716
Fall September 1, 2017 - December 30, 2017
Cobbs Corner-
Mattapan Station

(T) Massachusetts Bay

Massachusetts Bay
Transportation Authority mass mod
Information 617-222-3200 • 1-800-392-6100 (TTY) 617-222-5146 • www.mbta.com
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 716 & \multicolumn{6}{|c|}{Inbound Weekday} & \multicolumn{3}{|l|}{Outbound} \\
\hline Cobbs
Corner & Canton
Center & Royall St. & \[
\begin{aligned}
& \text { Curry } \\
& \text { College }
\end{aligned}
\] & Mattapan Station & Mattapan
Station & Curry
College & \[
\begin{aligned}
& \text { Royall St. } \\
& \text { Traiside } \\
& \text { Museum } \\
& \text { Park-n--Ride }
\end{aligned}
\] & Canton
Center & Cobbs
Corner \\
\hline 6:20A & 6:25A & 6:35A & 6:45A & 6:55A & 5:50A & 6:00A & 6:05A & 6:10A & 6:15A \\
\hline 7:40 & 7:45 & 7:55 & 8:10 & 8:25 & 7:00 & 7:10 & 7:20 & 7:30 & 7:35 \\
\hline 9:20 & 9:25 & 9:35 & 9:45 & 9:55 & 8:30 & 8:45 & 9:00 & 9:10 & 9:15 \\
\hline 10:40 & 10:45 & 10:55 & 11:05 & 11:15 & 10:00 & 10:10 & 10:20 & 10:30 & 10:35 \\
\hline 12:00N & 12:05P & 12:15P & 12:25P & 12:35P & 11:20 & 11:30 & 11:40 & 11:50 & 11:55 \\
\hline 2:45P & 2:50 & 3:00 & 3:10 & 3:20 & 2:05P & 2:15P & 2:25P & 2:35P & 2:40P \\
\hline 4:15 & 4:25 & 4:40 & 4:55 & 5:10 & 3:25 & 3:40 & 3:55 & 4:05 & 4:10 \\
\hline 6:05 & 6:10 & 6:20 & 6:30 & 6:40 & 5:15 & 5:30 & 5:45 & 5:55 & 6:00 \\
\hline & & & & & 6:45 & 6:55 & 7:05 & 7:15 & 7:20 \\
\hline 716 & \multicolumn{9}{|c|}{Inbound Saturday outbound} \\
\hline Cobbs
Corner & Canton
Center & Royall St. & \[
\begin{gathered}
\text { Curry } \\
\text { College }
\end{gathered}
\] & \begin{tabular}{|c} 
Mattapan \\
Station \\
\hline
\end{tabular} & \({ }_{\text {coin }}^{\substack{\text { Matapan } \\ \text { Station }}}\) & \[
\begin{gathered}
\text { Curry } \\
\text { College } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Royall St. } \\
\text { Traiside } \\
\text { Museum } \\
\text { Park-n-Ride } \\
\hline
\end{gathered}
\] & Canton
Center & Cobbs
Corner \\
\hline 8:30A & 8:34A & 8:42A & 8:50A & 8:55A & 8:00A & 8:04A & 8:12A & 8:20A & 8:25A \\
\hline 9:30 & 9:34 & 9:42 & 9:50 & 9:55 & 9:00 & 9:04 & 9:12 & 9:20 & 9:25 \\
\hline 10:30 & 10:34 & 10:42 & 10:50 & 10:55 & 10:00 & 10:04 & 10:12 & 10:20 & 10:25 \\
\hline 11:30 & 11:34 & 11:42 & 11:50 & 11:55 & 11:00 & 11:04 & 11:12 & 11:20 & 11:25 \\
\hline 1:30P & 1:34P & 1:42P & 1:50P & 1:55P & 1:00P & 1:04P & 1:12P & 1:20P & 1:25P \\
\hline 2:30 & 2:34 & 2:42 & 2:50 & 2:55 & 2:00 & 2:04 & 2:12 & 2:20 & 2:25 \\
\hline 3:30 & 3:34 & 3:42 & 3:50 & 3:55 & 3:00 & 3:04 & 3:12 & 3:20 & 3:25 \\
\hline 4:30 & 4:34 & 4:42 & 4:50 & 4:55 & 4:00 & 4:04 & 4:12 & 4:20 & 4:25 \\
\hline 5:30 & 5:34 & 5:42 & 5:50 & 5:55 & 5:00 & 5:04 & 5:12 & 5:20 & 5:25 \\
\hline
\end{tabular}

E All buses are accessible to persons with disabilities

\section*{Fall 2017 Holidays}

October 9: see Weekday November 11: see Saturday
September 4, November 23 \& December 25: see Sunday

This service is operated by A\&A
Metro, 800-437-3844, under contract to the MBTA.

Bus will stop at any safe location along the route, except Royall Street which has designated stops. Please signal to the driver if you wish to board.

Rt. 138 is dark and the traffic moves quickly. If you want to board the bus at a location which you do not use daily, please call A\&A Metro at 800-437-3844. The dispatcher will tell the driver to look for you.

Service subject to change.
In the event of weather emergenc
In the event of weather emer

Exact fare only. TUDENT: \(\quad \$ 1.70\)
SENIORITAP: \$0.85**
No transfers are given or accepted on this Route.
FREE FARES: Children 11 and under ride free when accompanied by an adult.
Blind Access CharlieCard holders ride free; if using a guide, the guide rides free.
*Available to students through participating middle schools and high schools.
**Available to Medicare cardholders, seniors 65+, and persons with disabilities.
The following MBTA passes are accepted: Monthly Commuter Rail Zone 1A pass (or higher) recommended for frequent subway/bus customers
Monthly Local Bus Pass on CharlieTicket only.
Monthly Senior/TAP pass on CharlieTicket available ONLY at the CharlieCard Store. Call 617-222-3200 or 617-222-5854 (TTY)
for more information
1 Day and 7 Day Link Passes.

\section*{Monday to Friday}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Inbound to Boston} & \multicolumn{17}{|c|}{AM} & \multicolumn{19}{|c|}{PM} \\
\hline & ne staton & ans & 800 & 802 & 900 & 804 & 902 & 806 & 842 & 808 & 904 & 810 & 812 & 906 & 814 & 908 & 816 & 910 & 818 & 820 & 912 & 822 & 824 & 914 & 826 & 916 & 828 & 918 & 830 & 920 & 922 & 832 & 924 & 834 & 836 & 926 & 838 & 928 \\
\hline & Bikes Allowed & & & & & & & & & & & & & & & & ¢6 & \({ }_{6}\) & ¢ & \% 6 & \({ }_{6}\) & ¢ 6 & do & do & do & do & ¢ 6 & ¢ & ¢ & ¢6 & do & ¢ 6 & \({ }_{6}\) & 66 & ¢ 6 & ¢ 6 & ¢ 6 & ¢ 6 \\
\hline 10 & 0 Wickford Junction & & & 4:45 & - & - & - & 5:45 & - & 6:35 & - & - & - & - & 7:45 & - & 9:20 & - & - & - & - & 1:25 & - & - & - & - & & - & 5:30 & - & - & 6:55 & - & 7:45 & 8:53 & - & - & - \\
\hline 9 & TF Green Airport & b & - & 5:00 & - & - & - & 6:00 & - & 6:50 & - & - & - & - & 8:00 & - & 9:34 & - & & & - & 1:39 & - & - & - & - & & - & 5:44 & & - & 7:09 & & 7:59 & 9:07 & - & - & \\
\hline 8 & 8 Providence & b & 5:00 & 5:25 & - & 6:00 & - & 6:25 & - & 7:15 & - & 7:30 & 7:50 & - & 8:25 & - & 9:50 & - & 11:10 & 1:05 & - & 1:55 & 3:02 & - & 4:08 & - & 5:20 & - & 6:00 & - & - & 7:25 & - & 8:15 & 9:23 & - & 10:30 & - \\
\hline 7 & 7 South Attleboro & \% & 5:09 & 5:34 & . & 6:09 & - & 6:34 & . & 7:25 & - & 7:39 & 7:59 & - & 8:34 & - & 9:59 & . & 11:19 & 1:16 & . & 2:06 & 3:13 & . & 4:20 & . & 5:29 & - & 6:09 & - & - & 7:34 & - & 8:24 & 9:34 & . & 10:39 & \\
\hline 7 & 7 Attleboro & b & 5:19 & 5:44 & - & 6:19 & - & 6:44 & 7:12 & 7:35 & - & 7:49 & 8:09 & - & 8:44 & - & 10:09 & - & 11:29 & 1:26 & - & 2:16 & 3:23 & . & 4:30 & . & 5:39 & - & 6:19 & - & - & 7:44 & - & 8:34 & 9:44 & - & 10:49 & - \\
\hline 6 & 6 Mansfield & b & 5:29 & 5:54 & . & 6:29 & - & 6:54 & 7:22 & 7:45 & - & 7:59 & 8:19 & . & 8:54 & - & 10:19 & - & 11:39 & 1:36 & . & 2:26 & 3:33 & . & 4:40 & . & 5:48 & - & 6:28 & - & - & 7:54 & . & 8:44 & 9:54 & - & 10:59 & \\
\hline 4 & 4 Sharon & b & 5:38 & 6:03 & - & 6:39 & - & 7:04 & 7:33 & & - & 8:08 & 8:28 & - & 9:03 & - & 10:28 & - & 11:48 & 1:45 & - & 2:35 & 3:42 & - & 4:49 & - & 5:55 & - & 6:37 & - & - & 8:03 & - & 8:53 & 10:03 & - & 11:08 & - \\
\hline 4 & 4 Stoughton & b & & - & 6:20 & - & 6:45 & - & . & - & 7:50 & & - & 8:30 & & 9:15 & - & 10:40 & & & 2:15 & - & & 4:30 & & 5:15 & & 6:14 & & 7:20 & 7:40 & & 8:35 & & - & 10:35 & & 11:35 \\
\hline 3 & 3 Canton Center & b & - & - & 6:28 & - & 6:53 & - & - & - & 7:58 & - & - & 8:38 & - & 9:23 & - & 10:48 & - & - & 2:23 & - & - & 4:38 & - & 5:23 & - & 6:22 & - & 7:28 & - & - & 8:43 & - & - & 10:43 & - & 11:43 \\
\hline 3 & 3 Canton Junction & d & 5:45 & 6:10 & 6:31 & - & 6:56 & - & 7:40 & - & 8:01 & & - & 8:41 & 9:10 & 9:26 & & 10:51 & 11:55 & 1:53 & 2:26 & . & 3:50 & & 4:56 & 5:26 & & 6:24 & & 7:32 & - & 8:10 & 8:46 & 9:00 & 10:10 & 10:46 & 11:15 & 11:46 \\
\hline 2 & 2 Route 128 & & 5:50 & 6:15 & 6:37 & 6:47 & 7:02 & 7:12 & 7:45 & - & 8:06 & 8:16 & 8:36 & 8:46 & 9:15 & 9:31 & 10:37 & 10:56 & 12:00 & 1:58 & 2:31 & 2:43 & 3:55 & 4:47 & 5:01 & 5:31 & 6:03 & 6:29 & 6:45 & 7:37 & - & 8:15 & 8:51 & 9:05 & 10:15 & 10:51 & 11:20 & 11:51 \\
\hline & 1 Hyde Park & & 5:55 & 6:20 & 6:43 & & 7:08 & - & 7:51 & - & - & 8:21 & - & 8:51 & 9:20 & 9:36 & - & 11:01 & 12:05 & 2:03 & & 2:48 & 4:00 & - & 5:06 & 5:36 & & 6:34 & & 7:42 & . & 8:20 & - & 9:10 & 10:20 & 10:56 & 11:25 & 11:56 \\
\hline & A Ruggles & d & L 6:04 & L6:30 & - & - & - & L7:26 & - & - & L8:20 & - & - & - & L9:29 & - L & L 10:50 & - & L 12:14 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline & A Back Bay & b & L6:08 & L6:34 & L6:52 & 6:59 & 17:17 & L7:30 & 18:00 & L8:10 & L8:24 & L8:30 & L8:49 & L9:00 & L9:33 & L9:45 & L 10:54 & L1:12 & L 12:18 & L2:12 & L2:44 & L2:57 & L4:10 & L5:02 & L5:17 & L5:45 & L6:17 & L6:43 & L 6:55 & L 7:51 & 18:10 & L8:29 & L9:03 & L9:19 & L 10:29 & L11:05 & L1:34 & L 12:05 \\
\hline & A south station & 8 & 6:14 & 6:40 & 6:58 & 7:05 & 7:23 & 7:36 & 8:06 & 8:16 & 8:30 & 8:36 & 8:55 & 9:06 & 9:39 & 9:51 & 10:59 & 11:17 & 12:23 & 2:17 & 2:49 & 3:02 & 4:15 & 5:07 & 5:22 & 5:50 & 6:22 & 6:48 & 7:00 & 7:56 & 8:15 & 8:34 & 9:08 & 9:24 & 10:34 & 11:10 & 11:39 & 12:10 \\
\hline
\end{tabular}

\section*{Monday to Friday}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Outbound from Boston & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{88018803}} & \multirow[b]{2}{*}{901} & \multirow[b]{2}{*}{801} & \multirow[b]{2}{*}{8805} & \multirow[b]{2}{*}{43} & & & \multicolumn{3}{|c|}{AM} & & & \multirow[b]{2}{*}{809} & \multirow[b]{2}{*}{811} \\
\hline zone staton tran & & & & & & & 803 & 903 & 805 & 905 & 907 & 807 & 909 & & \\
\hline Bikes Allowed & ¢ 6 & \({ }_{6} 6\) & db & db & ¢b & ¢ 6 & db & db & ¢ \({ }^{2}\) & db & ¢ & ¢ & \({ }^{\text {b }}\) & do & db \\
\hline 1A SOUTH Station & b & - & 5:20 & 5:30 & - & 6:18 & 6:31 & 6:59 & 7:25 & 7:35 & 8:23 & 9:35 & 9:45 & 10:25 & 11:25 \\
\hline 1A Back Bay & \& & - & 5:25 & 5:35 & . & 6:23 & 6:36 & 7:04 & 7:30 & 7:40 & 8:28 & 9:40 & 9:50 & 10 & 11:30 \\
\hline 1A Ruggles & b & - & & & - & & 6:39 & - & 7:33 & - & - & 9:44 & 9:53 & 10:3 & 11:33 \\
\hline 1 Hyde Park & b & - & & & - & & - & & - & - & - & - & 10:01 & 10:43 & \\
\hline Route 128 & b & - & 5:37 & 5:49 & - & 6:37 & 6:51 & 7:19 & 7:45 & 7:55 & 8:43 & 9:56 & 10:08 & 10:4 & 11:45 \\
\hline Canton Junction & b & - & . & - & - & - & 6:56 & 7:25 & 7:51 & 8:01 & 8:49 & 10:02 & 10:14 & 10:54 & \\
\hline Canton Center & b & - & 5:45 & - & - & - & - & 7:28 & - & 8:04 & 8:52 & - & 10:17 & & \\
\hline 4 Stoughton & b & - & 5:53 & - & - & - & - & 7:36 & - & 8:12 & 9:00 & - & 10:25 & & \\
\hline 4 Sharon & b & - & - & 5:57 & - & - & 7:02 & & 7:57 & & - & 10:08 & - & 11:00 & 11:53 \\
\hline 6 Mansfield & d & & & 6:04 & - & & 7:09 & & 8:05 & & & 10:16 & & 11:08 & 1 \\
\hline 7 Attleboro & d & - & - & 6:12 & - & 6:55 & 7:17 & - & 8:13 & - & - & 10:24 & . & 11:16 & 12:08 \\
\hline 7 South Attleboro & d & - & - & 6:21 & - & - & 7:26 & - & 8:20 & - & - & 10:34 & . & 11:26 & 12:17 \\
\hline 8 Providence & d. \(4: 58\) & 5:49 & - & 6:30 & 6:55 & - & 7:35 & - & 8:29 & - & - & 10:44 & . & 11:36 & 12:26 \\
\hline 9 TF Green Airport & d \(5: 14\) & 6:07 & - & & 7:11 & - & & & 8:45 & & - & & & & 12:42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{23}{|c|}{PM} \\
\hline 911 & 813 & 815 & 817 & 913 & 819 & 915 & 821 & 823 & 917 & 825 & 919 & 827 & 921 & 829 & 923 & 831 & 833 & 925 & 835 & 927 & 837 & 839 \\
\hline do & do & ¢ 6 & d6 & & & & & & & & & & & & \({ }_{6} 6\) & ¢ 6 & d & \% & \$6 & db & db & ¢ 6 \\
\hline 1:20 & 1:43 & 2:30 & 3:25 & 3:35 & 3:55 & 4:20 & 4:30 & 4:55 & 5:12 & 5:40 & 5:50 & 6:10 & 6:30 & 6:50 & 7:20 & 7:30 & 8:30 & 9:40 & 10:00 & 10:40 & 11:00 & 11:59 \\
\hline 1:25 & 1:48 & 2:35 & 3:30 & 3:40 & 4:00 & 4:25 & 35 & 5:00 & 5:17 & 5:45 & 5:55 & 6:15 & 6:35 & 55 & 7:25 & 7:35 & 8:35 & 9:45 & 10:05 & 10:4 & 11:05 & 12:04 \\
\hline 1:28 & 1:52 & 2:38 & 3:34 & 3:43 & 4:04 & 4:29 & 4:39 & 5:04 & 5:21 & 5:49 & 5:59 & 6:19 & 6:39 & 6:58 & 7:28 & 7:38 & 8:38 & 9:48 & 10:08 & 10:48 & 11:08 & 12:07 \\
\hline 1:38 & - & & - & 3:53 & - & & & & 5:32 & & 6:10 & - & 6:49 & 7:08 & 7:38 & - & 8:46 & - & 10:181 & 10:58 & 11:18 & 12:17 \\
\hline 1:43 & 2:04 & 2:51 & - & 3:58 & - & 4:42 & 4:53 & 5:18 & 5:43 & - & 6:16 & - & 6:54 & 7:13 & 7:43 & 7:52 & 8:51 & 10:02 & 10:231 & 11:03 & 11:23 & 12:22 \\
\hline 1:49 & - & 2:57 & - & 4:04 & - & 4:48 & . & & 5:49 & - & 6:23 & - & 7:00 & 7:19 & 7:49 & 7:58 & 8:57 & 10:08 & 10:29 & 11:09 & 11:29 & 12:28 \\
\hline 1:52 & - & - & - & 4:07 & - & 4:51 & - & . & 5:52 & - & 6:28 & - & 7:03 & - & 7:52 & - & - & 10:11 & - 1 & 11:12 & - & \\
\hline 2:00 & - & - & - & 4:15 & - & 4:59 & - & - & 6:00 & - & 6:36 & - & 7:11 & - & 8:00 & - & - & 10:19 & - 1 & 11:20 & - & \\
\hline - & 2:12 & 3:03 & 3:51 & & 4:22 & & 5:01 & 5:26 & - & 6:07 & - & 6:37 & - & 7:25 & & 8:04 & 9:03 & - & 10:35 & - & 11:35 & 12:34 \\
\hline - & 2:20 & 3:1 & 3:59 & & 4:30 & & 5:09 & 5:34 & & 6:15 & - & 6:45 & & 7:33 & & 8:12 & 9:11 & - & 10:43 & & :43 & 2, 42 \\
\hline - & 2:28 & 3:19 & 4:07 & - & 4:38 & & 5:17 & 5:44 & - & 6:23 & - & 6:53 & - & 7:41 & - & 8:20 & 9:19 & - & 10:51 & & 11:51 & 12:50 \\
\hline - & 2:35 & 3:29 & 4:17 & - & 4:48 & - & 5:27 & 5:57 & - & 6:33 & - & 7:03 & - & 7:51 & - & 8:30 & 9:29 & - & 11:01 & - & 12:01 & 1:00 \\
\hline - & 2:45 & 3:39 & 4:27 & - & 4:58 & - & 5:37 & 6:07 & - & 6:43 & - & 7:13 & - & 8:01 & - & 8:40 & 9:39 & - & 11:11 & - & 12:11 & 1:10 \\
\hline - & - & & 4:43 & - & . & - & 5:53 & & - & 6:59 & - & - & & 8:17 & & & & - & 11:27 & & & \\
\hline & - & & 4:59 & - & - & - & 6:09 & - & - & 7:15 & - & - & - & 8:33 & & & & - 1 & 11:43 & & - & \\
\hline
\end{tabular}

\section*{Keep in Mind:}

This schedule will be effective from May 22, 2017 and will replace the schedule of November 21, 2016.
Presidents' Day and 4th of July operate on a Saturday service schedule.

New Year's Day, Memorial Day Labor Day, Thanksgiving Day, and Christmas Day operate on a Sunday service schedule.
For all other holiday schedules, please check MBTA.com or call 617-222-3200 For additional service to Ruggles
Station, refer to the Needham and Franklin Line schedules for particular trains.

For additional service to Hyde Park
Station, refer to the Franklin Line
schedule for particular trains.
\(\square\) Times in purple with "f" indicate a flag stop: Passengers must toll the conductor that they wish board must be visible on the platform for the train to stop.

Times in blue indicate an early departure (L stop): The train may leave ahead of schedule at these stops.
Bikes: Bicycles are allowed on trains with the bicycle symbol shown below the train number


Call MBTA Customer Service at
617-222-3200

\section*{Appendix E: Traffic Safety Data}
1. Collision Diagrams
2. Expected Crashes Analysis

\section*{Part 1: Collision Diagrams}


Table E-1
Route 138 at Green Street and Canton Avenue
Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & Crash
Time & Crash Date & Street Address & Crash Severity & \# of Vehicles & Manner of Collision & \begin{tabular}{l}
Road \\
Surface \\
Condition
\end{tabular} & \begin{tabular}{l}
Ambient \\
Light \\
Condition
\end{tabular} & Weather Condition & Bikel Ped & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 2792473 & 5:11 PM & 2011-10-07 & Blue Hill Avenue Rte \(138 \mathrm{~S} /\) Green Street Rte 138 S & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Can't see} \\
\hline 2 & 3452138 & 9:17 AM & 2013-05-29 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Green Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Rain/Rain} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tr: Distracted} \\
\hline 3 & 3714615 & 8:54 AM & 2013-11-13 & Blue Hill Avenue Rte 138 / Green Street / Rte 138 & Non-fatal injury & 1 & Angle & Dry & Daylight & Clear & cyc & V1:Eastbound & V1: Slowing or stopped in trafic & Wrong way \\
\hline 4 & 3739832 & 2:56 PM & 2013-12-19 & Green Street/ Canton Avenue Ret 138 N & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Not Reported \({ }^{\text {Property damage only ( } \text { (0) } 2}\)}} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Turning left} \\
\hline 5 & 3801600 & 8:44 AM & 2014-04-17 & Canton Avenue / Green Street & & & Rear-end & Dry & Daylight & Clear/Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Traveling straight ah} \\
\hline 6 & 3867884 & 7:55 AM & 2014-06-20 & Green Street / Blue Hill Avenue Rte 138 N & \multicolumn{2}{|l|}{Property damage only (no 1} & Single veticle crash & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & V1:Northbound & V1: Leaving trafic lane & Object in \\
\hline 7 & 3881075 & 8:12 AM & 2014-07-09 & Bue Hill Avenue Rte Sr138 \(/\) / Green Street & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Travelling straight anead / V2:Slowing or stopped in tri laatention} \\
\hline 8 & 3950292 & 6:53 AM & 2014-09-22 & Blue hill Avenue Rte Sr138 \(/\) / Green Street & Non-fatal injury & 5 & Angle & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:So V1: Traveling straight anead / V2:Slowing or stopped in tr: Tailgating} \\
\hline 9 & 4030462 & 9:03 PM & 2015-02-27 & 1900 Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only ( (no 2} & Angle & Dry & Dark - lighted & r Clear/Clear & & V1:Southbound / V2:Northbound & V1: Turning left / V2:Travelling stright ahead & Disregarding signs \\
\hline 10 & 4100400 & 3:27 PM & 2015-06-19 & Bue Hill Avenue Rte Sr138 \(\mathrm{N} /\) Green Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:TTavelling straight an Inattention} \\
\hline 11 & 2712795 & 3:18 PM & 2011-02-21 & Blue hill Avenue Rte \(138 \mathrm{~S} /\) Canton Avenue & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Turning left / V2:Travelling stright ahead} \\
\hline 12 & 2718234 & 3:51 PM & 2011-04-15 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only ( n 04} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 13 & 2760086 & 6:31 PM & 2011-08-22 & Rie 138 / Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Non-fatal injury} & Single vehicle crash & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & V1:Northbound & V1: Changing lanes & Reckless \\
\hline 14 & 3108532 & 10:24 AM & 2012-05-12 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 15 & 3233106 & 6:41 AM & 2012-07-31 & Blue Hill Avenue / Canton Avenue & Non-fatal injury & 2 & Rear-end & Dry & Dayight & \multicolumn{2}{|l|}{Clear/C} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound V1: Travelling striagh ahead / V2:Slowing or stopped in tri} \\
\hline 16 & 3372335 & 5:07 PM & 2013-02-05 & Blue Hill Avenue Rte 138 / Canton Avenue Rte 138 & \multicolumn{2}{|l|}{Property damage only ( (0 3} & Rear-end & Dry & Dusk & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Clear }}{\text { Clear }}\)}} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 17 & 4003513 & 1:05 PM & 2014-12-21 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & \multicolumn{2}{|l|}{Sideswipe, same directic Wet} & Daylight & & & V1:Eastbound / V2:Eastbound & V1: Travelling straight ahead / V2:Turning left & Fail to yield \\
\hline 18 & 4113690 & 4:44PM & 2015-06-07 & Canton Avenue / Blue Hill Avenue & Non-fatal injury & & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & \multicolumn{3}{|l|}{V1:Not reported / V2:Northbound / V3:N V1: Not reported / V2:Travelling straight ahead / V3:Trave} \\
\hline 19 & 4117529 & 12:34 PM & 2015-09-26 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Travelling straight ahead / V2:Travelling straight ahear} \\
\hline 20 & 4130814 & 8:02 AM & 2015-12-15 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Other/Rain} & \multirow[t]{2}{*}{V1:Northbound / V2:Northbound} & \multicolumn{2}{|l|}{V1: Traveling straight ahead / V2:Travelling straight ahear} \\
\hline 21 & 4130808 & 8:17 AM & 2015-12-15 & Bue Hill Avenue Rte \(138 \mathrm{~N} /\) Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & Cloudy/Cloudy & & & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 22 & 4162330 & 8:19 AM & 2015-12-15 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1:Southbound / V2:Southbound / V3:SV1: Travelling straight ahead / V2:Slowing or stopped in tri Inatention} \\
\hline 23 & 2955664 & 6:53 AM & 2011-12-09 & Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Cloudy} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 24 & 2995291 & 5:10 PM & 2012-01-19 & Canton Avenue / Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only (no 1} & Single vehicle crash & Dry & Dark - lighted & rClear/Clear & & V1:Westbound & V1: Travelling straight ahead & \\
\hline 25 & 4048887 & 3:35 PM & 2015-04-17 & Near Canton Line & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Cloudy/Cloudy} & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound / V3:SI V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 26 & 3728108 & 8:02 AM & 2013-11-18 & 1433 Blue Hill Avenue & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 27 & 2792465 & 11:49 AM & 2011-10-13 & 1433 Blue Hill Avenue & \multicolumn{2}{|l|}{Non-fatal injury 2} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Rain} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafific / V2:Travelling straight ah Tailgating} \\
\hline 28 & 3974992 & 9:14 AM & 2014-11-14 & 100 Feet S From Intersection Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Canton Aver P & \multicolumn{2}{|l|}{er Property damage only ( no 2} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Clear} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Travelling straight ah} \\
\hline 29 & 2789099 & 2:08 PM & 2011-09-23 & 1434 Blue Hill Avenue & Property damage only (no 2 & & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {Clear }}\)}} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Travelling straight ah Tailgating} \\
\hline 30 & 3057933 & 2:53 PM & 2012-04-25 & 150 Feet S From Intersection Blue Hill Avenue / Canton Avenue & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Unknown & Daylight & & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped ii} \\
\hline 31 & 3427633 & 1:27 PM & 2013-04-27 & 100 Feet N From Intersection 1433 Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Cantor N & r Non-fatal injury & 3 & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 32 & 3049855 & 5:30 PM & 2012-02-05 & Rte 138 N Miemarker 40.4 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Non-fatal injury}} & Rear-end & Dry & Dark - roadway Clear & \multicolumn{2}{|l|}{Clear} & \multicolumn{3}{|l|}{} \\
\hline 33 & 3292260 & 8:35 AM & 2012-10-10 & 400 Feet S From Intersection 1425 Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Green N & & & Rear-end & Wet & Daylight & Rain & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound V1 V1: Slowing or stopped in trafic / / 2: Travelling stright ah} \\
\hline
\end{tabular}


Collision Diagram 2011-1
Route 138 at Brush Hill Road

Table E-2
Route 138 at Brush Hill Road
Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & Crash Time & Crash Date & Street Address & Crash Severit & \# of Vehicles & Manner of Collision & \begin{tabular}{l}
Road \\
Surface Condition
\end{tabular} & Ambient Light Condition & Weather Condition & \[
\begin{aligned}
& \text { Bike/ } \\
& \text { Ped }
\end{aligned}
\] & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 3728098 & 1:34 PM & 2013-11-22 & Blue Hill Avenue / Canton Avenue Rte 138 N & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & \multicolumn{2}{|l|}{Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 2 & 4066116 & 3:16 PM & 2015-07-09 & Blue Hill Avenue / Canton Avenue / Brush Hill Road & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & Clear/Clear & & \multicolumn{3}{|l|}{V1:Westbound / V2:Westbound / V3:We V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 3 & 3936933 & 3:07 PM & 2014-08-09 & Canton Avenue Rte 138 / Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only ( \(0^{1} 1\)} & Single evicle crash & Dry & Daylight & Clear/Clear & & V1:Westbound & V1: Not reported & \\
\hline 4 & 2712788 & 5:11 PM & 2011-03-09 & 1396 Blue Hill Avenue & Non-fatal injury & 3 & Rear-end & Dry & Daylight & Clear/Clear & & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound / V3:Si V1: Slowing or stopped in trafic / V2:Slowing or stopped i} \\
\hline 5 & 3527031 & 10:22 AM & 2013-07-01 & 300 Feet S From Intersection 1434 Blue Hill Avenue / Brush Hill Road R & \multicolumn{2}{|l|}{R Property damage only (no 2} & Rear-end & Dry & Daylight & Cloudy & & \multirow[t]{2}{*}{V1:Northbound / V2:Northbound
V1:Northbound / V2:Northbound} & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 6 & 4009891 & 2:43 PM & 2015-01-24 & 250 Feet S From Intersection 1425 Blue Hill Avenue / Brush Hill Road & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & Cloudy/Snow & & & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 7 & 4149577 & 3:07 PM & 2015-11-26 & 200 Feet S From Intersection Blue Hill Avenue Rte \(138 \mathrm{~S} /\) Brush Hill Rc & \multicolumn{2}{|l|}{P Property damage only (no 3} & Rear-end & Dry & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped if} \\
\hline 8 & 4132326 & 4:31 PM & 2015-10-24 & 1425 Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Brush}\) Hill Road & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear/Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 9 & 3058836 & 12:47 PM & 2012-03-28 & \multicolumn{3}{|l|}{100 Feet S From Intersection 1425 Blue Hill Avenue Rie 138 / Brush Hil Property damage only (no 2} & Rear-end & Wet & Daylight & Rain/Cloudy & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 10 & 3235294 & 7:15 PM & 2012-07-24 & 13999 Blue Hill Avenue / Brush hill Road & \multicolumn{2}{|l|}{} & Rear-end & Wet & Daylight & Rain & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 11 & 3282193 & 3:35 PM & 2012-08-11 & 1425 Blue Hill Avenue / Brush hill Road & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Property damage only (no 2 \\
Non-fatal injury \\
\hline 2
\end{tabular}} & \multicolumn{2}{|l|}{Sideswipe, opposite dire Dry} & \multicolumn{3}{|l|}{Dark - lighted r clear/Clear} & V1:Southbound / V2:Northbound & V1: Other / V2:Travelling straight ahead & Reckless \\
\hline 12 & 3401946 & 12:00 AM & 2013-04-26 & Brush hill Road / Blue Hill Avenue Rte 138 S & \multicolumn{2}{|l|}{Property damage only (no 1} & \multirow[t]{2}{*}{Single vehicle crash} & Dry & \multicolumn{2}{|l|}{Dark - lighted r Clear} & & V1:Northbound & V1: Travelling straight ahead & \\
\hline 13 & 3927834 & 2:21 PM & 2014-09-02 & 1399 Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Brush}\) hill Road & \multicolumn{2}{|l|}{Property damage only (no 2} & & Dry & Daylight & Cloudy & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{V1:Southbound / /2:Southbound V1: V1: Slowing or stopped in trafic / V2:TTraveling striaight ah}} \\
\hline 14 & 3983025 & 6:45 PM & 2014-10-31 & 1425 Blue Hill Avenue / Brush Hill Road & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted r Clear/Clear} & & & \\
\hline 15 & 3983031 & 10:43 AM & 2014-11-08 & 1431 Blue Hill Avenue Rte \(138 \mathrm{~N} / \mathrm{Brush}\) hill Road & Non-fatal injury & & Rear-end & Dry & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / / 2:Slowing or stopped if} \\
\hline 16 & 4033161 & 7:16 AM & 2015-04-08 & 1433 Blue Hill Avenue / Rte 138 & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear & & \multirow[t]{2}{*}{V1:Northbound / V2:Northbound} & \multicolumn{2}{|l|}{V1: Travelling striagh ahead / V2:Travelling straight ahear Inattention} \\
\hline 17 & 2829506 & 9:09 AM & 2011-11-04 & Blue Hill Avenue Ret \(138 \mathrm{~S} /\) Brush hill Road & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Cloudy & & & \multicolumn{2}{|l|}{V1: Slowing or stopped in traficic \(/ 2\) : Travelling straight an Inattention} \\
\hline 18 & 2976531 & 8:48 AM & 2012-03-09 & 1425 Blue Hill Avenue / Brush Hill Road & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped il} \\
\hline 19 & 2742092 & 10:27 PM & 2011-07-08 & 1425 Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Dark - lighted & & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Slowing or stopped if} \\
\hline 20 & 3336270 & 9:02 PM & 2012-09-02 & 1425 Blue Hill Avenue & \multicolumn{2}{|l|}{Non-fatal injury 2} & Rear-end & Dry & \multicolumn{2}{|l|}{Dark - lighted r Clear} & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{V1: Traveling straight anead / V2:Travelling strand}} \\
\hline 21 & 3297115 & 3:43 PM & 2012-10-18 & 1425 Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & Angle & Dry & Daylight & Clear & & V1:Westbound / V2:Southbound & & \\
\hline 22 & 3389819 & 6:07 PM & 2013-03-03 & 1425 Blue Hill Avenue & Non-fatal injury & 2 & Rear-end & Wet & Dark - lighted & Cloudy/Rain & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in traficic / V2:Slow & \\
\hline 23 & 3602794 & 2:46 PM & 2013-09-12 & Blue Hill Brush & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & V1: Traveling straight ahead / V2:Travellí & \\
\hline 24 & 4033165 & 7:32 AM & 2015-04-08 & 1425 Blue Hill Avenue & Non-fatal injury & 3 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound / & V1: Slowing or stopped in trafic / V2:Slow & \\
\hline 25 & 4125339 & 3:30 PM & 2015-10-16 & 1425 Blue Hill Avenue & Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound / V & V1: Travelling straight ahead / V2:Slowing & \\
\hline 26 & 3342530 & 2:05 PM & 2012-11-22 & 200 Feet N From Intersection 1399 Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Brush}\) I & 1 Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in trafic / V2:Trav & \\
\hline 27 & 2760735 & 9:59 AM & 2011-08-07 & 250 Feet N From Intersection 1396 Blue Hill Avenue Rte 138 / Brush Hil & I Non-fatal injury & 3 & Rear-end & Wet & Daylight & Rain & & V1:Southbound / V2:Southbound / & V1: Traveling straight ahead / V2:Travelli & allliness \\
\hline 28 & 3125993 & 12:00 AM & 2011-03-06 & 1396 Blue Hill Avenue & Non-fatal injury & 2 & Single vehicle crash & Dry & Dark - lighted & & & V1:Northbound / V2:Southbound & V1: Turning right / V2:Travelling straight & \\
\hline 29 & 3392809 & 11:37 AM & 2013-02-13 & 1399 Blue Hill Avenue & Not Reported & 1 & Single vehicle crash & Dry & Dayight & Clear/Clear & & V1:Southbound & V1: Travelling straight ahead & \\
\hline 30 & 3451832 & 2:27 PM & 2013-06-01 & 400 Feet N From Intersection 1399 Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Bush}\) 「 & Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in trafic / V2:Trav & h Tailgating \\
\hline 31 & 3801605 & 4:49 PM & 2014-04-12 & 1399 Blue Hill Avenue & Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Traveling straight ahead / V2:Slowing & tr Tailgating \\
\hline 32 & 3805539 & 3:05 PM & 2014-05-02 & 1399 Blue Hill Avenue & Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in traffic / V2:Trav & h Inattention \\
\hline 33 & 4033163 & 1:32 PM & 2015-04-14 & 1399 Blue Hill Avenue & Property damag & & Rear-end & Wet & Daylight & Clear & & V1:Northbound / V2:Northbound & V1: Slowing or stopped in trafic / V2:Slow & \\
\hline 34 & 4170427 & 12:42 PM & 2015-12-05 & 1399 Blue Hill Avenue & Property damag & & Rear-end & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in trafici / V2:Trav & h Glare \\
\hline 35 & 3950620 & 2:41 PM & 2014-09-10 & Blue Hill Bushes & Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Traveling straight ahead / V2:Travelli & \\
\hline 36 & 3588718 & 1:56 PM & 2013-09-07 & 500 Feet N From Intersection 1399 Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Brush}\) & 1 Property damag & & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Traveling straight ahead / V2:Slowing & tr:Tailgating \\
\hline 37 & 3998257 & 3:16 PM & 2015-01-15 & 1338 Blue Hill Avenue & Non-fatal injury & 2 & Sideswipe, opposite dire & & Daylight & Clear & & V1:Southbound / V2:Northbound & V1: Traveling straight anead / V2:Unknow & \\
\hline 38 & 2789104 & 10:45 AM & 2011-09-28 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Caroline Drive & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & V1: Slowing or stopped in traficic / V2:Trav & \\
\hline 39 & 3282198 & 1:29 PM & 2012-08-08 & Blue Hill Avenue / Caroline Drive & Not Reported & 4 & Rear-end & Unknown & Daylight & Clear & & V1:Not reported / V2:Not reported & V1: Slowing or stopped in traficic / V2:Slow & \\
\hline 40 & 3288057 & 5.52 PM & 2012-09-20 & Blue Hill Avenue / Caroline Drive & Not Reported & 2 & Rear-end & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Southbound & V1: Traveling straight ahead / V2:Slowing & \\
\hline 41 & 398148 & 1:43 PM & 2014-11-25 & Blue Hill Avenue Rte 138 / Caroline Drive Rte 138 & Property damag & & Rear-end & Dry & Daylight & Cloudy & & V1:Southbound / V2:Southbound & V1: Slowing or stopped in traffic / V2:Trav & h Distracted \\
\hline 42 & 4035198 & 4:12 AM & 2015-02-07 & Blue Hill Avenue Rte Sr \(138 \mathrm{~N} /\) Caroline Drive & Non-fatal injury & 2 & Sideswipe, opposite dire & & Dark - lighted & rClear & & V1:Northbound / V2:Southbound & V1: Traveling straight ahead / V2:Travelli & \\
\hline 43 & 3950294 & 1:21 PM & 2014-08-25 & 1300 Blue Hill Avenue & Property damag & & Rear-end & Dry & Daylight & Clear/Clear & & V1:Northbound / V2:Northbound & V1: Not reported / V2:Not reported & Tailgating \\
\hline 44 & 3393018 & 12:08 PM & 2013-02-11 & 78 Blue Hill Avenue & Non-fatal injury & 2 & Sideswipe, same directic & cWet & Daylight & Sleet, hail (freezi & & V1:Southbound / V2:Southbound & V1: Traveling straight ahead / V2:Travelli & \\
\hline
\end{tabular}


Table E-3
Route 138 at Neponset Valley Parkway
Route 138 in Milton



Table E-4
Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & Crash Time & Crash Date & Street Address & Crash Severit & \# of Vehicles & Manner of Collision & Road Surface Condition & Ambient Light Condition & Weather Condition & \[
\begin{aligned}
& \text { Bike/ } \\
& \text { Ped }
\end{aligned}
\] & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 2743323 & 9:30 AM & 2011-07-06 & Blue Hill Avenue Rte 138 / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight a I Inatention} \\
\hline 2 & 3374276 & 2:29 PM & 2013-01-26 & 300 Feet S From Intersection Blue hill Avenue Rte 138 / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tr: Tailgating} \\
\hline 3 & 3668031 & 8:25 AM & 2013-10-23 & 300 Feet S From Intersection Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 4 & 3735102 & 8:10 AM & 2013-12-09 & Dollar Lane / Blue Hill Avenue & Non-fatal injury & 1 & Single evhicle crash & Wet & Daylight & Rain/lieet, hail & & V1:Westbound & V1: Turning right & eeding \\
\hline 5 & 2711751 & 9:52 AM & 2011-03-30 & Blue Hill Avenue / Dollar Lane & Non-fatal injury & 2 & Angle & Dry & Daylight & Clear & & V1:Eastbound / V2:Northbound & V1: Turning leff / V2:Travelling striaght ahead & \\
\hline 6 & 2718246 & 7:27 PM & 2011-04-19 & Blue Hill Avenue / Dollar Lane & Non-fatal injury & 3 & Rear-torear & Wet & \multicolumn{3}{|l|}{Dark - lighted / Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 7 & 2731934 & 7:51 PM & 2011-05-29 & Milton Street / Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & \multicolumn{2}{|l|}{Sideswipe, opposite dire Dry} & Daylight & Clear & & V1:Southbound / V2:Eastoound & V1: Turning right / V2:Slowing or stopped in trafic & Inattention \\
\hline 8 & 2888516 & 7:58 PM & 2011-12-27 & Blue Hill Avenue / Dollar Lane & Non-fatal injury & 2 & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted R Rain} & V1:Northbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 9 & 3058630 & 8:09 PM & 2012-04-06 & Blue Hill Avenue Rte 138 S / Dollar Lane / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 4} & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted r Clear} & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound / V3:SV1: Traveling straight a aead / V2:Slowing or stopped in tr: Inattention} \\
\hline 10 & 3408340 & \(1: 28\) PM & 2013-04-02 & Rte 138 / Blue Hill Avenue / Milto Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & V1: Slowing or stopped in trafic / V2:Travelling stra & Inattention \\
\hline 11 & 3388608 & 5:10 PM & 2013-04-07 & Blue Hill Avenue / Dollar Lane & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Traveling straight ahead / V2:Slowing or stopped in tri} \\
\hline 12 & 3587383 & 8:21 PM & 2013-07-26 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted r Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound V1: Slowing or stopped in trafic / / V2:Slowing or stopped it} \\
\hline 13 & 3612379 & 11:09 AM & 2013-10-10 & Blue Hill Avenue / Dollar Lane / Milton Street & Non-fatal injury & 3 & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Rain/Rain}} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 14 & 3714648 & 3:50 PM & 2013-11-07 & Blue Hill Avenue Rte 138 / Dollar Lane & \multicolumn{2}{|l|}{Non-fatal injury} & Angle & Wet & Dusk & & & \multirow[t]{2}{*}{V1: Eastbound / V2:Northbound} & \multicolumn{2}{|l|}{V1: Travelling straight anead / V2:Travelling straight ahear} \\
\hline 15 & 3824837 & 9:10 AM & 2014-03-20 & Dollar Lane / Blue Hill Avenue Rte 138 S & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{V1: Slowing or stopped in traffic / V2:Travelling straight ah}} \\
\hline 16 & 3969059 & 1:03 PM & 2014-10-19 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear/Clear & & V1:Northbound / V2:Northbound & & \\
\hline 17 & 3969775 & 8:03 AM & 2014-10-31 & Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Milton}\) Street & \multicolumn{2}{|l|}{Property damage only ( (0 2} & Angle & Dry & Dayight & Cloudy & & V1:Eastbound / V2:Southbound & V1: Travelling straight ahead / V2:Travelling straigh & (Disregarding signs \\
\hline 18 & 3974986 & 6:16 AM & 2014-11-07 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Non-fatal injury 2} & Rear-end & Wet & Daylight & Cloudy/Rain & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{} \\
\hline 19 & 3982392 & 4:01 PM & 2014-12-03 & Blue Hill Avenue Rte 138 / Dollar Lane Rte \(138 \mathrm{~N} /\) Rte 138 & \multicolumn{2}{|l|}{Non-fatal injury 3} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - unknow Cloudy/Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 20 & 4032177 & 10:00 PM & 2015-03-14 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted r Rain} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Traveling straight ah} \\
\hline 21 & 4117530 & 4:37 PM & 2015-10-02 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & \multicolumn{3}{|l|}{Dayight Rain/loudy} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Travelling straight ah Object in road} \\
\hline 22 & 4117534 & \(7: 25 \mathrm{PM}\) & 2015-10-02 & Bue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted C Cloudy/Rain} & \multirow[t]{2}{*}{V1:Northbound / V2:Northbound} & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Traveling straight ah} \\
\hline 23 & 4117542 & 3:38 PM & 2015-10-04 & Blue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & \multicolumn{3}{|l|}{Dayight Clear} & & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 24 & 4125341 & 10:08 PM & 2015-10-12 & Blue Hill Avenue / Milton Street & Non-fatal injury & 2 & Rear-end & Dry & Dark - lighted & r Clear/Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 25 & 4131777 & 9:39 PM & 2015-10-28 & Blue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted r Rain} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped if} \\
\hline 26 & 4130805 & 6:42 PM & 2015-12-11 & Blue Hill Avenue Ret \(138 \mathrm{~N} /\) Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted r Clear/Clear} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Travelling straight ah} \\
\hline 27 & 4130801 & 11:33 PM & 2015-12-22 & Blue Hill Avenue Rte 138 / Dollar Lane & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted r Clear/Clear} & V1:Northbound / V2:Not reported & V1: Slowing or stopped in trafic / V2:Not reported & \\
\hline 28 & 2798636 & 12:31 PM & 2011-11-10 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Milton Street & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Wet & Daylight & Rain & & V1:Northbound / V2:Northbound / & cV1: Slowing or stopped in traffic / V2:Slowing or sto & \\
\hline 29 & 3015357 & 3:55 PM & 2012-03-21 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Not Reported} & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound / & IV1: Travelling straight ahead / V2:Travelling straigh & \\
\hline 30 & 3288054 & 5:19 PM & 2012-09-20 & 100 Feet S From Cury College & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Unknown & Daylight & Clear & & V1:Northbound / V2:Northbound / & CV1: Slowing or stopped in trafic / V2:Slowing or sto & \\
\hline 31 & 3297108 & 1:34 PM & 2012-10-27 & Blue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Non-fatal injury} & Angle & Dry & Daylight & Clear & & V1:Southbound / V2:Westbound & V1: Travelling straight ahead / V2:Travelling straigh & \\
\hline 32 & 3299995 & 8:08 AM & 2012-11-01 & Blue Hill Avenue / Dollar Lane & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound / & V1: Slowing or stopped in traficic / V2:Slowing or sto & \\
\hline 33 & 3372355 & 6:04 PM & 2013-01-28 & Blue Hill Avenue Rte \(138 \mathrm{~S} / \mathrm{Milton} \mathrm{Street} \mathrm{Ret} 138\) & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Wet & Dusk & Clear/Clear & & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound / V3:N N V1: Slowing or stopped in trafic / V2:Slowing or stopped} \\
\hline 34 & 3727459 & 10:59 PM & 2013-12-14 & Blue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Non-fatal injury} & Angle & Snowlce & \multicolumn{2}{|l|}{Dark - lighted Sn now/Sleet, hail} & & V1:Southbound / V2:Southbound & V1: Travelling straight ahead / V2:Travelling straigh & \\
\hline 35 & 3827607 & 6:20 PM & 2014-05-22 & Blue Hill Avenue Rte 138 / Dollar Lane & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & Rain/Cloudy & & V1:Northbound / V2:Northbound & V1: Slowing or stopped in trafic / V2:Traveling stra & Object in road \\
\hline 36 & 3936932 & 5:32 PM & 2014-08-14 & Blue Hill Avenue / Milton Street & \multicolumn{2}{|l|}{Property damage only (no 3} & Rear-end & Dry & Daylight & Clear/Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Not reported / V2:Not reported / V3:Travelling straight} \\
\hline 37 & 4003505 & 3:52 PM & 2014-12-23 & Blue Hill Avenue / Dollar Lane & Non-fatal injury & 2 & Angle & Wet & Dusk & CloudyRain & & V1:Southbound / V2:Northbound & V1: Making U-turn / V2:Travelling straight anead & Improper turn \\
\hline 38 & 3956121 & 3:42 PM & 2014-09-20 & By Cury & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 39 & 3735111 & 1:46 PM & 2013-12-07 & 100 Feet N From Intersection Blue hill Avenue Rte \(138 \mathrm{~S} /\) Milton Street Property damage only (no 2 & \multicolumn{2}{|l|}{et Property damage only ( n 22} & Single veticle crash & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 40 & 3374308 & 8:04 AM & 2013-01-16 & 500 Feet N From Intersection 1086 Blue Hill Avenue Rte \(138 \mathrm{~S} /\) Militon : & :Non-fatal injury & 2 & Rear-end & Snowlce & Daylight & Snow & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Travelling straight ah Tailgating} \\
\hline 41 & 3393021 & 3:21 PM & 2013-02-08 & \multicolumn{3}{|l|}{500 Feet N From Intersection 1072 Blue Hill Avenue Rte 138 / Milton Sti Property damage only (no 2} & Angle & Snowlce & Daylight & Snow/Snow & & V1:Southbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Travelling straight aheaa Object in road} \\
\hline 42 & 3211376 & 2:36 PM & 2012-05-24 & 1071 Blue Hill Avenue & Non-fatal injury & 2 & Rear-end & Dry & \multirow[t]{2}{*}{Dayalight} & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Slowing or stopped if} \\
\hline 43 & 3714664 & 1:35 PM & 2013-11-05 & Curry College & \multicolumn{2}{|l|}{Property damage only (no 2} & \multicolumn{2}{|l|}{Sideswipe, same directic Dry} & & Clear & & V1:Northbound / V2:Southbound & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{V1: Slowing or stopped in trafic / V2:Overtaking/passing}} \\
\hline 44 & 4040835 & 4:06 PM & 2015-04-24 & 1000 Blue Hill Avenue Rte 138 & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {Clear/Clear }}\)}} & V1:Northbound / V2:Northbound & & \\
\hline 45 & 4130803 & 8:15 AM & 2015-12-22 & 1000 Blue Hill Avenue Rte 138 S & \multicolumn{2}{|l|}{Not Reported} & Angle & Wet & Dayylight & & & V1:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / /V2:Travelling straight ah} \\
\hline
\end{tabular}


Table E-5
Route 138 at Blue Jay Way
Route 138 in Milton



Table E-6
Route 138 at Atherton Street and Bradlee Road
Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & \begin{tabular}{l}
Crash \\
Number
\end{tabular} & Crash Time & Crash Date & Street Address & Crash Severity & \# of Vehicles & Manner of Collision & \begin{tabular}{l}
Road \\
Surface \\
Condition
\end{tabular} & \begin{tabular}{l}
Ambient \\
Light \\
Condition
\end{tabular} & Weather Condition & Bikel Ped & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 4139833 & 4:04 PM & 2015-11-03 & 957 Blue Hill Avenue & Property damage & (1) 1 & Single vehicle crash & Dry & Daylight & Clear & & V1:Southbound & V1: Traveling straight anead & \\
\hline 2 & 2743252 & 3:39 PM & 2011-07-02 & Blue Hill Avenue / Atherton Street & Property damage & & Rear-end & Dry & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Eastbound / V2:Eastbound / V3:East V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 3 & 2743324 & 1:47 PM & 2011-07-04 & Blue Hill Avenue / Atherton Street & Property damage & & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Slowing or stopped it} \\
\hline 4 & 2869035 & 8:57 AM & 2011-11-02 & Blue Hill Avenue / Bradlee Road & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Travelling straight ahear Fatigue} \\
\hline 5 & 4128339 & 10:48 AM & 2015-10-15 & Atherton Street / Blue Hill Avenue & Non-fatal injury & 2 & Angle & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Westbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Travelling straight ahear} \\
\hline 6 & 2711344 & 12:37 PM & 2011-03-14 & Blue Hill Avenue Rte 138 / Blue hill Avenue Rte 138 / Bradlee Road & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Cloudy & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traffic / V2:Travelling straight ah Inattention} \\
\hline 7 & 2792466 & 12:34 PM & 2011-10-12 & Blue Hill Avenue / Blue Hill Avenue / Atherton Street & Property damage & & Rear-end & Dry & Daylight & Cloudy & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Turning left} \\
\hline 8 & 3049107 & 5:09 PM & 2012-04-10 & Atherton Street / Blue Hill Avenue Rte 138 & Property damage & & Single vehicle crash & Dry & Daylight & Clear & & V1:Westbound & \multicolumn{2}{|l|}{V1: Backing} \\
\hline 9 & 3247840 & 9:22 PM & 2012-07-01 & Blue Hill Avenue / Atherton Street & Non-fatal injury & 3 & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted Cl lear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 10 & 3282177 & 6:34 PM & 2012-08-16 & Blue Hill Avenue / Atherton Street & Non-fatal injury & 1 & Single vehicle crash & Dry & Daylight & Clear/Clear & & V1:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead} \\
\hline 11 & 3288053 & 7:25 AM & 2012-09-21 & Blue Hill Avenue / Atherton Street & Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 12 & 3388606 & 2:40 PM & 2013-04-04 & Rte \(138 \mathrm{~N} /\) Blue Hill Avenue / Atherton Street & Property damage & & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 13 & 3403022 & \(1: 51\) PM & 2013-04-12 & Bradlee Road / Blue Hill Avenue / Robbins Street & Property damage & & Rear-end & Wet & Daylight & Rain & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 14 & 3862378 & 12:54 PM & 2014-06-05 & Blue Hill Avenue Rte 138 / Atherton Stree/ Bradlee Road & Non-fatal injury & 2 & Angle & Wet & Daylight & Rain & & V1:Southbound / V2:Westbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Travelling straight ahear Disregarding signs} \\
\hline 15 & 3896431 & 6:27 PM & 2014-07-26 & Blue Hill Avenue Rte \(138 \mathrm{~W} / \mathrm{A}\) Atherton Street & Non-fatal injury & 2 & Angle & Dry & Daylight & Clear/Clear & & V1:Westbound / V2:Southbound & V1: Not reported / V2:Not reported & Inattention \\
\hline 16 & 4067762 & 4:15 PM & 2015-07-11 & Blue Hill Avenue / Atherton Street & Non-fatal injury & 3 & Rear-end & Dry & Daylight & Clear/Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / / 3 : Nc V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 17 & 3049098 & 4:27 PM & 2012-04-13 & Blue Hill Avenue / Bradlee Road & Property damage & & Sideswipe, opposite dire & & Daylight & Clear & & V1:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead} \\
\hline 18 & 3282226 & \(1: 52 \mathrm{AM}\) & 2012-08-05 & Blue Hill Avenue / Atherton Street & Non-fatal injury & 2 & Rear-end & Dry & \multicolumn{2}{|l|}{Dark - lighted Cl lear} & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 19 & 4022546 & 9:58 AM & 2015-02-25 & Blue Hill Avenue / Bradlee Road & Property damage & & Sideswipe, opposite dire & & Daylight & Clear/Clear & & V1:Westbound / V2:Northbound & V1: Turning left/ / 2:Travelling straight ahead & Speeding (weather) \\
\hline 20 & 3739632 & 1:31 PM & 2013-12-29 & 764 Blue Hill Avenue & Non-fatal injury & 2 & Sideswipe, opposite dire & & Daylight & Rain & & V1:Southbound / V2:Northbound & V1: Travelling straight anead / V2:Leaving trafic lane & Leaving lane \\
\hline 21 & 2696976 & 10:25 AM & 2011-01-15 & 764 Blue Hill Avenue & Non-fatal injury & 3 & Sideswipe, opposite dire & & Daylight & Clear & & \multicolumn{3}{|l|}{V1:Northbound / V2:Southbound / V3:Sc V1: Leaving trafic lane / V2:Travelling straight ahead / V3 Leaving lane} \\
\hline 22 & 282945 & 8:53 AM & 2011-11-06 & 700 Feet N From Intersection 753 Bue Hill Avenue Rte \(138 \mathrm{~N} /\) Athertor & N Non-fatal injury & 2 & Rear-end & Dry & Daylight & Clear & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight a I Inattention} \\
\hline 23 & 4151241 & 6:09 PM & 2015-12-16 & 815 Blue Hill Avenue & Property damage & & Angle & Dry & Dark - lighted & , Clear & & V1:Westbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 24 & 4139845 & 4:45 PM & 2015-11-15 & 805 Blue Hill Avenue & Property damage & & Single vehicle crash & Dry & Daylight & Clear & & V1:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight a aead} \\
\hline 25 & 2739541 & 7:40 AM & 2011-06-17 & 753 Blue Hill Avenue & Property damage & & Single vehicle crash & Dry & Daylight & Clear & & V1:Northbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead} \\
\hline 26 & 2716451 & 8:12 AM & 2011-04-01 & 400 Feet N From Intersection 731 Blue Hill Avenue Rte 138 S & Property damage & & Single vehicle crash & Snowlce & Daylight & Sleet, hail (freezi & & V1:Southbound & V1: Travelling straight ahead & Over-correcting \\
\hline 27 & 3389886 & 10:28 PM & 2013-02-25 & Blue Hill Avenue / Concord Avenue & Property damage & & \multicolumn{2}{|l|}{Sideswipe, opposite dire Dry} & \multicolumn{3}{|l|}{Dark - lighted r Cloudy/Cloudy} & V1:Southbound / V2:Not reported & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Not reported} \\
\hline 28 & 3391456 & \(9: 29\) AM & 2013-02-18 & Bue Hill Avenue Rte Sri38 S / Bradlee Road / Atherton Street & Property damage & & Head-on & Wet & Daylight & Clear & & V1:Southbound / V2:Westbound & V1: Travelling straight ahead / V2:Turning left & \\
\hline
\end{tabular}


Table E-7

\section*{Route 138 between Bradlee Road and Robbins Street}

Route 138 in Milton



MPO

Table E-8
Route 138 at Robbins Street Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & \[
\begin{aligned}
& \text { Crash } \\
& \text { Time }
\end{aligned}
\] & Crash Date & Street Address & Crash Severity & \# of Vehicles & Manner of Collisic & Road Surface Condition & Ambient Light Condition & Weather Condition & Bikel
Ped & Vehicle Traveled Directior & Venicle Action & \[
\begin{aligned}
& \text { Driver } \\
& \text { Contibuting } \\
& \text { Code }
\end{aligned}
\] \\
\hline 1 & 270339 & 6.15 PM & 2011-02-16 & Bue fill Avenue Rie \(138 \mathrm{~N} /\) Robbins Street & Non-fatal iniury & 2 & Rearend & Dry & \multicolumn{3}{|l|}{Dakk- -ighted clearcliear} & V1:Northound / /2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in taficic V2:Travelling stright a T Taigating} \\
\hline 2 & 273253 & 3:44PM & 2011-06.03 & Bue Hill Avenue / Robobins Street & Property damage ony ( (0 1 & & Rearend & Dr & Daylight & Clear & & V1:Northbound & V1: Sowing or stopeped in trafic & Inatention \\
\hline 3 & 3336240 & 10.22 PM & 2012-09008 & Rosbins Stret/ Bue till Avenue/ Roobins Street & Non-fatal iniury & & Rearend & Wet & \multicolumn{3}{|l|}{Dark-lighted Rain} & V1:Southound / /2:Southbound & \multicolumn{2}{|l|}{V1: Traveling striagh tenead / V2:Slowing or stopped in tri} \\
\hline 4 & 3588817 & 6:18 PM & 2013:09.09 & Bue Hill Avenue / Robbins Street & Property damage only (no 2 & & Rearend & Dry & \multicolumn{3}{|l|}{Daylight Clearclear} & V1:SOuthbound/ /2:Southbound & \multicolumn{2}{|l|}{} \\
\hline 5 & 4117103 & 2.54 AM & 2015-09.21 & Robbins Street I Bue fill venue & Property damage ony ( no 1 & & Single venicle crash & Dry & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & V1:Northbound & V1: Leaving tafific lane & Object in \\
\hline 6 & 4107509 & 3.37 PM & 2015-10.28 & Blue Hill Avenue / Robobin S Steet & Non-fatal iniury & 4 & Rearend & Wet & & & & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound /V3:SV1V: Slowing or stopped in trafic / V2:Slowing or stopeed il} \\
\hline 7 & 3332142 & \({ }_{9} 940 \mathrm{PM}\) & 2013-02-20 & 520 Bue Hill Avenue Riei 138 N & Property damage ony ( (0)2 & & Rearend & Dry & \multicolumn{3}{|l|}{Dark- lighed I Clearclear} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Leaving taffic lane / V2:Paraked} \\
\hline & 4078505 & 10:03 AM & 2015.00.09 & Blue Hill Avenue / Landon Road / Criai Stree & Property damage ony ( (02 2 & & Single veicicle & Dry & Dayilight & Clearcliar & & V1:Not reported /V2:Northound & V1: Enefing taficic lane /V2:Trave & Inatention \\
\hline
\end{tabular}


Table E-9

\section*{Route 138 Between Robbins Street and Cheever Street}

Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & \[
\begin{aligned}
& \text { Crash } \\
& \text { Time }
\end{aligned}
\] & Crash Date & Street Address & Crash Severity & \[
\begin{aligned}
& \text { \#of } \\
& \text { Vehicles }
\end{aligned}
\] & Manner of Collision & Road Surface Conditio & \begin{tabular}{l}
Ambient \\
Light \\
Condition
\end{tabular} & Weather Condition & Bikel
Ped & Vehicle Traveled Direction & Vehicle Action & Driver Contributing Code \\
\hline 1 & 328827 & 11:21 AM & 2012-09-16 & Bue Hill Lafyete & Non-fatal inury & 1 & Single entice crash & Dry & Dayight & Clear & cyo & V1:Northbound & V1: Turning ight & Faill o pied \\
\hline 2 & 3510904 & 8:16 PM & 2013.07-03 & Bue Hill Avenue LLafayete Street & Property damage on & & Rearend & Dry & Dakk- lighted & Cliaarliear & & V1:Eastound /V2:Southound & V1: Turning lett /2:Traveling straight ahead & Cellphone \\
\hline 3 & 3928313 & 4.49 PM & 2014.08-22 & Bue elill dvenue LLafayete Steet & Non-fatal inury & 2 & Rearend & Dry & Daylight & Clear & & V1:Southbound /V2:Southound & V1: Travelling straight ahead / V2:Not reported & Taigating \\
\hline 4 & 3229872 & 3.07 AM & 2012-06-16 & 351 Bue Hill Avenue & Property damage orin & & Single venice crash & Dry & Dakk- lighted & rclaar & & V1:Northbound & V1: Traveling stright henead & \\
\hline 5 & 4131785 & 5.36 PM & 2015-10-28 & Bue Hill Avenue/ Norman Street & Property damage or & & Rearend & Wet & Dakk- lighted & RRainRain & & V1:Northbound / V2:Northbound & V1: Slowing or stoped in traficic \(/ 2\) 2:Slowing or & \\
\hline
\end{tabular}


MPO
Route 138 in Milton

Table E-10

\section*{Route 138 at Cheever Street and Blue Hill Terrace}

Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & \begin{tabular}{l}
Crash \\
Time
\end{tabular} & Crash Date & Street Address & Crash Severity & \# of Vehicles & Manner of Collision & Road Surface Condition & Ambient Light Condition & Weather Condition & \[
\begin{aligned}
& \text { Bike/ } \\
& \text { Ped }
\end{aligned}
\] & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 3427631 & 11:38 PM & 2013-04-19 & Blue Hill Avenue / Amor Road & \multicolumn{2}{|l|}{Property damage only (no 2} & \multicolumn{2}{|l|}{Sideswipe, opposite dire Wet} & \multicolumn{3}{|l|}{Dark - lighted R Rain/Rain} & V1:Northbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Turning left / V2:Travelling straight ahead} \\
\hline 2 & 3811331 & 3:22 AM & 2014-04-26 & Blue Hill Avenue Rte 138 S / Hudson Street / Amor Road & \multicolumn{2}{|l|}{Property damage only (no 3} & \multicolumn{2}{|l|}{Sideswipe, opposite dire Dry} & \multicolumn{3}{|l|}{Dark- -lighted r Clear/Clear} & \multicolumn{3}{|l|}{V1:Southbound / V2:Northbound / V3:Ee V1: Travelling straight ahead / V2:Traveling straight anear} \\
\hline 3 & 2725481 & 6:57 AM & 2011-05-06 & Blue hill Avenue / Amor Road Ret 138 S & Non-fatal injury & 3 & \multicolumn{2}{|l|}{Angle Unknown} & Daylight & \multicolumn{2}{|l|}{Clear} & \multicolumn{3}{|l|}{V1:Westbound / V2:Southbound / V3:Ea V1: Travelling straight ahead / V2:Travelling straight anea Fail to yeild} \\
\hline 4 & 2725889 & 7:29 AM & 2011-05-06 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Amor Road / Hudson Street & Non-fatal injury & 2 & Rear-end & Dry & \multicolumn{3}{|l|}{\(\begin{array}{ll}\text { Dayight } & \text { Clear } \\ \text { Dayilight } & \text { Clear }\end{array}\)} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Traveling straight ah} \\
\hline 5 & 3612378 & 8:48 AM & 2013-10-11 & Blue Hill Avenue Rte 138 / Amor Road / Rte 138 & \multicolumn{2}{|l|}{Property damage only (no 2} & Angle & Dry & Daylight & Clear & & V1:Southbound / V2:Westbound & V1: Travelling straight ahead / V2:Turning left & Fail to yield \\
\hline 6 & 4139819 & 12:20 PM & 2015-11-08 & Amor Road / Amor Road / Blue Hill Avenue & Not Reported & 2 & Angle & Dry & Daylight & Clear & & V1:Southbound / V2:Eastbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Turning left} \\
\hline 7 & 3868562 & 10:51 PM & 2014-06-15 & 248 Blue Hill Avenue & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted C Clear} & V1:Northbound / V2:Northbound & V1: Slowing or stopped in traffic / V2:Travelling & Distracted \\
\hline 8 & 2958031 & 5:15 AM & 2012-03-11 & Blue Hill Avenue / Blue Hill Terrace Street & Non-fatal injury & 3 & \multicolumn{2}{|l|}{Rear-end Dry} & \multicolumn{3}{|l|}{Dark - lighted rClear/Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 9 & 3794971 & 10:16 AM & 2014-03-12 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Blue Hill Te & ri:Non-fatal injury & 2 & Rear-end & Dry & Dayight & Cloudy & & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight an Inattention} \\
\hline 10 & 4053466 & 7:20 PM & 2015-03-24 & Blue Hill Terrace Street / Blue Hill Avenue / Blue Hill Terrace Street & Not Reported & 2 & Angle & Dry & \multicolumn{3}{|l|}{Dark - lighted C Clear} & V1:Northbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Turning left} \\
\hline 11 & 3229885 & 6:07 PM & 2012-06-02 & 240 Blue Hill Avenue & Non-fatal injury & 2 & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted R Rai/Rain} & V1:Northbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah} \\
\hline 12 & 2693776 & \(3: 20\) PM & 2011-02-07 & Blue Hill Avenue Ret \(138 \mathrm{~S} /\) Cheever Street & \multicolumn{2}{|l|}{Property damage only ( ( 22} & Angle & Dry & \multicolumn{3}{|l|}{Daylight Cloudy} & V1:Eastbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Traveling straight ahead / V2:Travelling straight ahear} \\
\hline 13 & 4139852 & 2:14 PM & 2015-11-14 & Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Cheever Street & \multicolumn{2}{|l|}{Property damage only ( ( 22} & Rear-end & Dry & \multicolumn{3}{|l|}{Dark - lighted C Clear/Clear} & V1:Northbound / V2:Northbound & V1: Turning left / V2:Travelling straight ahead & Inattention \\
\hline 14 & 4093765 & 2:36 PM & 2015-09-26 & Cheever Street / Blue Hill Avenue & Non-fatal injury & 3 & Rear-end & Dry & \multicolumn{3}{|l|}{Daylight Clear} & \multicolumn{3}{|l|}{V1:Southbound / V2:Southbound / V3:SIV1: Travelling straight ahead / V2:Traveling straight anear} \\
\hline 15 & 3063149 & 10:27 AM & 2012-03-05 & Blue Hill Avenue / Cheever Street & \multicolumn{2}{|l|}{Property damage only ( (n 2} & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in traficic / V2:Slowing or stopped if} \\
\hline 16 & 3297106 & 6:20 PM & 2012-10-30 & Blue Hill Avenue / Cheever Street & \multicolumn{2}{|l|}{Property damage only ( (02 2} & Rear-end & Wet & \multicolumn{3}{|l|}{Dark - lighted r Rain/Cloudy} & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 17 & 2955657 & 1:04 PM & 2011-12-18 & 230 Blue Hill Avenue & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Non-fatal injury}} & \multicolumn{2}{|l|}{Rear-end Dry} & \multicolumn{3}{|l|}{Daylight Clear} & \multicolumn{3}{|l|}{V1:Southbound / V2:SSuthbound / V3:SI V1: Slowing or stopped in trafic / V2:Slowing or stopped it} \\
\hline 18 & 3336297 & \(9: 21\) PM & 2012-08-21 & Blue Hill Avenue / Blue Hill Avenue Rte 138 / Concord Avenue & & & \multicolumn{2}{|l|}{Rear-end Dry} & \multicolumn{3}{|l|}{Dark - lighted C Clear/Clear} & \multirow[t]{2}{*}{V1:Southbound / V2:Southbound} & \multicolumn{2}{|l|}{V1: Slowing or stopped in trafic / V2:Travelling straight ah Tailgating} \\
\hline 19 & 3901474 & 12:18 PM & 2014-07-22 & Blue Hill Avenue / Concord Avenue & \multicolumn{2}{|l|}{Non-fatal injury} & Rear-end & Dry & Daylight & \multicolumn{2}{|l|}{Clear/Clear} & & \multicolumn{2}{|l|}{V1: Not reported / V2:Not reported} \\
\hline 20 & 3247671 & 12:58 PM & 2012-06-27 & 10 Feet N From Intersection 180 Blue Hill Avenue / Concord Avenue & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Single vehicle crash Dry
Sideswipe, same directic Dry}} & \multirow[t]{2}{*}{Dayight} & \multirow[t]{2}{*}{\(\xrightarrow{\text { Clearclear }}\)} & \multirow[t]{2}{*}{ped} & \multirow[t]{2}{*}{V1:Northbound} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{V1: Overtaking/passing Can's see}} \\
\hline 21 & 3965485 & 1:17 PM & 2014-10-05 & 180 Blue Hill Avenue & & & & & & & & & & \\
\hline
\end{tabular}


Table E-11
Route 138 at Oak Street
Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Crash Number & \[
\begin{aligned}
& \text { Crash } \\
& \text { Time }
\end{aligned}
\] & Crash Date & Street Address & Crash Severity & \# of Vehicles & Manner of Collision & \begin{tabular}{l}
Road \\
Surface \\
Condition
\end{tabular} & Ambient Light Condition & Weather Condition & \[
\begin{aligned}
& \text { Bike/ } \\
& \text { Ped }
\end{aligned}
\] & Vehicle Traveled Direction & Vehicle Action & \begin{tabular}{l}
Driver \\
Contributing \\
Code
\end{tabular} \\
\hline 1 & 2712717 & 8:06 PM & 2011-03-11 & Blue Hill Avenue / Decker Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Angle & Dry & Dark - lighted & rClear/Clear & & V1:Southbound / V2:Westbound & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{V1: Travelling straight ahead / V2:Turning left}} \\
\hline 2 & 3202030 & 2:03 AM & 2012-05-11 & Blue Hill Avenue / Blue Hill Avenue / Decker Street & Unknown 2 & 2 & \multicolumn{2}{|l|}{Sideswipe, same directic Dry} & \multicolumn{3}{|l|}{} & V1:Southbound / V2:Southbound & & \\
\hline 3 & 3937033 & 3:40 PM & 2014-08-03 & 163 Blue Hill Avenue / Rte 138 & Non-fatal injury 2 & 2 & Angle & Dry & \multicolumn{3}{|l|}{Dark - lighted C Clear} & V1:Northbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Not reported / V2:Not reported} \\
\hline 4 & 2703348 & 8:08 PM & 2011-02-08 & Blue Hill Avenue / Churchill Street & \multicolumn{2}{|l|}{Property damage only (no 2} & Angle & Dry & \multicolumn{3}{|l|}{Dark - lighted r Clear} & V1:Southbound / V2:Westbound & V1: Travelling straight ahead / V2:Entering trafic lane & Reckless \\
\hline 5 & 2739637 & 6:26 PM & 2011-06-26 & Churchill Street / Blue Hill Avenue Rte 138 S & Non-fatal injury 3 & 3 & Angle & Dry & \multicolumn{3}{|l|}{Daylight Cloudy} & \multicolumn{3}{|l|}{V1:Northbound / V2:Southbound / V3: EE V1: Travelling straigh ahead / V2:Parked / V3:Turning left} \\
\hline 6 & 3602797 & 3:52 PM & 2013-09-12 & Blue Hill Avenue / Churchill Street / Ree Z & \multicolumn{2}{|l|}{Property damage only (no 2} & Angle & Dry & Daylight & Clear & & V1:Southbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Making U-turn / V2:Travelling straight ahead} \\
\hline 7 & 3767843 & 3:11 PM & 2014-01-17 & Bue Hill Avenue Rte \(138 \mathrm{~N} /\) Churchill Street & Non-fatal injury 2 & & Angle & Dry & Daylight & Clear/Clear & & V1:Northbound / V2:Westbound & V1: Traveling straight ahead / V2:Entering trafic lane & Can't see \\
\hline 8 & 4053899 & 10:56 PM & 2015-03-29 & Blue Hill Avenue / Churchill Street & \multicolumn{2}{|l|}{Property damage only (no 3} & Single venicle crash & Dry & \multicolumn{3}{|l|}{Dark - lighted C Clear/Clear} & \multicolumn{3}{|l|}{V1:Northbound / V2:Northbound / V3:Nc V1: Travelling straight ahead / V2:Parked / V3:Parked} \\
\hline 9 & 3336298 & 5:15 PM & 2012-08-18 & Blue Hill Avenue / Blue Hill Avenue / Churchill Street & Non-fatal injury 2 & 2 & \multicolumn{2}{|l|}{Sideswipe, opposite dire Wet} & \multirow[t]{2}{*}{Dayight} & Rain & & V1:Westbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Turning left/ V2:Travelling straight anead} \\
\hline 10 & 2709440 & 5:25 PM & 2011-01-10 & Area Of Union Avenue & Non-fatal injury & 1 & Single vehicle crash & Dry & & Dark - lighted I Clear/Clear & ped & V1:Southbound & \multicolumn{2}{|l|}{V1: Not reported} \\
\hline 11 & 3584834 & 9:35 PM & 2013-08-17 & Blue Hill Avenue / Blue Hill Avenue / Oak Street & Non-fatal injury 2 & 2 & Angle & Dry & \multicolumn{2}{|l|}{Dark - lighted r Clear} & & V1:Westbound / V2:Northbound & \multicolumn{2}{|l|}{V1: Turning left / V2:Travelling straight anead} \\
\hline 12 & 3937034 & 8:15 AM & 2014-07-30 & Belvoir & Not Reported 2 & 2 & Rear-end & Dry & Daylight & Clear & & V1:Southbound / V2:Southbound & V1: Not reported / V2:Not reported & \\
\hline 13 & 4106614 & 1:08 AM & 2015-08-30 & Blue Hill Avenue / Oak Street & \multicolumn{2}{|l|}{Property damage only (no 3} & Single evicle crash & Dry & \multicolumn{3}{|l|}{Dark - lighted r Clear} & \multicolumn{2}{|l|}{V1:Southbound / V2:Southbound / V3: V1 V1: Traveling straight anead / V2:Parked / / 3:Parked} & Reckless \\
\hline 14 & 3950629 & 3:28 PM & 2014-09-04 & 116 Feet S From Intersection Belvoir Road & Non-fatal injury 2 & & Rear-end & Dry & Daylight & Clear/Clear & & V1:Southbound / V2:Southbound & \multicolumn{2}{|l|}{V1: Travelling straight ahead / V2:Slowing or stopped in tri} \\
\hline 15 & 4078624 & 12:04 PM & 2015-06-23 & Blue Hill Avenue / Blue Hill Avenue Rte \(138 \mathrm{~N} /\) Belvoir Road & \multicolumn{2}{|l|}{Property damage only (no 2} & Rear-end & Wet & Daylight & Cloudy/Rain & & V1:Northbound / V2:Northbound & V1: Slowing or stopped in trafic / V2:Traveling straigh & h Inatention \\
\hline
\end{tabular}


2

Table E-12
Route 138 at Brook Road
Route 138 in Milton


\section*{Part 2: Expected Crashes Analysis}

\section*{Figure E-13 \\ 2011-2015 Observed Crashes}

Severity
\begin{tabular}{ccc} 
No Injury & Non-fatal Injury & Unknown \\
140 & 110 & 12
\end{tabular}

Peak vs. Off-Peak
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
107 \\
\hline
\end{gathered}
\] & \multicolumn{2}{|l|}{Off-Peak 155} \\
\hline \multicolumn{3}{|l|}{Manner of Collision} \\
\hline Rear-end
\[
159
\] & \[
\begin{gathered}
\text { Angle } \\
43 \\
\hline
\end{gathered}
\] & \(\underset{31}{\text { Single Veh. Sideswipe }}\) \\
\hline
\end{tabular}

At or Between Intersections
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{At Intersection 162} & & \multicolumn{2}{|l|}{Not At Intersection
\(\mathbf{1 0 0}\)} \\
\hline 0 & 50 & 100 & 150 & 200 & 250 \\
\hline & \multicolumn{5}{|c|}{Number of Collisions} \\
\hline
\end{tabular}

\section*{Figure E-14}

\section*{Annual Comprehensive Cost Estimate: Existing Conditions}


\section*{Figure E-15}

\section*{Annual Comprehensive Cost Estimate By Facility}


Table E-1

\section*{Summary of Expected Crashes Analysis for Existing Conditions}

Route 138 in Milton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Site \\
ID
\end{tabular} & Location & \begin{tabular}{l}
Analysis \\
Type
\end{tabular} & \begin{tabular}{l}
Total \\
observed crashes
\end{tabular} & Average observed crashes & Average predicted crashes & \[
\begin{array}{r}
\text { Total } \\
\text { expected } \\
\text { crashes }
\end{array}
\] & Average expected crashes & Potential for Safety Im provement (PSI) & HighRisk Site & Observed crashes > Expected Crashes & \[
\begin{array}{r}
\text { FI } \\
\text { Crash } \\
\text { Rate }
\end{array}
\] &  & Fl Cost & PDO Cost & Total Cost \\
\hline S1 & Route 138 between Northern Parking Lot Entrance and Green S & Segment & 7 & 1.4 & & 7.0 & & -0.32 & - & & 0.39 & 1.01 & \$102,289 & \$15,768 & \$118,100 \\
\hline 11 & Route 138 at Green Street & Intersection & 3 & 0.6 & & 5.7 & & -1.26 & & & 0.36 & 0.77 & \$93,589 & \$12,035 & \$105,600 \\
\hline S2 & Route 138 between Green Street and Brush Hill Road & Segment & 27 & 5.4 & 3.03 & 24.9 & 4.97 & 1.94 & - & \(Y\) & 1.42 & 3.55 & \$370,652 & \$55,392 & \$426,000 \\
\hline 14 & Route 138 and Brush Hill Road & Intersection & 32 & 6.4 & & 35.4 & & -0.48 & & & 2.33 & 4.76 & \$606,398 & \$74,291 & \$680,700 \\
\hline S3 & Route 138 between Brush Hill Road and Neponset Valley Parkn & Segment & 10 & 2.0 & & 11.2 & & -0.76 & - & & 0.63 & 1.61 & \$163,497 & \$25,086 & \$188,600 \\
\hline 16 & Route 138 and Neponset Valley Parkway & Intersection & 21 & 4.2 & & 21.2 & & 1.19 & \(Y\) & & 1.34 & 2.89 & \$350,710 & \$45,098 & \$395,800 \\
\hline S4 & Route 138 between Neponset Valley Parkway and Milton Street & Segment & 6 & 1.2 & 0.80 & 5.7 & & 0.33 & - & \(Y\) & 0.31 & 0.82 & \$80,765 & \$12,828 & \$93,600 \\
\hline 17 & Route 138 at Dollar Lane and Milton Street & Intersection & 33 & 6.6 & & 31.0 & & 1.74 & \(Y\) & \(Y\) & 1.99 & 4.20 & \$519,812 & \$65,535 & \$585,300 \\
\hline S5 & Route 138 between Milton Street and Blue Jay Way & Segment & 6 & 1.2 & & 6.3 & & -0.02 & - & & 0.35 & 0.90 & \$91,065 & \$14,068 & \$105,100 \\
\hline 18 & Route 138 and Blue Jay Way Curry College & Intersection & 9 & 1.8 & & 6.8 & & 0.36 & \(Y\) & \(Y\) & 0.43 & 0.93 & \$112,798 & \$14,505 & \$127,300 \\
\hline S6 & Route 138 between Blue Jay Way and Atherton Street & Segment & 4 & 0.8 & & 4.6 & & -0.32 & - & & 0.26 & 0.67 & \$67,756 & \$10,408 & \$78,200 \\
\hline 19 & Route 138 at Bradlee Road and Atherton Street & Intersection & 17 & 3.4 & & 15.4 & & 0.58 & \(Y\) & \(Y\) & 1.08 & 1.99 & \$282,477 & \$31,025 & \$313,500 \\
\hline S7 & Route 138 between Atherton Street and Robbins Street & Segment & 13 & 2.6 & & 12.6 & & 0.28 & - & \(Y\) & 0.71 & 1.81 & \$184,596 & \$28,255 & \$212,900 \\
\hline 20 & Route 138 and Robbins Street & Intersection & 5 & 1.0 & & 5.6 & & 0.09 & \(Y\) & & 0.43 & 0.68 & \$113,023 & \$10,576 & \$123,600 \\
\hline S8 & Route 138 between Robbins Street and Cheever Street & Segment & 13 & 2.6 & & 11.9 & & 0.25 & - & \(Y\) & 0.69 & 1.69 & \$180,289 & \$26,391 & \$206,700 \\
\hline 21 & Route 138 at Blue HIII Terrace Street and Cheever Street & Intersection & 10 & 2.0 & & 9.9 & & 0.20 & \(Y\) & \(Y\) & 0.70 & 1.29 & \$182,736 & \$20,070 & \$202,800 \\
\hline S9 & Route 138 between Cheever Street and Oak Street & Segment & 16 & 3.2 & & 11.3 & & 1.27 & - & \(Y\) & 0.68 & 1.58 & \$176,109 & \$24,613 & \$200,700 \\
\hline 23 & Route 138 and Oak Street & Intersection & 2 & 0.4 & & 2.2 & & 0.04 & \(Y\) & & 0.17 & 0.27 & \$44,985 & \$4,210 & \$49,200 \\
\hline S10 & Route 138 between Oak Street and Brook Road & Segment & 3 & 0.6 & 0.46 & 2.7 & & 0.08 & - & \(Y\) & 0.16 & 0.38 & \$41,569 & \$5,922 & \$47,500 \\
\hline 24 & Route 138 and Brook Road & Intersection & 12 & 2.4 & & 11.2 & & 0.56 & \(Y\) & \(Y\) & 0.83 & 1.40 & \$217,390 & \$21,852 & \$239,200 \\
\hline S11 & Route 138 between Brook Road and past Austin Street & Segment & 13 & 2.6 & & 7.1 & & 0.87 & - & \(Y\) & 0.46 & 0.96 & \$120,873 & \$14,969 & \$135,800 \\
\hline Total & Entire Route 138 Corridor & & 262 & 52.4 & 43.28 & 249.5 & 49.89 & 15 of 21 & of 10 & 12 of 21 & 15.7 & 34.2 & \$4,103,377 & \$532,896 & \$4,636,200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{|c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 at Green Street \\
\hline Agency or Company & CTPS & Intersection Type & 3ST \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 0 & 0 & 2.07 & 2.46 & 1.00 \\
\hline 2014 & 1 & 1 & 2.05 & 2.43 & 1.00 \\
\hline 2013 & 2 & 2 & 2.02 & 2.39 & 1.00 \\
\hline 2012 & 0 & 0 & 1.98 & 2.35 & 1.00 \\
\hline 2011 & 0 & 0 & 1.95 & 2.31 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{3.00} & \multirow{5}{*}{0.60} & \multirow{5}{*}{10.07} & \multirow{5}{*}{2.39} & \multirow{5}{*}{0.06} & \multirow{5}{*}{0.29} & \multirow{5}{*}{5.07} & 1.16 & \multirow{5}{*}{1,13} & \multirow{5}{*}{\(N\)} & \multirow{5}{*}{-1.26} & \multirow{5}{*}{\(N\)} \\
\hline & & & & & & & 1.15 & & & & \\
\hline & & & & & & & 1.13 & & & & \\
\hline & & & & & & & 1.11 & & & & \\
\hline & & & & & & & 1.09 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & Proportion of Total Crashes & \[
\begin{aligned}
& \hline \text { Adjusted } \\
& \mathbf{N}_{\text {binv }}
\end{aligned}
\] & Combined CMFs & \[
\left\lvert\, \begin{gathered}
\text { Calibration } \\
\text { Factor, } \mathrm{C}_{\mathrm{i}}
\end{gathered}\right.
\] & Adjusted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12 & & (4) Total \(^{*}\) * 5 ) & (7) from & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 1.836 & 1.000 & 1.836 & 1.00 & 1.13 & 2.075 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.510 & -- & 0.510 & 1.00 & 1.13 & 0.576 \\
\hline \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.327 & -- & 1.327 & 1.00 & 1.13 & 1.499 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\({ }_{\text {Collision Type }}\)} & \multicolumn{5}{|l|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDO) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2 C & (9) nomur \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline Total & 1.000 & 0.576 & 1.000 & 1.499 & 2.075 \\
\hline & & (2)* \({ }^{\text {( }}\) F। & & (4)*(5) \({ }_{\text {Pdo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.237 & 0.337 & 0.505 & 0.742 \\
\hline Head-on collision & 0.014 & 0.008 & 0.011 & 0.016 & 0.024 \\
\hline Angle collision & 0.562 & 0.323 & 0.579 & 0.868 & 1.191 \\
\hline Sideswipe & 0.014 & 0.008 & 0.074 & 0.110 & 0.118 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & \multirow[t]{3}{*}{Proportion of Total Crashes} & (6) & (7) & (8) & (9) \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisy }}\) & & Adjusted & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{\star}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.216 & 1.000 & 0.216 & 1.00 & 1.13 & 0.245 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.056 & -- & 0.056 & 1.00 & 1.13 & 0.063 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.161 & -- & 0.161 & 1.00 & 1.13 & 0.181 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.063 & 1.000 & 0.181 & 0.245 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with fixed object & 0.625 & 0.039 & 0.870 & 0.158 & 0.197 \\
\hline Collision with other object & 0.125 & 0.008 & 0.043 & 0.008 & 0.016 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.016 & 0.000 & 0.000 & 0.016 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{\star}(6)\) \\
\hline Total & 2.075 & 0.245 & 2.319 & 0.020 & 1.13 & 0.053 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.053 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) \(+(3)\) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.075 & 0.245 & 2.319 & 0.034 & 1.13 & 0.089 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.089 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.237 & 0.505 & 0.742 \\
\hline Head-on collisions (from Worksheet 2D) & 0.008 & 0.016 & 0.024 \\
\hline Angle collisions (from Worksheet 2D) & 0.323 & 0.868 & 1.191 \\
\hline Sideswipe (from Worksheet 2D) & 0.008 & 0.110 & 0.118 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.576 & 1.499 & 2.075 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.039 & 0.158 & 0.197 \\
\hline Collision with other object (from Worksheet 2F) & 0.008 & 0.008 & 0.016 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.016 & 0.000 & 0.016 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.053 & 0.000 & 0.053 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.089 & 0.000 & 0.089 \\
\hline Subtotal & 0.206 & 0.181 & 0.387 \\
\hline Total & 0.782 & 1.680 & 2.462 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 2.462 \\
\hline Property damage only (PDO) & 0.782 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}{ }^{\text {( }}\) ( \({ }^{\text {a }}\) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 1.810 & 1.000 & 1.810 & 1.00 & 1.13 & 2.046 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.503 & -- & 0.503 & 1.00 & 1.13 & 0.568 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.308 & -- & 1.308 & 1.00 & 1.13 & 1.478 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{\(\frac{(1)}{\text { Collision Type }}\)} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Type(f) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimin \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.568 & 1.000 & 1.478 & 2.046 \\
\hline & & (2)* 3 ) \({ }_{\text {FI }}\) & & (4)* 5\()_{\text {Poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.233 & 0.337 & 0.498 & 0.731 \\
\hline Head-on collision & 0.014 & 0.008 & 0.011 & 0.016 & 0.023 \\
\hline Angle collision & 0.562 & 0.319 & 0.579 & 0.856 & 1.175 \\
\hline Sideswipe & 0.014 & 0.008 & 0.074 & 0.109 & 0.117 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & (7) from & & \((6) \pm(7) *(8)\) \\
\hline & a & b & c & & & & () Itotal \(^{\text {a }}\) ( & Worksheet 2B & & () \\
\hline Total & -- & -- & -- & 0.118 & 0.213 & 1.000 & 0.213 & 1.00 & 1.13 & 0.241 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.055 & -- & 0.055 & 1.00 & 1.13 & 0.062 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.158 & -- & 0.158 & 1.00 & 1.13 & 0.179 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.062 & 1.000 & 0.179 & 0.241 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with fixed object & 0.625 & 0.039 & 0.870 & 0.156 & 0.194 \\
\hline Collision with other object & 0.125 & 0.008 & 0.043 & 0.008 & 0.016 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.016 & 0.000 & 0.000 & 0.016 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{\star}(6)\) \\
\hline Total & 2.046 & 0.241 & 2.287 & 0.020 & 1.13 & 0.053 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.053 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.046 & 0.241 & 2.287 & 0.034 & 1.13 & 0.088 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.088 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.233 & 0.498 & 0.731 \\
\hline Head-on collisions (from Worksheet 2D) & 0.008 & 0.016 & 0.023 \\
\hline Angle collisions (from Worksheet 2D) & 0.319 & 0.856 & 1.175 \\
\hline Sideswipe (from Worksheet 2D) & 0.008 & 0.109 & 0.117 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.568 & 1.478 & 2.046 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.039 & 0.156 & 0.194 \\
\hline Collision with other object (from Worksheet 2F) & 0.008 & 0.008 & 0.016 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.016 & 0.000 & 0.016 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.053 & 0.000 & 0.053 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.088 & 0.000 & 0.088 \\
\hline Subtotal & 0.203 & 0.179 & 0.382 \\
\hline Total & 0.771 & 1.657 & 2.428 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, N \(_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{SPF Coefficients}} & (3) & (4) & (5) & (6) & (7) & \multirow{4}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {binv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4)Total \({ }^{*}\) (5) & (7) from Worksheet 2 B & & \({ }^{(6))^{*}(7) *(8)}\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 1.785 & 1.000 & 1.785 & 1.00 & 1.13 & 2.017 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.495 & -- & 0.495 & 1.00 & 1.13 & 0.560 \\
\hline \[
\begin{array}{|l}
\hline \text { Property Damage Only } \\
\text { (PDO) } \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.290 & -- & 1.290 & 1.00 & 1.13 & 1.457 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{\(\frac{(1)}{\text { Collision Type }}\)} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Type(f) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimin \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.560 & 1.000 & 1.457 & 2.017 \\
\hline & & (2)* \((3)\) F। & & (4)*(5) \({ }_{\text {Poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.230 & 0.337 & 0.491 & 0.721 \\
\hline Head-on collision & 0.014 & 0.008 & 0.011 & 0.015 & 0.023 \\
\hline Angle collision & 0.562 & 0.314 & 0.579 & 0.844 & 1.158 \\
\hline Sideswipe & 0.014 & 0.008 & 0.074 & 0.107 & 0.115 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.210 & 1.000 & 0.210 & 1.00 & 1.13 & 0.238 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.054 & -- & 0.054 & 1.00 & 1.13 & 0.061 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.156 & -- & 0.156 & 1.00 & 1.13 & 0.176 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.061 & 1.000 & 0.176 & 0.238 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with fixed object & 0.625 & 0.038 & 0.870 & 0.153 & 0.192 \\
\hline Collision with other object & 0.125 & 0.008 & 0.043 & 0.008 & 0.015 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.015 & 0.000 & 0.000 & 0.015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.017 & 0.238 & 2.255 & 0.020 & 1.13 & 0.052 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.052 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.017 & 0.238 & 2.255 & 0.034 & 1.13 & 0.087 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.087 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.230 & 0.491 & 0.721 \\
\hline Head-on collisions (from Worksheet 2D) & 0.008 & 0.015 & 0.023 \\
\hline Angle collisions (from Worksheet 2D) & 0.314 & 0.844 & 1.158 \\
\hline Sideswipe (from Worksheet 2D) & 0.008 & 0.107 & 0.115 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.560 & 1.457 & 2.017 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.038 & 0.153 & 0.192 \\
\hline Collision with other object (from Worksheet 2F) & 0.008 & 0.008 & 0.015 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.015 & 0.000 & 0.015 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.052 & 0.000 & 0.052 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.087 & 0.000 & 0.087 \\
\hline Subtotal & 0.200 & 0.176 & 0.376 \\
\hline Total & 0.760 & 1.634 & 2.393 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, N \(_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}\) (5) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 1.755 & 1.000 & 1.755 & 1.00 & 1.13 & 1.984 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.487 & -- & 0.487 & 1.00 & 1.13 & 0.551 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.268 & -- & 1.268 & 1.00 & 1.13 & 1.433 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{\(\frac{(1)}{\text { Collision Type }}\)} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimim \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.551 & 1.000 & 1.433 & 1.984 \\
\hline & &  & & (4)*(5) \({ }_{\text {Poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.226 & 0.337 & 0.483 & 0.709 \\
\hline Head-on collision & 0.014 & 0.008 & 0.011 & 0.015 & 0.023 \\
\hline Angle collision & 0.562 & 0.309 & 0.579 & 0.830 & 1.139 \\
\hline Sideswipe & 0.014 & 0.008 & 0.074 & 0.106 & 0.113 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.207 & 1.000 & 0.207 & 1.00 & 1.13 & 0.234 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.053 & -- & 0.053 & 1.00 & 1.13 & 0.060 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.154 & -- & 0.154 & 1.00 & 1.13 & 0.173 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.060 & 1.000 & 0.173 & 0.234 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.008 & 0.008 \\
\hline Collision with fixed object & 0.625 & 0.038 & 0.870 & 0.151 & 0.189 \\
\hline Collision with other object & 0.125 & 0.008 & 0.043 & 0.008 & 0.015 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.015 & 0.000 & 0.000 & 0.015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.984 & 0.234 & 2.217 & 0.020 & 1.13 & 0.051 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.051 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.984 & 0.234 & 2.217 & 0.034 & 1.13 & 0.085 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.226 & 0.483 & 0.709 \\
\hline Head-on collisions (from Worksheet 2D) & 0.008 & 0.015 & 0.023 \\
\hline Angle collisions (from Worksheet 2D) & 0.309 & 0.830 & 1.139 \\
\hline Sideswipe (from Worksheet 2D) & 0.008 & 0.106 & 0.113 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.551 & 1.433 & 1.984 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.008 & 0.008 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.038 & 0.151 & 0.189 \\
\hline Collision with other object (from Worksheet 2F) & 0.008 & 0.008 & 0.015 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.015 & 0.000 & 0.015 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.051 & 0.000 & 0.051 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.085 & 0.000 & 0.085 \\
\hline Subtotal & 0.197 & 0.173 & 0.370 \\
\hline Total & 0.747 & 1.606 & 2.354 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 2.354 \\
\hline Property damage only (PDO) & 0.747 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & \multirow[t]{4}{*}{\begin{tabular}{l}
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) Total \(^{*}\) * 5 ) & (7) from & & (6)* \({ }^{(7) * *(8)}\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 1.726 & 1.000 & 1.726 & 1.00 & 1.13 & 1.950 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.479 & -- & 0.479 & 1.00 & 1.13 & 0.541 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.247 & -- & 1.247 & 1.00 & 1.13 & 1.409 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{Collision Type} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimim \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.541 & 1.000 & 1.409 & 1.950 \\
\hline & & (2)* \({ }^{\text {( }}\) FI & & (4)* 5\()_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.222 & 0.337 & 0.475 & 0.697 \\
\hline Head-on collision & 0.014 & 0.007 & 0.011 & 0.015 & 0.022 \\
\hline Angle collision & 0.562 & 0.304 & 0.579 & 0.816 & 1.120 \\
\hline Sideswipe & 0.014 & 0.007 & 0.074 & 0.104 & 0.111 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.203 & 1.000 & 0.203 & 1.00 & 1.13 & 0.230 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.052 & -- & 0.052 & 1.00 & 1.13 & 0.059 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.151 & -- & 0.151 & 1.00 & 1.13 & 0.171 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.059 & 1.000 & 0.171 & 0.230 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.007 & 0.007 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.007 & 0.007 \\
\hline Collision with fixed object & 0.625 & 0.037 & 0.870 & 0.148 & 0.185 \\
\hline Collision with other object & 0.125 & 0.007 & 0.043 & 0.007 & 0.015 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.015 & 0.000 & 0.000 & 0.015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.950 & 0.230 & 2.180 & 0.020 & 1.13 & 0.050 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.950 & 0.230 & 2.180 & 0.034 & 1.13 & 0.084 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.084 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|r|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.222 & 0.475 & 0.697 \\
\hline Head-on collisions (from Worksheet 2D) & 0.007 & 0.015 & 0.022 \\
\hline Angle collisions (from Worksheet 2D) & 0.304 & 0.816 & 1.120 \\
\hline Sideswipe (from Worksheet 2D) & 0.007 & 0.104 & 0.111 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.541 & 1.409 & 1.950 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.007 & 0.007 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.007 & 0.007 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.037 & 0.148 & 0.185 \\
\hline Collision with other object (from Worksheet 2F) & 0.007 & 0.007 & 0.015 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.015 & 0.000 & 0.015 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.050 & 0.000 & 0.050 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.084 & 0.000 & 0.084 \\
\hline Subtotal & 0.193 & 0.171 & 0.364 \\
\hline Total & 0.735 & 1.580 & 2.314 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, N \(_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Brush Hill Road \\
\hline Agency or Company & CTPS & Intersection Type & 4SG \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 9 & 9 & 6.86 & 7.78 & 1.35 \\
\hline 2014 & 7 & 8 & 6.78 & 7.69 & 1.35 \\
\hline 2013 & 7 & 7 & 6.67 & 7.57 & 1.35 \\
\hline 2012 & 4 & 4 & 6.58 & 7.46 & 1.35 \\
\hline 2011 & 4 & 4 & 6.49 & 7.36 & 1.35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{31.00} & \multirow{5}{*}{6.40} & \multirow{5}{*}{33.38} & \multirow{5}{*}{7.57} & \multirow{5}{*}{0.17} & \multirow{5}{*}{0.24} & \multirow{5}{*}{31.57} & 7.28 & \multirow{5}{*}{7.09} & \multirow{5}{*}{\(N\)} & \multirow{5}{*}{-0.48} & \multirow{5}{*}{\(N\)} \\
\hline & & & & & & & 7.20 & & & & \\
\hline & & & & & & & 7.08 & & & & \\
\hline & & & & & & & 6.98 & & & & \\
\hline & & & & & & & 6.89 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|l|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brush Hill Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2015 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT \({ }_{\text {major }}\) (veh/day) \({ }^{\text {a }}\) ( AADI \(_{\text {MAX }}=667,700\) (veh/day) & -- & 24,600 \\
\hline \(\mathrm{AADT}_{\text {minor }}\) (veh/day) AADI \(_{\text {MAX }}=33,400\) (veh/day) & -- & 6,050 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 1.00 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \(3 p\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.350 & 1.000 & 7.198 & 0.278 & 0.305 & 7.781 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{\star}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 0.90 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 7.62 & 1.00 & 7.62 & 0.90 & 1.00 & 6.86 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 2.12 & -- & 2.12 & 0.90 & 1.00 & 1.91 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 5.50 & -- & 5.50 & 0.90 & 1.00 & 4.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow{3}{*}{Collision Type} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision
Type(FI) & Adjusted \(\mathrm{N}_{\text {bimu ( }}\) (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9)ef from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimanv \(^{\text {from }}\) Worksheet 2 C \\
\hline Total & 1.00 & 1.91 & 1.00 & 4.95 & 6.86 \\
\hline & & (2)* 3 ) \({ }^{\text {I }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.86 & 0.42 & 2.09 & 2.95 \\
\hline Head-on collision & 0.04 & 0.07 & 0.04 & 0.19 & 0.26 \\
\hline Angle collision & 0.49 & 0.94 & 0.43 & 2.11 & 3.05 \\
\hline Sideswipe & 0.02 & 0.04 & 0.11 & 0.56 & 0.60 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{array}
\] & Combined CMFs & & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathrm{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & from Table 1A & (3) * (4) From Worksheet 2C & & (4) тtola \(^{*}\) (5) & (7) from Worksheet 2B & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -- & -- & -- & 0.05 & 0.37 & 1.00 & 0.37 & 0.90 & 1.00 & 0.34 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.07 & -- & 0.07 & 0.90 & 1.00 & 0.06 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.31 & -- & 0.31 & 0.90 & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.06 & 1.00 & 0.27 & 0.34 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.63 & 0.04 & 0.86 & 0.24 & 0.27 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.02 & 0.02 \\
\hline Other single-vehicle collision & 0.13 & 0.01 & 0.03 & 0.01 & 0.02 \\
\hline Single-vehicle noncollision & 0.25 & 0.02 & 0.00 & 0.00 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.35 & 1.00 & 1.35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 6.86 & 0.34 & 7.20 & 0.03 & 0.21 & 1.00 & 0.28 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathbf{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5) *\) (6) \\
\hline Total & 6.86 & 0.34 & 7.20 & 0.04 & 1.00 & 0.31 \\
\hline Fatal and injury (FI) & -- & -- & --- & -- & 1.00 & 0.31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.86 & 2.09 & 2.95 \\
\hline Head-on collisions (from Worksheet 2D) & 0.07 & 0.19 & 0.26 \\
\hline Angle collisions (from Worksheet 2D) & 0.94 & 2.11 & 3.05 \\
\hline Sideswipe (from Worksheet 2D) & 0.04 & 0.56 & 0.60 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Subtotal & 1.91 & 4.95 & 6.86 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.04 & 0.24 & 0.27 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.02 & 0.02 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.02 & 0.00 & 0.02 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.28 & 0.00 & 0.28 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.31 & 0.00 & 0.31 \\
\hline Subtotal & 0.64 & 0.27 & 0.92 \\
\hline Total & 2.55 & 5.23 & 7.78 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 7.78 \\
\hline Fatal and injury (FI) & 2.55 \\
\hline Property damage only (PDO) & 5.23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brush Hill Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2014 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 24,400 \\
\hline  & -- & 6,000 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 1.00 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.350 & 1.000 & 7.113 & 0.275 & 0.302 & 7.690 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 0.90 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 7.53 & 1.00 & 7.53 & 0.90 & 1.00 & 6.78 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 2.10 & -- & 2.10 & 0.90 & 1.00 & 1.89 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 5.44 & -- & 5.44 & 0.90 & 1.00 & 4.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(FI) \(^{\text {Typ }}\) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimu (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ef from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Niminv from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 1.89 & 1.00 & 4.90 & 6.78 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {pDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.85 & 0.42 & 2.07 & 2.92 \\
\hline Head-on collision & 0.04 & 0.07 & 0.04 & 0.19 & 0.26 \\
\hline Angle collision & 0.49 & 0.93 & 0.43 & 2.08 & 3.01 \\
\hline Sideswipe & 0.02 & 0.04 & 0.11 & 0.55 & 0.59 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{3}{*}{\begin{tabular}{c} 
(8) \\
\hline Calibration \\
Factor, \(C_{i}\)
\end{tabular}} & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Hital & \multirow[t]{2}{*}{Proportion of Total
Crashes} & Adjusted & Combined & & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) Total \(^{\star}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6)^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.05 & 0.37 & 1.00 & 0.37 & 0.90 & 1.00 & 0.33 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.07 & -- & 0.07 & 0.90 & 1.00 & 0.06 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.30 & -- & 0.30 & 0.90 & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.06 & 1.00 & 0.27 & 0.33 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.63 & 0.04 & 0.86 & 0.23 & 0.27 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.02 & 0.02 \\
\hline Other single-vehicle collision & 0.13 & 0.01 & 0.03 & 0.01 & 0.02 \\
\hline Single-vehicle noncollision & 0.25 & 0.02 & 0.00 & 0.00 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Worksheet 2G-1 -- Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections \\
\hline\((1)\) & \((2)\) & \((3)\) & \((4)\) \\
\hline CMF for Bus Stops \(_{\text {CMF }_{1 \mathrm{p}}}\) & CMF for Schools \(^{2}\) & CMF for Alcohol Sales Establishments & Combined CMF \\
\hline from Table 12-28 & CMF \(_{2 \mathrm{p}}\) & CMF \(_{3 \mathrm{p}}\) & from Table 12-30 \\
\hline 1.00 & from Table 12-29 & 1.00 & \((1)^{\star}(2)^{\star}(3)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 6.78 & 0.33 & 7.11 & 0.03 & 0.20 & 1.00 & 0.27 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathbf{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 6.78 & 0.33 & 7.11 & 0.04 & 1.00 & 0.30 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.85 & 2.07 & 2.92 \\
\hline Head-on collisions (from Worksheet 2D) & 0.07 & 0.19 & 0.26 \\
\hline Angle collisions (from Worksheet 2D) & 0.93 & 2.08 & 3.01 \\
\hline Sideswipe (from Worksheet 2D) & 0.04 & 0.55 & 0.59 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Subtotal & 1.89 & 4.90 & 6.78 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.04 & 0.23 & 0.27 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.02 & 0.02 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.02 & 0.00 & 0.02 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.27 & 0.00 & 0.27 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.30 & 0.00 & 0.30 \\
\hline Subtotal & 0.64 & 0.27 & 0.91 \\
\hline Total & 2.52 & 5.17 & 7.69 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & Total \\
\hline Fatal and injury (FI) & 7.69 \\
\hline Property damage only (PDO) & 2.52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brush Hill Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2013 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 24,200 \\
\hline  & -- & 5,900 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 1.00 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \({ }_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.350 & 1.000 & 6.998 & 0.271 & 0.297 & 7.566 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 0.90 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) Total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & (4) total \(^{\text {a }}\) (5) & & & (6)(7)(8) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 7.41 & 1.00 & 7.41 & 0.90 & 1.00 & 6.67 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 2.06 & -- & 2.06 & 0.90 & 1.00 & 1.86 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 5.35 & -- & 5.35 & 0.90 & 1.00 & 4.82 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(FI) \(^{\text {Typ }}\) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimu (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ef from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimun from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 1.86 & 1.00 & 4.82 & 6.67 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {pDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.84 & 0.42 & 2.03 & 2.87 \\
\hline Head-on collision & 0.04 & 0.07 & 0.04 & 0.19 & 0.25 \\
\hline Angle collision & 0.49 & 0.91 & 0.43 & 2.05 & 2.96 \\
\hline Sideswipe & 0.02 & 0.04 & 0.11 & 0.54 & 0.58 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] & Combined CMFs & & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathrm{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & from Table 1A & (3) * (4) From Worksheet 2C & & (4) тtola \(^{*}\) (5) & (7) from Worksheet 2B & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -- & -- & -- & 0.05 & 0.36 & 1.00 & 0.36 & 0.90 & 1.00 & 0.33 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.07 & -- & 0.07 & 0.90 & 1.00 & 0.06 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.30 & -- & 0.30 & 0.90 & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) \(_{\text {(F) }}\) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.06 & 1.00 & 0.27 & 0.33 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \({ }^{\text {(5) }}\) PDO & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.63 & 0.04 & 0.86 & 0.23 & 0.27 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.01 & 0.03 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Worksheet 2G-1 -- Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections \\
\hline\((1)\) & \((2)\) & \((3)\) & \((4)\) \\
\hline CMF for Bus Stops \(_{\text {CMF }_{1 \mathrm{p}}}\) & CMF for Schools \(^{2}\) & CMF for Alcohol Sales Establishments & Combined CMF \\
\hline from Table 12-28 & CMF \(_{2 \mathrm{p}}\) & CMF \(_{3 \mathrm{p}}\) & from Table 12-30 \\
\hline 1.00 & from Table 12-29 & 1.00 & \((1)^{\star}(2)^{\star}(3)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 6.67 & 0.33 & 7.00 & 0.03 & 0.20 & 1.00 & 0.27 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathbf{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 6.67 & 0.33 & 7.00 & 0.04 & 1.00 & 0.30 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.84 & 2.03 & 2.87 \\
\hline Head-on collisions (from Worksheet 2D) & 0.07 & 0.19 & 0.25 \\
\hline Angle collisions (from Worksheet 2D) & 0.91 & 2.05 & 2.96 \\
\hline Sideswipe (from Worksheet 2D) & 0.04 & 0.54 & 0.58 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Subtotal & 1.86 & 4.82 & 6.67 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.04 & 0.23 & 0.27 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.01 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.27 & 0.00 & 0.27 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.30 & 0.00 & 0.30 \\
\hline Subtotal & 0.63 & 0.27 & 0.89 \\
\hline Total & 2.48 & 5.08 & 7.57 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 7.57 \\
\hline Fatal and injury (FI) & 2.48 \\
\hline Property damage only (PDO) & 5.08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|l|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brush Hill Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2012 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT major (veh/day) \({ }^{\text {a }}\) ( AADI \(_{\text {MAX }}=67,700\) (veh/day) & -- & 23,950 \\
\hline \(\mathrm{AADT}_{\text {minor }}\) (veh/day) \(\mathrm{AAD}^{\text {MAX }}=33,400\) (veh/day) & -- & 5,850 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 1.00 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.350 & 1.000 & 6.901 & 0.267 & 0.293 & 7.461 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 0.90 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) Total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 7.31 & 1.00 & 7.31 & 0.90 & 1.00 & 6.58 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 2.03 & -- & 2.03 & 0.90 & 1.00 & 1.83 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 5.28 & -- & 5.28 & 0.90 & 1.00 & 4.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 1.83 & 1.00 & 4.75 & 6.58 \\
\hline & & (2)* \((3)_{\text {FI }}\) & & (4)** 5 ) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.83 & 0.42 & 2.01 & 2.83 \\
\hline Head-on collision & 0.04 & 0.07 & 0.04 & 0.18 & 0.25 \\
\hline Angle collision & 0.49 & 0.90 & 0.43 & 2.02 & 2.92 \\
\hline Sideswipe & 0.02 & 0.04 & 0.11 & 0.53 & 0.57 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & **(5) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.36 & 1.00 & 0.36 & 0.90 & 1.00 & 0.32 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.07 & -- & 0.07 & 0.90 & 1.00 & 0.06 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.29 & -- & 0.29 & 0.90 & 1.00 & 0.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.06 & 1.00 & 0.26 & 0.32 \\
\hline & & (2)* \(\left.{ }^{\text {( }}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.63 & 0.04 & 0.86 & 0.23 & 0.26 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.01 & 0.03 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Worksheet 2G-1 -- Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections \\
\hline\((1)\) & \((2)\) & \((3)\) & \((4)\) \\
\hline CMF for Bus Stops \(_{\text {CMF }_{1 \mathrm{p}}}\) & CMF for Schools \(^{2}\) & CMF for Alcohol Sales Establishments & Combined CMF \\
\hline from Table 12-28 & CMF \(_{2 \mathrm{p}}\) & CMF \(_{3 \mathrm{p}}\) & from Table 12-30 \\
\hline 1.00 & from Table 12-29 & 1.00 & \((1)^{\star}(2)^{\star}(3)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 6.58 & 0.32 & 6.90 & 0.03 & 0.20 & 1.00 & 0.27 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 6.58 & 0.32 & 6.90 & 0.04 & 1.00 & 0.29 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.83 & 2.01 & 2.83 \\
\hline Head-on collisions (from Worksheet 2D) & 0.07 & 0.18 & 0.25 \\
\hline Angle collisions (from Worksheet 2D) & 0.90 & 2.02 & 2.92 \\
\hline Sideswipe (from Worksheet 2D) & 0.04 & 0.53 & 0.57 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Subtotal & 1.83 & 4.75 & 6.58 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.04 & 0.23 & 0.26 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.01 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.27 & 0.00 & 0.27 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.29 & 0.00 & 0.29 \\
\hline Subtotal & 0.62 & 0.26 & 0.88 \\
\hline Total & 2.45 & 5.01 & 7.46 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 7.46 \\
\hline Fatal and injury (FI) & 2.45 \\
\hline Property damage only (PDO) & 5.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brush Hill Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2011 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 23,700 \\
\hline  & -- & 5,800 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 1.00 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \(3 p\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.350 & 1.000 & 6.804 & 0.263 & 0.289 & 7.356 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 0.90 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) TOTAL \({ }^{\star}\) (5) & (7) from & & (6)* \(\left.{ }^{\star}\right)^{\star}(8)\) \\
\hline & a & b & c & & & & (4) Total \({ }^{\text {( }}\) ( \({ }^{\text {a }}\) & Worksheet 2B & & (6)(7)(8) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 7.21 & 1.00 & 7.21 & 0.90 & 1.00 & 6.49 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 2.00 & -- & 2.00 & 0.90 & 1.00 & 1.80 \\
\hline \begin{tabular}{l}
Property Damage Only \\
(PDO)
\end{tabular} & -- & -- & -- & -- & 5.20 & -- & 5.20 & 0.90 & 1.00 & 4.68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 1.80 & 1.00 & 4.68 & 6.49 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.82 & 0.42 & 1.98 & 2.79 \\
\hline Head-on collision & 0.04 & 0.06 & 0.04 & 0.18 & 0.25 \\
\hline Angle collision & 0.49 & 0.89 & 0.43 & 1.99 & 2.88 \\
\hline Sideswipe & 0.02 & 0.04 & 0.11 & 0.53 & 0.56 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \(^{*}\) (5)} & (7) from Worksheet 2B & & \multirow[t]{2}{*}{\((6)^{\star}(7)^{\star}(8)\)} \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.35 & 1.00 & 0.35 & 0.90 & 1.00 & 0.32 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.06 & -- & 0.06 & 0.90 & 1.00 & 0.06 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.29 & -- & 0.29 & 0.90 & 1.00 & 0.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.06 & 1.00 & 0.26 & 0.32 \\
\hline & & (2)* \(\left.{ }^{\text {( }}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.63 & 0.04 & 0.86 & 0.22 & 0.26 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.01 & 0.03 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Worksheet 2G-1 -- Crash Modification Factors for Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Signalized Intersections \\
\hline\((1)\) & \((2)\) & \((3)\) & \((4)\) \\
\hline CMF for Bus Stops \(_{\text {CMF }_{1 \mathrm{p}}}\) & CMF for Schools \(^{2}\) & CMF for Alcohol Sales Establishments & Combined CMF \\
\hline from Table 12-28 & CMF \(_{2 \mathrm{p}}\) & CMF \(_{3 \mathrm{p}}\) & from Table 12-30 \\
\hline 1.00 & from Table 12-29 & 1.00 & \((1)^{\star}(2)^{\star}(3)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) \(+(3)\) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 6.49 & 0.32 & 6.80 & 0.03 & 0.19 & 1.00 & 0.26 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 6.49 & 0.32 & 6.80 & 0.04 & 1.00 & 0.29 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2 D and 2 F ; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.82 & 1.98 & 2.79 \\
\hline Head-on collisions (from Worksheet 2D) & 0.06 & 0.18 & 0.25 \\
\hline Angle collisions (from Worksheet 2D) & 0.89 & 1.99 & 2.88 \\
\hline Sideswipe (from Worksheet 2D) & 0.04 & 0.53 & 0.56 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Subtotal & 1.80 & 4.68 & 6.49 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.04 & 0.22 & 0.26 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.01 & 0.01 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.26 & 0.00 & 0.26 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.29 & 0.00 & 0.29 \\
\hline Subtotal & 0.61 & 0.26 & 0.87 \\
\hline Total & 2.41 & 4.94 & 7.36 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 7.36 \\
\hline Fatal and injury (FI) & 2.41 \\
\hline Property damage only (PDO) & 4.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Neponset Valley Parkway \\
\hline Agency or Company & CTPS & Intersection Type & 3ST \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 5 & 5 & 2.68 & 3.17 & 1.00 \\
\hline 2014 & 5 & 5 & 2.60 & 3.09 & 1.00 \\
\hline 2013 & 2 & 2 & 2.56 & 3.04 & 1.00 \\
\hline 2012 & 2 & 2 & 2.52 & 2.99 & 1.00 \\
\hline 2011 & 7 & 7 & 2.47 & 2.93 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & \begin{tabular}{l}
Standard \\
deviation of predicted total crashes
\end{tabular} & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{21.00} & \multirow{5}{*}{4.20} & \multirow{5}{*}{12.83} & \multirow{5}{*}{3.04} & \multirow{5}{*}{0.09} & \multirow{5}{*}{0.25} & \multirow{5}{*}{19.00} & 4.42 & \multirow{5}{*}{4.24} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{1.19} & \multirow{5}{*}{\(N\)} \\
\hline & & & & & & & 4.29 & & & & \\
\hline & & & & & & & 4.23 & & & & \\
\hline & & & & & & & 4.16 & & & & \\
\hline & & & & & & & 4.08 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}\) (5) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 2.368 & 1.000 & 2.368 & 1.00 & 1.13 & 2.675 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.657 & -- & 0.657 & 1.00 & 1.13 & 0.743 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.711 & -- & 1.711 & 1.00 & 1.13 & 1.933 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{Collision Type} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimin \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.743 & 1.000 & 1.933 & 2.675 \\
\hline & & (2)* \({ }^{\text {(3) }}\) FI & & (4)*(5) \({ }_{\text {Poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.305 & 0.337 & 0.651 & 0.956 \\
\hline Head-on collision & 0.014 & 0.010 & 0.011 & 0.020 & 0.031 \\
\hline Angle collision & 0.562 & 0.417 & 0.579 & 1.119 & 1.536 \\
\hline Sideswipe & 0.014 & 0.010 & 0.074 & 0.142 & 0.153 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.279 & 1.000 & 0.279 & 1.00 & 1.13 & 0.315 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.072 & -- & 0.072 & 1.00 & 1.13 & 0.081 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.207 & -- & 0.207 & 1.00 & 1.13 & 0.234 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.081 & 1.000 & 0.234 & 0.315 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with fixed object & 0.625 & 0.051 & 0.870 & 0.203 & 0.254 \\
\hline Collision with other object & 0.125 & 0.010 & 0.043 & 0.010 & 0.020 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.020 & 0.000 & 0.000 & 0.020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.675 & 0.315 & 2.991 & 0.020 & 1.13 & 0.069 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.069 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.675 & 0.315 & 2.991 & 0.034 & 1.13 & 0.115 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.115 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|r|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.305 & 0.651 & 0.956 \\
\hline Head-on collisions (from Worksheet 2D) & 0.010 & 0.020 & 0.031 \\
\hline Angle collisions (from Worksheet 2D) & 0.417 & 1.119 & 1.536 \\
\hline Sideswipe (from Worksheet 2D) & 0.010 & 0.142 & 0.153 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.743 & 1.933 & 2.675 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.051 & 0.203 & 0.254 \\
\hline Collision with other object (from Worksheet 2F) & 0.010 & 0.010 & 0.020 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.020 & 0.000 & 0.020 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.069 & 0.000 & 0.069 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.115 & 0.000 & 0.115 \\
\hline Subtotal & 0.265 & 0.234 & 0.499 \\
\hline Total & 1.008 & 2.167 & 3.175 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 3.175 \\
\hline Property damage only (PDO) & 1.008 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{Calibration
Factor, \(\mathrm{c}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}\) (5) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 2.302 & 1.000 & 2.302 & 1.00 & 1.13 & 2.601 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.639 & -- & 0.639 & 1.00 & 1.13 & 0.722 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.663 & -- & 1.663 & 1.00 & 1.13 & 1.879 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.722 & 1.000 & 1.879 & 2.601 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.297 & 0.337 & 0.633 & 0.930 \\
\hline Head-on collision & 0.014 & 0.010 & 0.011 & 0.020 & 0.030 \\
\hline Angle collision & 0.562 & 0.405 & 0.579 & 1.088 & 1.493 \\
\hline Sideswipe & 0.014 & 0.010 & 0.074 & 0.138 & 0.148 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & (7) from & & \((6) \pm(7) *(8)\) \\
\hline & a & b & c & & & & () Itotal \(^{\text {a }}\) ( & Worksheet 2B & & () \\
\hline Total & -- & -- & -- & 0.118 & 0.271 & 1.000 & 0.271 & 1.00 & 1.13 & 0.307 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.070 & -- & 0.070 & 1.00 & 1.13 & 0.079 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.201 & -- & 0.201 & 1.00 & 1.13 & 0.227 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.079 & 1.000 & 0.227 & 0.307 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with fixed object & 0.625 & 0.049 & 0.870 & 0.198 & 0.247 \\
\hline Collision with other object & 0.125 & 0.010 & 0.043 & 0.010 & 0.020 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.020 & 0.000 & 0.000 & 0.020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.601 & 0.307 & 2.907 & 0.020 & 1.13 & 0.067 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.067 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.601 & 0.307 & 2.907 & 0.034 & 1.13 & 0.112 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.112 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.297 & 0.633 & 0.930 \\
\hline Head-on collisions (from Worksheet 2D) & 0.010 & 0.020 & 0.030 \\
\hline Angle collisions (from Worksheet 2D) & 0.405 & 1.088 & 1.493 \\
\hline Sideswipe (from Worksheet 2D) & 0.010 & 0.138 & 0.148 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.722 & 1.879 & 2.601 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.049 & 0.198 & 0.247 \\
\hline Collision with other object (from Worksheet 2F) & 0.010 & 0.010 & 0.020 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.020 & 0.000 & 0.020 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.067 & 0.000 & 0.067 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.112 & 0.000 & 0.112 \\
\hline Subtotal & 0.258 & 0.227 & 0.485 \\
\hline Total & 0.980 & 2.106 & 3.086 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & \((2)\) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 3.086 \\
\hline Property damage only (PDO) & 0.980 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}\) (5) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 2.269 & 1.000 & 2.269 & 1.00 & 1.13 & 2.564 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.630 & -- & 0.630 & 1.00 & 1.13 & 0.712 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.639 & -- & 1.639 & 1.00 & 1.13 & 1.852 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.712 & 1.000 & 1.852 & 2.564 \\
\hline & & (2)* \({ }^{\text {( }}\) F। & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.292 & 0.337 & 0.624 & 0.916 \\
\hline Head-on collision & 0.014 & 0.010 & 0.011 & 0.019 & 0.029 \\
\hline Angle collision & 0.562 & 0.400 & 0.579 & 1.072 & 1.472 \\
\hline Sideswipe & 0.014 & 0.010 & 0.074 & 0.136 & 0.146 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & (7) from & & \((6) \pm(7) *(8)\) \\
\hline & a & b & c & & & & () Itotal \(^{\text {a }}\) ( & Worksheet 2B & & () \\
\hline Total & -- & -- & -- & 0.118 & 0.267 & 1.000 & 0.267 & 1.00 & 1.13 & 0.302 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.069 & -- & 0.069 & 1.00 & 1.13 & 0.078 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.198 & -- & 0.198 & 1.00 & 1.13 & 0.224 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.078 & 1.000 & 0.224 & 0.302 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with fixed object & 0.625 & 0.049 & 0.870 & 0.195 & 0.244 \\
\hline Collision with other object & 0.125 & 0.010 & 0.043 & 0.010 & 0.019 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.019 & 0.000 & 0.000 & 0.019 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.564 & 0.302 & 2.866 & 0.020 & 1.13 & 0.066 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.066 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) \(+(3)\) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.564 & 0.302 & 2.866 & 0.034 & 1.13 & 0.110 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|r|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.292 & 0.624 & 0.916 \\
\hline Head-on collisions (from Worksheet 2D) & 0.010 & 0.019 & 0.029 \\
\hline Angle collisions (from Worksheet 2D) & 0.400 & 1.072 & 1.472 \\
\hline Sideswipe (from Worksheet 2D) & 0.010 & 0.136 & 0.146 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.712 & 1.852 & 2.564 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.049 & 0.195 & 0.244 \\
\hline Collision with other object (from Worksheet 2F) & 0.010 & 0.010 & 0.019 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.019 & 0.000 & 0.019 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.066 & 0.000 & 0.066 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.110 & 0.000 & 0.110 \\
\hline Subtotal & 0.254 & 0.224 & 0.478 \\
\hline Total & 0.966 & 2.077 & 3.042 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 3.042 \\
\hline Property damage only (PDO) & 0.966 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}{ }^{\text {( }}\) ( \({ }^{\text {a }}\) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 2.230 & 1.000 & 2.230 & 1.00 & 1.13 & 2.520 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.619 & -- & 0.619 & 1.00 & 1.13 & 0.699 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.611 & -- & 1.611 & 1.00 & 1.13 & 1.820 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.699 & 1.000 & 1.820 & 2.520 \\
\hline & & (2)* \({ }^{\text {( }}\) F। & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.287 & 0.337 & 0.613 & 0.901 \\
\hline Head-on collision & 0.014 & 0.010 & 0.011 & 0.019 & 0.029 \\
\hline Angle collision & 0.562 & 0.393 & 0.579 & 1.054 & 1.447 \\
\hline Sideswipe & 0.014 & 0.010 & 0.074 & 0.134 & 0.144 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.263 & 1.000 & 0.263 & 1.00 & 1.13 & 0.297 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.068 & -- & 0.068 & 1.00 & 1.13 & 0.077 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.195 & -- & 0.195 & 1.00 & 1.13 & 0.220 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.077 & 1.000 & 0.220 & 0.297 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.010 & 0.010 \\
\hline Collision with fixed object & 0.625 & 0.048 & 0.870 & 0.192 & 0.240 \\
\hline Collision with other object & 0.125 & 0.010 & 0.043 & 0.010 & 0.019 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.019 & 0.000 & 0.000 & 0.019 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.520 & 0.297 & 2.817 & 0.020 & 1.13 & 0.065 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.065 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5) *\) (6) \\
\hline Total & 2.520 & 0.297 & 2.817 & 0.034 & 1.13 & 0.108 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.108 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|r|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.287 & 0.613 & 0.901 \\
\hline Head-on collisions (from Worksheet 2D) & 0.010 & 0.019 & 0.029 \\
\hline Angle collisions (from Worksheet 2D) & 0.393 & 1.054 & 1.447 \\
\hline Sideswipe (from Worksheet 2D) & 0.010 & 0.134 & 0.144 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.699 & 1.820 & 2.520 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.010 & 0.010 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.048 & 0.192 & 0.240 \\
\hline Collision with other object (from Worksheet 2F) & 0.010 & 0.010 & 0.019 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.019 & 0.000 & 0.019 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.065 & 0.000 & 0.065 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.108 & 0.000 & 0.108 \\
\hline Subtotal & 0.250 & 0.220 & 0.470 \\
\hline Total & 0.949 & 2.041 & 2.990 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, N \(_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}\) (5) & (7) from Worksheet 2B & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 2.185 & 1.000 & 2.185 & 1.00 & 1.13 & 2.469 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.607 & -- & 0.607 & 1.00 & 1.13 & 0.685 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 1.579 & -- & 1.579 & 1.00 & 1.13 & 1.784 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.685 & 1.000 & 1.784 & 2.469 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.282 & 0.337 & 0.601 & 0.883 \\
\hline Head-on collision & 0.014 & 0.009 & 0.011 & 0.019 & 0.028 \\
\hline Angle collision & 0.562 & 0.385 & 0.579 & 1.033 & 1.418 \\
\hline Sideswipe & 0.014 & 0.009 & 0.074 & 0.131 & 0.141 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2 C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.258 & 1.000 & 0.258 & 1.00 & 1.13 & 0.291 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.066 & -- & 0.066 & 1.00 & 1.13 & 0.075 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.191 & -- & 0.191 & 1.00 & 1.13 & 0.216 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.075 & 1.000 & 0.216 & 0.291 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.009 & 0.009 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.009 & 0.009 \\
\hline Collision with fixed object & 0.625 & 0.047 & 0.870 & 0.188 & 0.235 \\
\hline Collision with other object & 0.125 & 0.009 & 0.043 & 0.009 & 0.019 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.019 & 0.000 & 0.000 & 0.019 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 2.469 & 0.291 & 2.760 & 0.020 & 1.13 & 0.064 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.064 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5) *\) (6) \\
\hline Total & 2.469 & 0.291 & 2.760 & 0.034 & 1.13 & 0.106 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.106 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.282 & 0.601 & 0.883 \\
\hline Head-on collisions (from Worksheet 2D) & 0.009 & 0.019 & 0.028 \\
\hline Angle collisions (from Worksheet 2D) & 0.385 & 1.033 & 1.418 \\
\hline Sideswipe (from Worksheet 2D) & 0.009 & 0.131 & 0.141 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.685 & 1.784 & 2.469 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.009 & 0.009 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.009 & 0.009 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.047 & 0.188 & 0.235 \\
\hline Collision with other object (from Worksheet 2F) & 0.009 & 0.009 & 0.019 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.019 & 0.000 & 0.019 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.064 & 0.000 & 0.064 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.106 & 0.000 & 0.106 \\
\hline Subtotal & 0.245 & 0.216 & 0.461 \\
\hline Total & 0.930 & 2.000 & 2.930 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & \((2)\) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 2.930 \\
\hline Property damage only (PDO) & 0.930 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline Agency or Company & CTPS & Intersection Type & 4SG \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 9 & 9 & 4.08 & 4.58 & 1.00 \\
\hline 2014 & 7 & 7 & 4.03 & 4.52 & 1.00 \\
\hline 2013 & 6 & 7 & 3.95 & 4.44 & 1.00 \\
\hline 2012 & 4 & 4 & 3.93 & 4.41 & 1.00 \\
\hline 2011 & 6 & 6 & 3.84 & 4.32 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & \begin{tabular}{l}
Standard \\
deviation of predicted total crashes
\end{tabular} & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{32.00} & \multirow{5}{*}{6.60} & \multirow{5}{*}{19.83} & \multirow{5}{*}{4.46} & \multirow{5}{*}{0.10} & \multirow{5}{*}{0.35} & \multirow{5}{*}{27.78} & 6.37 & \multirow{5}{*}{6.19} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{1.74} & \multirow{5}{*}{\(Y\)} \\
\hline & & & & & & & 6.29 & & & & \\
\hline & & & & & & & 6.17 & & & & \\
\hline & & & & & & & 6.14 & & & & \\
\hline & & & & & & & 6.00 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline \begin{tabular}{|l|l|} 
Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2015 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT major (veh/day) \({ }^{\text {a }}\) ( AAD \(_{\text {MAX }}=67700\) (veh/day) & -- & 15,000 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 4,350 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 6 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(3 p\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 4.276 & 0.122 & 0.181 & 4.580 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{\star}(2) *(3) *(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 4.08 & 1.00 & 4.08 & 1.00 & 1.00 & 4.08 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 1.13 & -- & 1.13 & 1.00 & 1.00 & 1.13 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 2.94 & -- & 2.94 & 1.00 & 1.00 & 2.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 1.13 & 1.00 & 2.94 & 4.08 \\
\hline & & (2)* \(\left.{ }^{*}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.51 & 0.42 & 1.24 & 1.75 \\
\hline Head-on collision & 0.04 & 0.04 & 0.04 & 0.11 & 0.15 \\
\hline Angle collision & 0.49 & 0.56 & 0.43 & 1.25 & 1.81 \\
\hline Sideswipe & 0.02 & 0.02 & 0.11 & 0.33 & 0.35 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \(^{*}\) (5)} & (7) from Worksheet 2B & & \multirow[t]{2}{*}{\((6)^{\star}(7)^{\star}(8)\)} \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.20 & 1.00 & 0.20 & 1.00 & 1.00 & 0.20 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.04 & -- & 0.04 & 1.00 & 1.00 & 0.04 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.16 & -- & 0.16 & 1.00 & 1.00 & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) \(_{\text {(F) }}\) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.04 & 1.00 & 0.16 & 0.20 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \({ }^{\text {(5) }}\) PDO & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.02 & 0.86 & 0.14 & 0.16 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 4.08 & 0.20 & 4.28 & 0.03 & 0.12 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 4.08 & 0.20 & 4.28 & 0.04 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.51 & 1.24 & 1.75 \\
\hline Head-on collisions (from Worksheet 2D) & 0.04 & 0.11 & 0.15 \\
\hline Angle collisions (from Worksheet 2D) & 0.56 & 1.25 & 1.81 \\
\hline Sideswipe (from Worksheet 2D) & 0.02 & 0.33 & 0.35 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 1.13 & 2.94 & 4.08 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.02 & 0.14 & 0.16 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.18 & 0.00 & 0.18 \\
\hline Subtotal & 0.34 & 0.16 & 0.50 \\
\hline Total & 1.47 & 3.11 & 4.58 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & Total \\
\hline Fatal and injury (FI) & 4.58 \\
\hline Property damage only (PDO) & 1.47 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l|}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline \begin{tabular}{|l|r|}
\hline Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2014 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 14,800 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 4,350 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 6 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(3 p\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 4.224 & 0.121 & 0.179 & 4.524 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{\star}(2) *(3) *(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 4.03 & 1.00 & 4.03 & 1.00 & 1.00 & 4.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 1.12 & -- & 1.12 & 1.00 & 1.00 & 1.12 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 2.91 & -- & 2.91 & 1.00 & 1.00 & 2.91 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type \(_{(\text {(FI })}\) туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}_{\text {bimu (PDo) }}\) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)f f from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Niomy from Worksheet 2C \\
\hline Total & 1.00 & 1.12 & 1.00 & 2.91 & 4.03 \\
\hline & & (2)* ()\(_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.51 & 0.42 & 1.23 & 1.73 \\
\hline Head-on collision & 0.04 & 0.04 & 0.04 & 0.11 & 0.15 \\
\hline Angle collision & 0.49 & 0.55 & 0.43 & 1.24 & 1.79 \\
\hline Sideswipe & 0.02 & 0.02 & 0.11 & 0.33 & 0.35 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & 2) & & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & (8) & \multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline (9) \\
\begin{tabular}{c} 
Predicted \\
\(N_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\) \\
\hline
\end{tabular}} \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & \multirow[b]{3}{*}{\begin{tabular}{l}
Initial \(\mathrm{N}_{\text {bisv }}\) \\
(3) * (4) From \\
Worksheet 2 C
\end{tabular}} & & \[
\begin{gathered}
\text { Adjusted } \\
\mathbf{N}_{\text {bisv }}
\end{gathered}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline & & be & & \multirow[t]{2}{*}{from Table 1A} & & & (4) тtota \(^{*}\) (5) & (7) from & & \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.05 & 0.20 & 1.00 & 0.20 & 1.00 & 1.00 & 0.20 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.04 & -- & 0.04 & 1.00 & 1.00 & 0.04 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.16 & -- & 0.16 & 1.00 & 1.00 & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) \(_{\text {(F) }}\) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.04 & 1.00 & 0.16 & 0.20 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \({ }^{\text {(5) }}\) PDO & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.02 & 0.86 & 0.14 & 0.16 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 4.03 & 0.20 & 4.22 & 0.03 & 0.12 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 4.03 & 0.20 & 4.22 & 0.04 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.51 & 1.23 & 1.73 \\
\hline Head-on collisions (from Worksheet 2D) & 0.04 & 0.11 & 0.15 \\
\hline Angle collisions (from Worksheet 2D) & 0.55 & 1.24 & 1.79 \\
\hline Sideswipe (from Worksheet 2D) & 0.02 & 0.33 & 0.35 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 1.12 & 2.91 & 4.03 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.02 & 0.14 & 0.16 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.18 & 0.00 & 0.18 \\
\hline Subtotal & 0.34 & 0.16 & 0.50 \\
\hline Total & 1.46 & 3.07 & 4.52 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 4.52 \\
\hline Fatal and injury (FI) & 1.46 \\
\hline Property damage only (PDO) & 3.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l|}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline \begin{tabular}{|l|r|}
\hline Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2013 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 14,700 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 4,250 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 6 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & CMF \(_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 4.147 & 0.119 & 0.176 & 4.442 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 3.95 & 1.00 & 3.95 & 1.00 & 1.00 & 3.95 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 1.10 & -- & 1.10 & 1.00 & 1.00 & 1.10 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 2.85 & -- & 2.85 & 1.00 & 1.00 & 2.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(FI) \(^{\text {Typ }}\) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimu (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ef from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimun from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 1.10 & 1.00 & 2.85 & 3.95 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {pDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.50 & 0.42 & 1.20 & 1.70 \\
\hline Head-on collision & 0.04 & 0.04 & 0.04 & 0.11 & 0.15 \\
\hline Angle collision & 0.49 & 0.54 & 0.43 & 1.21 & 1.75 \\
\hline Sideswipe & 0.02 & 0.02 & 0.11 & 0.32 & 0.34 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{array}
\] & Combined CMFs & & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathrm{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & from Table 1A & (3) * (4) From Worksheet 2C & & (4)Total \({ }^{*}\) (5) & (7) from Worksheet 2B & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -- & -- & -- & 0.05 & 0.19 & 1.00 & 0.19 & 1.00 & 1.00 & 0.19 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.04 & -- & 0.04 & 1.00 & 1.00 & 0.04 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.16 & -- & 0.16 & 1.00 & 1.00 & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) \(_{\text {(F) }}\) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.04 & 1.00 & 0.16 & 0.19 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \({ }^{\text {(5) }}\) PDO & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.02 & 0.86 & 0.14 & 0.16 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 3.95 & 0.19 & 4.15 & 0.03 & 0.12 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 3.95 & 0.19 & 4.15 & 0.04 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.50 & 1.20 & 1.70 \\
\hline Head-on collisions (from Worksheet 2D) & 0.04 & 0.11 & 0.15 \\
\hline Angle collisions (from Worksheet 2D) & 0.54 & 1.21 & 1.75 \\
\hline Sideswipe (from Worksheet 2D) & 0.02 & 0.32 & 0.34 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 1.10 & 2.85 & 3.95 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.02 & 0.14 & 0.16 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.18 & 0.00 & 0.18 \\
\hline Subtotal & 0.33 & 0.16 & 0.49 \\
\hline Total & 1.43 & 3.01 & 4.44 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 4.44 \\
\hline Fatal and injury (FI) & 1.43 \\
\hline Property damage only (PDO) & 3.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline \begin{tabular}{|l|l|}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline \begin{tabular}{|l|r|}
\hline Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2012 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 14,600 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 4,250 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 6 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & CMF \(_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 4.121 & 0.118 & 0.175 & 4.414 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 3.93 & 1.00 & 3.93 & 1.00 & 1.00 & 3.93 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 1.09 & -- & 1.09 & 1.00 & 1.00 & 1.09 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 2.84 & -- & 2.84 & 1.00 & 1.00 & 2.84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 1.09 & 1.00 & 2.84 & 3.93 \\
\hline & & (2)* \(\left.{ }^{*}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.49 & 0.42 & 1.20 & 1.69 \\
\hline Head-on collision & 0.04 & 0.04 & 0.04 & 0.11 & 0.15 \\
\hline Angle collision & 0.49 & 0.54 & 0.43 & 1.21 & 1.74 \\
\hline Sideswipe & 0.02 & 0.02 & 0.11 & 0.32 & 0.34 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline Crash Severity Level & & able & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \({ }^{\text {* }}\) (5) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.19 & 1.00 & 0.19 & 1.00 & 1.00 & 0.19 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.03 & -- & 0.03 & 1.00 & 1.00 & 0.03 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.16 & -- & 0.16 & 1.00 & 1.00 & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) \(_{\text {(F) }}\) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.03 & 1.00 & 0.16 & 0.19 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \({ }^{\text {(5) }}\) PDO & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.02 & 0.86 & 0.14 & 0.16 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 3.93 & 0.19 & 4.12 & 0.03 & 0.12 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 3.93 & 0.19 & 4.12 & 0.04 & 1.00 & 0.17 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.49 & 1.20 & 1.69 \\
\hline Head-on collisions (from Worksheet 2D) & 0.04 & 0.11 & 0.15 \\
\hline Angle collisions (from Worksheet 2D) & 0.54 & 1.21 & 1.74 \\
\hline Sideswipe (from Worksheet 2D) & 0.02 & 0.32 & 0.34 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 1.09 & 2.84 & 3.93 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.02 & 0.14 & 0.16 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.17 & 0.00 & 0.17 \\
\hline Subtotal & 0.33 & 0.16 & 0.49 \\
\hline Total & 1.42 & 2.99 & 4.41 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 4.41 \\
\hline Fatal and injury (FI) & 1.42 \\
\hline Property damage only (PDO) & 2.99 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Dollar Lane and Milton Street \\
\hline \begin{tabular}{|l|l|} 
Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2011 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 14,450 \\
\hline  & -- & 4,150 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 6 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathbf{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 4.032 & 0.115 & 0.171 & 4.318 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{\star}(2) *(3) *(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) Total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 3.84 & 1.00 & 3.84 & 1.00 & 1.00 & 3.84 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 1.07 & -- & 1.07 & 1.00 & 1.00 & 1.07 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 2.77 & -- & 2.77 & 1.00 & 1.00 & 2.77 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ff from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Niminv \(^{\text {from }}\) Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 1.07 & 1.00 & 2.77 & 3.84 \\
\hline & & (2)* \((3)\) F। & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.48 & 0.42 & 1.17 & 1.65 \\
\hline Head-on collision & 0.04 & 0.04 & 0.04 & 0.11 & 0.15 \\
\hline Angle collision & 0.49 & 0.53 & 0.43 & 1.18 & 1.71 \\
\hline Sideswipe & 0.02 & 0.02 & 0.11 & 0.31 & 0.33 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{array}
\] & Combined CMFs & & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathrm{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & from Table 1A & (3) * (4) From Worksheet 2C & & (4)Total \({ }^{*}\) (5) & (7) from Worksheet 2B & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -- & -- & -- & 0.05 & 0.19 & 1.00 & 0.19 & 1.00 & 1.00 & 0.19 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.03 & -- & 0.03 & 1.00 & 1.00 & 0.03 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.15 & -- & 0.15 & 1.00 & 1.00 & 0.15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.03 & 1.00 & 0.15 & 0.19 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.02 & 0.86 & 0.13 & 0.15 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.01 & 0.01 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision & 0.25 & 0.01 & 0.00 & 0.00 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 3.84 & 0.19 & 4.03 & 0.03 & 0.12 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4) *(5) *\) (6) \\
\hline Total & 3.84 & 0.19 & 4.03 & 0.04 & 1.00 & 0.17 \\
\hline Fatal and injury (FI) & --- & --- & -- & -- & 1.00 & 0.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.48 & 1.17 & 1.65 \\
\hline Head-on collisions (from Worksheet 2D) & 0.04 & 0.11 & 0.15 \\
\hline Angle collisions (from Worksheet 2D) & 0.53 & 1.18 & 1.71 \\
\hline Sideswipe (from Worksheet 2D) & 0.02 & 0.31 & 0.33 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 1.07 & 2.77 & 3.84 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.02 & 0.13 & 0.15 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.01 & 0.00 & 0.01 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.17 & 0.00 & 0.17 \\
\hline Subtotal & 0.32 & 0.15 & 0.47 \\
\hline Total & 1.39 & 2.93 & 4.32 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 4.32 \\
\hline Fatal and injury (FI) & 1.39 \\
\hline Property damage only (PDO) & 2.93 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Blue Jay Way Curry College \\
\hline Agency or Company & CTPS & Intersection Type & 3ST \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 2 & 2 & 0.87 & 1.03 & 1.00 \\
\hline 2014 & 2 & 2 & 0.85 & 1.01 & 1.00 \\
\hline 2013 & 0 & 0 & 0.84 & 1.00 & 1.00 \\
\hline 2012 & 2 & 3 & 0.83 & 0.98 & 1.00 \\
\hline 2011 & 2 & 2 & 0.81 & 0.96 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{8.00} & \multirow{5}{*}{1.80} & \multirow{5}{*}{4.20} & \multirow{5}{*}{1.00} & \multirow{5}{*}{0.03} & \multirow{5}{*}{0.50} & \multirow{5}{*}{6.11} & 1.41 & \multirow{5}{*}{1.36} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.36} & \multirow{5}{*}{\(Y\)} \\
\hline & & & & & & & 1.38 & & & & \\
\hline & & & & & & & 1.36 & & & & \\
\hline & & & & & & & 1.34 & & & & \\
\hline & & & & & & & 1.32 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{\begin{tabular}{c} 
Calibration \\
Factor \\
\hline
\end{tabular} Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4) total \(^{\star}{ }^{\text {(5) }}\) & (7) from Worksheet 2 B & & (6)* \({ }^{(7) *(8)}\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 0.767 & 1.000 & 0.767 & 1.00 & 1.13 & 0.867 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.213 & -- & 0.213 & 1.00 & 1.13 & 0.241 \\
\hline \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Property Dage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 0.554 & -- & 0.554 & 1.00 & 1.13 & 0.626 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{\(\frac{(1)}{\text { Collision Type }}\)} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimim \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.241 & 1.000 & 0.626 & 0.867 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* 5\()_{\text {Pdo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.099 & 0.337 & 0.211 & 0.310 \\
\hline Head-on collision & 0.014 & 0.003 & 0.011 & 0.007 & 0.010 \\
\hline Angle collision & 0.562 & 0.135 & 0.579 & 0.363 & 0.498 \\
\hline Sideswipe & 0.014 & 0.003 & 0.074 & 0.046 & 0.049 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2 C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{(6) \({ }^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.090 & 1.000 & 0.090 & 1.00 & 1.13 & 0.102 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.023 & -- & 0.023 & 1.00 & 1.13 & 0.026 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.067 & -- & 0.067 & 1.00 & 1.13 & 0.076 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(FI) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FI from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.026 & 1.000 & 0.076 & 0.102 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)* \(\left.{ }^{*}\right)_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with fixed object & 0.625 & 0.016 & 0.870 & 0.066 & 0.082 \\
\hline Collision with other object & 0.125 & 0.003 & 0.043 & 0.003 & 0.007 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.007 & 0.000 & 0.000 & 0.007 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{\star}(6)\) \\
\hline Total & 0.867 & 0.102 & 0.969 & 0.020 & 1.13 & 0.022 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.022 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.867 & 0.102 & 0.969 & 0.034 & 1.13 & 0.037 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.037 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.099 & 0.211 & 0.310 \\
\hline Head-on collisions (from Worksheet 2D) & 0.003 & 0.007 & 0.010 \\
\hline Angle collisions (from Worksheet 2D) & 0.135 & 0.363 & 0.498 \\
\hline Sideswipe (from Worksheet 2D) & 0.003 & 0.046 & 0.049 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.241 & 0.626 & 0.867 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.016 & 0.066 & 0.082 \\
\hline Collision with other object (from Worksheet 2F) & 0.003 & 0.003 & 0.007 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.007 & 0.000 & 0.007 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.022 & 0.000 & 0.022 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.037 & 0.000 & 0.037 \\
\hline Subtotal & 0.086 & 0.076 & 0.162 \\
\hline Total & 0.327 & 0.702 & 1.029 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
& (crashes/year)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{SPF Coefficients}} & (3) & (4) & (5) & (6) & (7) & \multirow{4}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {binv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4)Total \({ }^{*}\) (5) & (7) from Worksheet 2 B & & (6) \({ }^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 0.756 & 1.000 & 0.756 & 1.00 & 1.13 & 0.854 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.210 & -- & 0.210 & 1.00 & 1.13 & 0.237 \\
\hline \[
\begin{array}{|l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array}
\] & -- & -- & -- & -- & 0.546 & -- & 0.546 & 1.00 & 1.13 & 0.617 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.237 & 1.000 & 0.617 & 0.854 \\
\hline & & (2)* 3 ) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.097 & 0.337 & 0.208 & 0.305 \\
\hline Head-on collision & 0.014 & 0.003 & 0.011 & 0.006 & 0.010 \\
\hline Angle collision & 0.562 & 0.133 & 0.579 & 0.357 & 0.490 \\
\hline Sideswipe & 0.014 & 0.003 & 0.074 & 0.045 & 0.049 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2 C} & & & (7) from & & \((6) \pm(7) *(8)\) \\
\hline & a & b & c & & & & () Itotal \(^{\text {a }}\) ( & Worksheet 2B & & (6)(7)(8) \\
\hline Total & -- & -- & -- & 0.118 & 0.089 & 1.000 & 0.089 & 1.00 & 1.13 & 0.101 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.023 & -- & 0.023 & 1.00 & 1.13 & 0.026 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.066 & -- & 0.066 & 1.00 & 1.13 & 0.075 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.026 & 1.000 & 0.075 & 0.101 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with fixed object & 0.625 & 0.016 & 0.870 & 0.065 & 0.081 \\
\hline Collision with other object & 0.125 & 0.003 & 0.043 & 0.003 & 0.006 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.006 & 0.000 & 0.000 & 0.006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{\star}(6)\) \\
\hline Total & 0.854 & 0.101 & 0.955 & 0.020 & 1.13 & 0.022 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.022 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.854 & 0.101 & 0.955 & 0.034 & 1.13 & 0.037 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.037 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2 H and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.097 & 0.208 & 0.305 \\
\hline Head-on collisions (from Worksheet 2D) & 0.003 & 0.006 & 0.010 \\
\hline Angle collisions (from Worksheet 2D) & 0.133 & 0.357 & 0.490 \\
\hline Sideswipe (from Worksheet 2D) & 0.003 & 0.045 & 0.049 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.237 & 0.617 & 0.854 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.016 & 0.065 & 0.081 \\
\hline Collision with other object (from Worksheet 2F) & 0.003 & 0.003 & 0.006 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.006 & 0.000 & 0.006 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.022 & 0.000 & 0.022 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.037 & 0.000 & 0.037 \\
\hline Subtotal & 0.085 & 0.075 & 0.159 \\
\hline Total & 0.322 & 0.692 & 1.014 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & \((2)\) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.014 \\
\hline Property damage only (PDO) & 0.322 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{SPF Coefficients}} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{4}{*}{Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & & & & Overdispersion & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted & Combined & & Adjusted \\
\hline & & & & Parameter, \(\mathbf{k}\) & & & \(\mathrm{N}_{\text {bimv }}\) & CMFs & & \(\mathrm{N}_{\text {binv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & (4)Total \({ }^{*}\) (5) & (7) from Worksheet 2 B & & \({ }^{(6) *}{ }^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 0.745 & 1.000 & 0.745 & 1.00 & 1.13 & 0.841 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.207 & -- & 0.207 & 1.00 & 1.13 & 0.234 \\
\hline \[
\begin{array}{|l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array}
\] & -- & -- & -- & -- & 0.538 & -- & 0.538 & 1.00 & 1.13 & 0.608 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{\(\frac{(1)}{\text { Collision Type }}\)} & (2) & (3) & (4) & (5) & (6) \\
\hline & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}_{\text {bimu (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) Fl from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Nimin \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.234 & 1.000 & 0.608 & 0.841 \\
\hline & & (2)* \({ }^{\text {( }}\) FI & & (4)* 5\()_{\text {Poo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.096 & 0.337 & 0.205 & 0.301 \\
\hline Head-on collision & 0.014 & 0.003 & 0.011 & 0.006 & 0.010 \\
\hline Angle collision & 0.562 & 0.131 & 0.579 & 0.352 & 0.483 \\
\hline Sideswipe & 0.014 & 0.003 & 0.074 & 0.045 & 0.048 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & (6) & (7) & \multirow[t]{3}{*}{(8) Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{} \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & \multirow[t]{3}{*}{\begin{tabular}{l}
Initial \(\mathrm{N}_{\text {bisv }}\) \\
(3) * (4) From Worksheet 2C
\end{tabular}} & & Adjusted
\(\mathbf{N}^{2}\) & Combined CMFs & & \\
\hline & & ble & & \multirow[t]{2}{*}{from Table 1A} & & & (4) тtal \({ }^{*}\) (5) & (7) from & & \\
\hline & a & b & c & & & , & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.088 & 1.000 & 0.088 & 1.00 & 1.13 & 0.099 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.023 & -- & 0.023 & 1.00 & 1.13 & 0.026 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.065 & -- & 0.065 & 1.00 & 1.13 & 0.074 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.026 & 1.000 & 0.074 & 0.099 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with fixed object & 0.625 & 0.016 & 0.870 & 0.064 & 0.080 \\
\hline Collision with other object & 0.125 & 0.003 & 0.043 & 0.003 & 0.006 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.006 & 0.000 & 0.000 & 0.006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{\star}(6)\) \\
\hline Total & 0.841 & 0.099 & 0.941 & 0.020 & 1.13 & 0.022 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.022 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) \(+(3)\) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.841 & 0.099 & 0.941 & 0.034 & 1.13 & 0.036 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.036 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.096 & 0.205 & 0.301 \\
\hline Head-on collisions (from Worksheet 2D) & 0.003 & 0.006 & 0.010 \\
\hline Angle collisions (from Worksheet 2D) & 0.131 & 0.352 & 0.483 \\
\hline Sideswipe (from Worksheet 2D) & 0.003 & 0.045 & 0.048 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.234 & 0.608 & 0.841 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.016 & 0.064 & 0.080 \\
\hline Collision with other object (from Worksheet 2F) & 0.003 & 0.003 & 0.006 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.006 & 0.000 & 0.006 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.022 & 0.000 & 0.022 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.036 & 0.000 & 0.036 \\
\hline Subtotal & 0.083 & 0.074 & 0.157 \\
\hline Total & 0.317 & 0.681 & 0.998 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & \((2)\) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.998 \\
\hline Property damage only (PDO) & 0.317 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & Proportion of Total Crashes & \[
\begin{aligned}
& \hline \text { Adjusted } \\
& \mathbf{N}_{\text {binv }}
\end{aligned}
\] & Combined CMFs & \[
\left\lvert\, \begin{gathered}
\text { Calibration } \\
\text { Factor, } \mathrm{C}_{\mathrm{i}}
\end{gathered}\right.
\] & Adjusted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12 & & (4) Total \(^{*}\) * 5 ) & (7) from & & \((6)^{*}(7)^{*}(8)\) \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 0.733 & 1.000 & 0.733 & 1.00 & 1.13 & 0.829 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.204 & -- & 0.204 & 1.00 & 1.13 & 0.230 \\
\hline \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & -- & 0.530 & -- & 0.530 & 1.00 & 1.13 & 0.599 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.230 & 1.000 & 0.599 & 0.829 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.095 & 0.337 & 0.202 & 0.296 \\
\hline Head-on collision & 0.014 & 0.003 & 0.011 & 0.006 & 0.009 \\
\hline Angle collision & 0.562 & 0.129 & 0.579 & 0.347 & 0.476 \\
\hline Sideswipe & 0.014 & 0.003 & 0.074 & 0.044 & 0.047 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2 C} & & \multirow[t]{2}{*}{(4)Total \({ }^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6){ }^{*}(7) *(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.118 & 0.086 & 1.000 & 0.086 & 1.00 & 1.13 & 0.098 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.022 & -- & 0.022 & 1.00 & 1.13 & 0.025 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.064 & -- & 0.064 & 1.00 & 1.13 & 0.072 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.025 & 1.000 & 0.072 & 0.098 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with fixed object & 0.625 & 0.016 & 0.870 & 0.063 & 0.079 \\
\hline Collision with other object & 0.125 & 0.003 & 0.043 & 0.003 & 0.006 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.006 & 0.000 & 0.000 & 0.006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.829 & 0.098 & 0.926 & 0.020 & 1.13 & 0.021 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.021 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) \(+(3)\) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.829 & 0.098 & 0.926 & 0.034 & 1.13 & 0.036 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.036 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.095 & 0.202 & 0.296 \\
\hline Head-on collisions (from Worksheet 2D) & 0.003 & 0.006 & 0.009 \\
\hline Angle collisions (from Worksheet 2D) & 0.129 & 0.347 & 0.476 \\
\hline Sideswipe (from Worksheet 2D) & 0.003 & 0.044 & 0.047 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.230 & 0.599 & 0.829 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.016 & 0.063 & 0.079 \\
\hline Collision with other object (from Worksheet 2F) & 0.003 & 0.003 & 0.006 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.006 & 0.000 & 0.006 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.021 & 0.000 & 0.021 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.036 & 0.000 & 0.036 \\
\hline Subtotal & 0.082 & 0.072 & 0.155 \\
\hline Total & 0.312 & 0.671 & 0.983 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
& (crashes/year)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l|l} 
\\
(1) & Works \\
(2)
\end{tabular}} & (3) & (4) & \multirow[t]{4}{*}{(5)
\begin{tabular}{c} 
Proportion of Total \\
Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{4}{*}{(8) Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((9)\) \\
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\) \\
\((6)^{\star}(7)^{\star}(8)\)
\end{tabular} \\
\hline
\end{tabular}} \\
\hline Crash Severity Level & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion & Initia & & Adjusted & Combined & & \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & & from Equation 1 & & & (7) from & & \\
\hline & a & b & c & from Table 12-10 & 21 & & (4) Total \(^{*}\) (5) & Worksheet 2B & & \\
\hline Total & -20.02 & 1.66 & 0.54 & 0.24 & 0.718 & 1.000 & 0.718 & 1.00 & 1.13 & 0.812 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.199 & -- & 0.199 & 1.00 & 1.13 & 0.225 \\
\hline \[
\begin{array}{|l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array}
\] & -- & -- & -- & -- & 0.519 & -- & 0.519 & 1.00 & 1.13 & 0.587 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { (1) } \\
\hline \text { Collision Type }
\end{gathered}
\]} & Proportion of Collision
Type(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimu (total }}\) ( (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {Niminy }}\) from Worksheet 2 C \\
\hline Total & 1.000 & 0.225 & 1.000 & 0.587 & 0.812 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {Pdo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.411 & 0.093 & 0.337 & 0.198 & 0.290 \\
\hline Head-on collision & 0.014 & 0.003 & 0.011 & 0.006 & 0.009 \\
\hline Angle collision & 0.562 & 0.127 & 0.579 & 0.340 & 0.466 \\
\hline Sideswipe & 0.014 & 0.003 & 0.074 & 0.043 & 0.046 \\
\hline Other multiple-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{Crash Severity Level} & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & Adjusted
\(\mathbf{N}_{\text {bimv }}\) & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2 C} & & & (7) from & & \((6) \pm(7) *(8)\) \\
\hline & a & b & c & & & & () Itotal \(^{\text {a }}\) ( & Worksheet 2B & & (6)(7)(8) \\
\hline Total & -- & -- & -- & 0.118 & 0.085 & 1.000 & 0.085 & 1.00 & 1.13 & 0.096 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.258 & 0.022 & -- & 0.022 & 1.00 & 1.13 & 0.025 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & 0.742 & 0.063 & -- & 0.063 & 1.00 & 1.13 & 0.071 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathbf{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.000 & 0.025 & 1.000 & 0.071 & 0.096 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with animal & 0.000 & 0.000 & 0.043 & 0.003 & 0.003 \\
\hline Collision with fixed object & 0.625 & 0.015 & 0.870 & 0.062 & 0.077 \\
\hline Collision with other object & 0.125 & 0.003 & 0.043 & 0.003 & 0.006 \\
\hline Other single-vehicle collision & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision & 0.250 & 0.006 & 0.000 & 0.000 & 0.006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh-Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.812 & 0.096 & 0.908 & 0.020 & 1.13 & 0.021 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.021 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.812 & 0.096 & 0.908 & 0.034 & 1.13 & 0.035 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.13 & 0.035 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2 H and 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.093 & 0.198 & 0.290 \\
\hline Head-on collisions (from Worksheet 2D) & 0.003 & 0.006 & 0.009 \\
\hline Angle collisions (from Worksheet 2D) & 0.127 & 0.340 & 0.466 \\
\hline Sideswipe (from Worksheet 2D) & 0.003 & 0.043 & 0.046 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.000 & 0.000 & 0.000 \\
\hline Subtotal & 0.225 & 0.587 & 0.812 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with animal (from Worksheet 2F) & 0.000 & 0.003 & 0.003 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.015 & 0.062 & 0.077 \\
\hline Collision with other object (from Worksheet 2F) & 0.003 & 0.003 & 0.006 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.000 & 0.000 & 0.000 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.006 & 0.000 & 0.006 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.021 & 0.000 & 0.021 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.035 & 0.000 & 0.035 \\
\hline Subtotal & 0.081 & 0.071 & 0.152 \\
\hline Total & 0.306 & 0.658 & 0.963 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & \((2)\) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.963 \\
\hline Property damage only (PDO) & 0.306 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{|c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & oute 138 at Bradlee Road and Atherton Stre \\
\hline Agency or Company & CTPS & Intersection Type & 4SG \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 4 & 4 & 2.19 & 2.57 & 2.78 \\
\hline 2014 & 2 & 2 & 2.16 & 2.55 & 2.78 \\
\hline 2013 & 3 & 3 & 2.12 & 2.49 & 2.78 \\
\hline 2012 & 3 & 4 & 2.08 & 2.44 & 2.78 \\
\hline 2011 & 4 & 4 & 2.06 & 2.42 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & \begin{tabular}{l}
Standard \\
deviation of predicted total crashes
\end{tabular} & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{16.00} & \multirow{5}{*}{3.40} & \multirow{5}{*}{10.61} & \multirow{5}{*}{2.50} & \multirow{5}{*}{0.06} & \multirow{5}{*}{0.50} & \multirow{5}{*}{13.31} & 3.17 & \multirow{5}{*}{3.07} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.58} & \multirow{5}{*}{\(Y\)} \\
\hline & & & & & & & 3.13 & & & & \\
\hline & & & & & & & 3.07 & & & & \\
\hline & & & & & & & 3.01 & & & & \\
\hline & & & & & & & 2.98 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|l|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 at Bradlee Road and Atherton Street \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018 \\
\hline
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2015 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT \({ }_{\text {major }}\) (veh/day) \({ }^{\text {a }}\) ( AADI \(_{\text {MAX }}=67700\) (veh/day) & -- & 12,850 \\
\hline \(\mathrm{AADT}_{\text {minor }}\) (veh/day) AADI \(_{\text {MAX }}=33400\) (veh/day) & -- & 1,950 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Protected \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 14 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 2 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \(3 p\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 2.780 & 1.000 & 1.000 & 2.295 & 0.183 & 0.097 & 2.575 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.94 & 1.00 & 1.00 & 1.00 & 1.00 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & & \multirow[t]{2}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\text { Adjusted } \\
\mathbf{N}_{\text {bimv }}
\end{gathered}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\text { Predicted } \\
\mathbf{N}_{\text {bimv }}
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & \[
\begin{gathered}
\text { from Equation 12- } \\
21
\end{gathered}
\] & & (4) totaL \({ }^{*}(5)\) & (7) from Worksheet 2B & & \((6)^{*}(7) \star(8)\) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 2.33 & 1.00 & 2.33 & 0.94 & 1.00 & 2.19 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.65 & -- & 0.65 & 0.94 & 1.00 & 0.61 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.68 & -- & 1.68 & 0.94 & 1.00 & 1.58 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.61 & 1.00 & 1.58 & 2.19 \\
\hline & & (2) \(\left.{ }^{(3)}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.27 & 0.42 & 0.67 & 0.94 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.06 & 0.08 \\
\hline Angle collision & 0.49 & 0.30 & 0.43 & 0.67 & 0.97 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.18 & 0.19 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & * \({ }^{\text {(5) }}\) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.11 & 1.00 & 0.11 & 0.94 & 1.00 & 0.11 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.94 & 1.00 & 0.02 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.09 & -- & 0.09 & 0.94 & 1.00 & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.02 & 1.00 & 0.09 & 0.11 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.08 & 0.09 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) \(+(3)\) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 2.19 & 0.11 & 2.29 & 0.03 & 0.07 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathbf{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5) *\) (6) \\
\hline Total & 2.19 & 0.11 & 2.29 & 0.04 & 1.00 & 0.10 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.27 & 0.67 & 0.94 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.06 & 0.08 \\
\hline Angle collisions (from Worksheet 2D) & 0.30 & 0.67 & 0.97 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.18 & 0.19 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.61 & 1.58 & 2.19 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.08 & 0.09 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.18 & 0.00 & 0.18 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.10 & 0.00 & 0.10 \\
\hline Subtotal & 0.30 & 0.09 & 0.39 \\
\hline Total & 0.91 & 1.67 & 2.57 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 2.57 \\
\hline Fatal and injury (FI) & 0.91 \\
\hline Property damage only (PDO) & 1.67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|r|}{Location Information} \\
\hline \begin{tabular}{|l|l|}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Bradlee Road and Atherton Street \\
\hline \begin{tabular}{|l|r|}
\hline Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2014 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 12,700 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 1,950 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Protected \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 14 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 2 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 2.780 & 1.000 & 1.000 & 2.270 & 0.181 & 0.096 & 2.547 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{\star}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.94 & 1.00 & 1.00 & 1.00 & 1.00 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & & \multirow[t]{2}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\text { Predicted } \\
\mathbf{N}_{\text {bimv }}
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & \begin{tabular}{l}
from Equation 12- \\
21
\end{tabular} & & (4) total \(^{*}\) (5) & \begin{tabular}{l}
(7) from \\
Worksheet 2B
\end{tabular} & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 2.30 & 1.00 & 2.30 & 0.94 & 1.00 & 2.16 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.64 & -- & 0.64 & 0.94 & 1.00 & 0.60 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.66 & -- & 1.66 & 0.94 & 1.00 & 1.56 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (TOTAL) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.60 & 1.00 & 1.56 & 2.16 \\
\hline & & (2) \(\left.{ }^{(3)}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.27 & 0.42 & 0.66 & 0.93 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.06 & 0.08 \\
\hline Angle collision & 0.49 & 0.30 & 0.43 & 0.66 & 0.96 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.18 & 0.19 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & * \({ }^{\text {(5) }}\) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.11 & 1.00 & 0.11 & 0.94 & 1.00 & 0.11 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.94 & 1.00 & 0.02 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.09 & -- & 0.09 & 0.94 & 1.00 & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.02 & 1.00 & 0.09 & 0.11 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.07 & 0.09 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) \(+(3)\) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 2.16 & 0.11 & 2.27 & 0.03 & 0.07 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 2.16 & 0.11 & 2.27 & 0.04 & 1.00 & 0.10 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.27 & 0.66 & 0.93 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.06 & 0.08 \\
\hline Angle collisions (from Worksheet 2D) & 0.30 & 0.66 & 0.96 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.18 & 0.19 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.60 & 1.56 & 2.16 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.07 & 0.09 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.18 & 0.00 & 0.18 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.10 & 0.00 & 0.10 \\
\hline Subtotal & 0.30 & 0.09 & 0.38 \\
\hline Total & 0.90 & 1.65 & 2.55 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|l|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 at Bradlee Road and Atherton Street \\
\hline \begin{tabular}{|l|l} 
Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2013 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT \({ }_{\text {major }}\) (veh/day) \({ }^{\text {a }}\) ( AADI \(_{\text {MAX }}=67700\) (veh/day) & -- & 12,600 \\
\hline \(\mathrm{AADT}_{\text {minor }}\) (veh/day) AADI \(_{\text {MAX }}=33400\) (veh/day) & -- & 1,900 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Protected \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 14 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 2 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \(2 p\) & CMF \(_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 2.780 & 1.000 & 1.000 & 2.223 & 0.177 & 0.094 & 2.495 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.94 & 1.00 & 1.00 & 1.00 & 1.00 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 2.26 & 1.00 & 2.26 & 0.94 & 1.00 & 2.12 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.63 & -- & 0.63 & 0.94 & 1.00 & 0.59 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.63 & -- & 1.63 & 0.94 & 1.00 & 1.53 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.59 & 1.00 & 1.53 & 2.12 \\
\hline & & (2)* \((3)_{\text {FI }}\) & & (4)* 5 ) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.27 & 0.42 & 0.65 & 0.91 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.06 & 0.08 \\
\hline Angle collision & 0.49 & 0.29 & 0.43 & 0.65 & 0.94 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & * \({ }^{\text {(5) }}\) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.11 & 1.00 & 0.11 & 0.94 & 1.00 & 0.10 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.94 & 1.00 & 0.02 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.09 & -- & 0.09 & 0.94 & 1.00 & 0.08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.02 & 1.00 & 0.08 & 0.10 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.07 & 0.08 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) \(+(3)\) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 2.12 & 0.10 & 2.22 & 0.03 & 0.06 & 1.00 & 0.18 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 2.12 & 0.10 & 2.22 & 0.04 & 1.00 & 0.09 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.27 & 0.65 & 0.91 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.06 & 0.08 \\
\hline Angle collisions (from Worksheet 2D) & 0.29 & 0.65 & 0.94 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.59 & 1.53 & 2.12 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.07 & 0.08 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.18 & 0.00 & 0.18 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.09 & 0.00 & 0.09 \\
\hline Subtotal & 0.29 & 0.08 & 0.38 \\
\hline Total & 0.88 & 1.62 & 2.49 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|l|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l} 
Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 at Bradlee Road and Atherton Street \\
\hline \begin{tabular}{|l|l} 
Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2012 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline AADT \({ }_{\text {major }}\) (veh/day) \({ }^{\text {a }}\) ( AADI \(_{\text {MAX }}=67700\) (veh/day) & -- & 12,500 \\
\hline \(\mathrm{AADT}_{\text {minor }}\) (veh/day) AADI \(_{\text {MAX }}=33400\) (veh/day) & -- & 1,850 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Protected \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 14 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 2 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & CMF \(_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 2.780 & 1.000 & 1.000 & 2.177 & 0.173 & 0.092 & 2.442 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{*}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.94 & 1.00 & 1.00 & 1.00 & 1.00 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 2.21 & 1.00 & 2.21 & 0.94 & 1.00 & 2.08 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.61 & -- & 0.61 & 0.94 & 1.00 & 0.58 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.59 & -- & 1.59 & 0.94 & 1.00 & 1.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.58 & 1.00 & 1.50 & 2.08 \\
\hline & & (2)* \((3)_{\text {FI }}\) & & (4)* 5 ) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.26 & 0.42 & 0.63 & 0.89 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.06 & 0.08 \\
\hline Angle collision & 0.49 & 0.28 & 0.43 & 0.64 & 0.92 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & * \({ }^{\text {(5) }}\) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.11 & 1.00 & 0.11 & 0.94 & 1.00 & 0.10 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.94 & 1.00 & 0.02 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.09 & -- & 0.09 & 0.94 & 1.00 & 0.08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.02 & 1.00 & 0.08 & 0.10 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.07 & 0.08 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 2.08 & 0.10 & 2.18 & 0.03 & 0.06 & 1.00 & 0.17 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{\star}(6)\) \\
\hline Total & 2.08 & 0.10 & 2.18 & 0.04 & 1.00 & 0.09 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.26 & 0.63 & 0.89 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.06 & 0.08 \\
\hline Angle collisions (from Worksheet 2D) & 0.28 & 0.64 & 0.92 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.58 & 1.50 & 2.08 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.07 & 0.08 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.17 & 0.00 & 0.17 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.09 & 0.00 & 0.09 \\
\hline Subtotal & 0.28 & 0.08 & 0.37 \\
\hline Total & 0.86 & 1.58 & 2.44 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 2.44 \\
\hline Fatal and injury (FI) & 0.86 \\
\hline Property damage only (PDO) & 1.58 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Worksheet 2A -- General Information and Input Data for Urban and Suburban Arterial Intersections} \\
\hline General Information & \multicolumn{2}{|r|}{Location Information} \\
\hline \begin{tabular}{|l|l|}
\hline Analyst & Ben Erban \\
\hline
\end{tabular} & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS
\end{tabular} & Intersection & Route 138 at Bradlee Road and Atherton Street \\
\hline \begin{tabular}{|l|r|}
\hline Date Performed & 43221
\end{tabular} & Jurisdiction & MassDOT Highwat District 6 \\
\hline & Analysis Year & 2011 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 4SG \\
\hline  & -- & 12,400 \\
\hline AADT minor (veh/day) AAD \(_{\text {MAX }}=33400\) (veh/day) & -- & 1,850 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1 & 1 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) [ [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 1 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Protected \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Permissive \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 14 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{n}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m (1,000 ft) of the intersection & 0 & 2 \\
\hline Schools within 300 m (1,000 ft) of the intersection (present/not present) & Not Present & Not Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & CMF \(_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(_{3 p}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 2.780 & 1.000 & 1.000 & 2.161 & 0.172 & 0.092 & 2.424 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{\star}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.94 & 1.00 & 1.00 & 1.00 & 1.00 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & & \multirow[t]{2}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\text { Adjusted } \\
\mathbf{N}_{\text {bimv }}
\end{gathered}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\text { Predicted } \\
\mathbf{N}_{\text {bimv }}
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & \[
\begin{gathered}
\text { from Equation 12- } \\
21
\end{gathered}
\] & & (4) totaL \({ }^{*}(5)\) & (7) from Worksheet 2B & & \((6)^{*}(7) \star(8)\) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 2.19 & 1.00 & 2.19 & 0.94 & 1.00 & 2.06 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.61 & -- & 0.61 & 0.94 & 1.00 & 0.57 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.58 & -- & 1.58 & 0.94 & 1.00 & 1.49 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (TOTAL) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.57 & 1.00 & 1.49 & 2.06 \\
\hline & & (2)* \((3)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.26 & 0.42 & 0.63 & 0.89 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.06 & 0.08 \\
\hline Angle collision & 0.49 & 0.28 & 0.43 & 0.63 & 0.91 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & * \({ }^{\text {(5) }}\) & (7) from & & 8) \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.11 & 1.00 & 0.11 & 0.94 & 1.00 & 0.10 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.94 & 1.00 & 0.02 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.09 & -- & 0.09 & 0.94 & 1.00 & 0.08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.02 & 1.00 & 0.08 & 0.10 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.07 & 0.08 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 2.06 & 0.10 & 2.16 & 0.03 & 0.06 & 1.00 & 0.17 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 2.06 & 0.10 & 2.16 & 0.04 & 1.00 & 0.09 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.26 & 0.63 & 0.89 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.06 & 0.08 \\
\hline Angle collisions (from Worksheet 2D) & 0.28 & 0.63 & 0.91 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.17 & 0.18 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.57 & 1.49 & 2.06 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.07 & 0.08 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.17 & 0.00 & 0.17 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.09 & 0.00 & 0.09 \\
\hline Subtotal & 0.28 & 0.08 & 0.36 \\
\hline Total & 0.85 & 1.57 & 2.42 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 2.42 \\
\hline Fatal and injury (FI) & 0.85 \\
\hline Property damage only (PDO) & 1.57 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Robbins Street \\
\hline Agency or Company & CTPS & Intersection Type & 4ST \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 1 & 1 & 1.02 & 1.05 & 1.00 \\
\hline 2014 & 0 & 0 & 1.01 & 1.04 & 1.00 \\
\hline 2013 & 1 & 1 & 1.01 & 1.04 & 1.00 \\
\hline 2012 & 1 & 1 & 0.96 & 0.99 & 1.00 \\
\hline 2011 & 2 & 2 & 0.96 & 0.99 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{5.00} & \multirow{5}{*}{1.00} & \multirow{5}{*}{4.96} & \multirow{5}{*}{1.02} & \multirow{5}{*}{0.03} & \multirow{5}{*}{0.36} & \multirow{5}{*}{4.98} & 1.14 & \multirow{5}{*}{1,11} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.09} & \multirow{5}{*}{\(N\)} \\
\hline & & & & & & & 1.14 & & & & \\
\hline & & & & & & & 1.13 & & & & \\
\hline & & & & & & & 1.08 & & & & \\
\hline & & & & & & & 1.07 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei itotal }}\) & \(N_{\text {prealictedint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.05 & 0.02 & 0.01 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF \(6 i\) & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{array}{|c}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{array}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \(^{*}{ }^{*}(5)\) & (7) from & & \((6) \star(7)^{\star}(8)\) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{\left.{ }^{(4)}\right)_{\text {TOTAL }}(\mathrm{S})}{0.98}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & \(\frac{(6)(7)(8)}{1.02}\) \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.37 & -- & 0.37 & 1.00 & 1.04 & 0.38 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 0.61 & -- & 0.61 & 1.00 & 1.04 & 0.63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Novinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.38 & 1.00 & 0.63 & 1.02 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.06 & 0.19 & 0.12 & 0.18 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.01 & 0.01 \\
\hline Angle collision & 0.82 & 0.31 & 0.72 & 0.46 & 0.77 \\
\hline Sideswipe & 0.02 & 0.01 & 0.08 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline (7) \\
\hline Combined \\
CMFs \\
\hline (7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.03 & 1.00 & 0.03 & 1.00 & 1.04 & 0.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.02 & -- & 0.02 & 1.00 & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.02 & 0.03 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.68 & 0.01 & 0.57 & 0.01 & 0.02 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 1.02 & 0.03 & 1.05 & 0.02 & 1.04 & 0.02 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{Nbi}_{\text {bi }}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.02 & 0.03 & 1.05 & 0.01 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.06 & 0.12 & 0.18 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Angle collisions (from Worksheet 2D) & 0.31 & 0.46 & 0.77 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.38 & 0.63 & 1.02 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.02 & 0.00 & 0.02 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.01 & 0.00 & 0.01 \\
\hline Subtotal & 0.04 & 0.02 & 0.06 \\
\hline Total & 0.42 & 0.66 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.07 \\
\hline Property damage only (PDO) & 0.42 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & \(\mathrm{CMF}_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.04 & 0.02 & 0.01 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF \(6 i\) & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & (6)* 7\()^{\star}\) (8) \\
\hline & a & b 0.31 & c & 0.36 & 21 & & \(\frac{(4)_{\text {Total }}(5)}{0.97}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6) 1.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.37 & -- & 0.37 & 1.00 & 1.04 & 0.38 \\
\hline Property Damage Only
(PDO) & -- & -- & -- & -- & 0.61 & -- & 0.61 & 1.00 & 1.04 & 0.63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Novinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.38 & 1.00 & 0.63 & 1.01 \\
\hline & & (2)* 3\()_{\text {Fl }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.06 & 0.19 & 0.12 & 0.18 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.01 & 0.01 \\
\hline Angle collision & 0.82 & 0.31 & 0.72 & 0.45 & 0.77 \\
\hline Sideswipe & 0.02 & 0.01 & 0.08 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c} 
(9) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.03 & 1.00 & 0.03 & 1.00 & 1.04 & 0.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.02 & -- & 0.02 & 1.00 & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.02 & 0.03 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.68 & 0.01 & 0.57 & 0.01 & 0.02 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 1.01 & 0.03 & 1.04 & 0.02 & 1.04 & 0.02 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.01 & 0.03 & 1.04 & 0.01 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.06 & 0.12 & 0.18 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Angle collisions (from Worksheet 2D) & 0.31 & 0.45 & 0.77 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.38 & 0.63 & 1.01 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.02 & 0.00 & 0.02 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.01 & 0.00 & 0.01 \\
\hline Subtotal & 0.04 & 0.02 & 0.06 \\
\hline Total & 0.42 & 0.65 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.07 \\
\hline Property damage only (PDO) & 0.42 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & \(\mathrm{CMF}_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.04 & 0.02 & 0.01 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF \(6 i\) & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & (6)* 7\()^{\star}\) (8) \\
\hline & a & b 0.31 & c & 0.36 & 21 & & \(\frac{(4)_{\text {Total }}(5)}{0.97}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6) 1.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.37 & -- & 0.37 & 1.00 & 1.04 & 0.38 \\
\hline Property Damage Only
(PDO) & -- & -- & -- & -- & 0.61 & -- & 0.61 & 1.00 & 1.04 & 0.63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Novinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.38 & 1.00 & 0.63 & 1.01 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.06 & 0.19 & 0.12 & 0.18 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.01 & 0.01 \\
\hline Angle collision & 0.82 & 0.31 & 0.72 & 0.45 & 0.76 \\
\hline Sideswipe & 0.02 & 0.01 & 0.08 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c} 
(9) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.03 & 1.00 & 0.03 & 1.00 & 1.04 & 0.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.02 & -- & 0.02 & 1.00 & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.02 & 0.03 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.68 & 0.01 & 0.57 & 0.01 & 0.02 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 1.01 & 0.03 & 1.04 & 0.02 & 1.04 & 0.02 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 1.01 & 0.03 & 1.04 & 0.01 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.06 & 0.12 & 0.18 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Angle collisions (from Worksheet 2D) & 0.31 & 0.45 & 0.76 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.05 & 0.06 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.38 & 0.63 & 1.01 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.02 & 0.00 & 0.02 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.01 & 0.00 & 0.01 \\
\hline Subtotal & 0.04 & 0.02 & 0.06 \\
\hline Total & 0.42 & 0.65 & 1.07 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.07 \\
\hline Property damage only (PDO) & 0.42 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei total }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.99 & 0.02 & 0.01 & 1.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF \(6 i\) & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{array}{|c}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{array}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & \((6) \star(7)^{\star}(8)\) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 & & \(\frac{(4)_{\text {total }}(5)}{0.92}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & \(\frac{(6)(7)(8)}{0.96}\) \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.35 & -- & 0.35 & 1.00 & 1.04 & 0.36 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 0.58 & -- & 0.58 & 1.00 & 1.04 & 0.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nuinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.36 & 1.00 & 0.60 & 0.96 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.06 & 0.19 & 0.11 & 0.17 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.01 & 0.01 \\
\hline Angle collision & 0.82 & 0.30 & 0.72 & 0.43 & 0.73 \\
\hline Sideswipe & 0.02 & 0.01 & 0.08 & 0.05 & 0.05 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c} 
(9) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.03 & 1.00 & 0.03 & 1.00 & 1.04 & 0.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.02 & -- & 0.02 & 1.00 & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.02 & 0.03 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.68 & 0.01 & 0.57 & 0.01 & 0.02 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.96 & 0.03 & 0.99 & 0.02 & 1.04 & 0.02 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.96 & 0.03 & 0.99 & 0.01 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.06 & 0.11 & 0.17 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Angle collisions (from Worksheet 2D) & 0.30 & 0.43 & 0.73 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.05 & 0.05 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.36 & 0.60 & 0.96 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.02 & 0.00 & 0.02 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.01 & 0.00 & 0.01 \\
\hline Subtotal & 0.03 & 0.02 & 0.05 \\
\hline Total & 0.40 & 0.62 & 1.02 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.02 \\
\hline Property damage only (PDO) & 0.40 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei itoal }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.99 & 0.02 & 0.01 & 1.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF \(6 i\) & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1){ }^{*}(2)^{*}(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & (6)* 7\()^{\star}\) (8) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{(4)_{\text {total }}(5)}{0.92}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6)(7)(8) 0.96 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.35 & -- & 0.35 & 1.00 & 1.04 & 0.36 \\
\hline Property Damage Only
(PDO) & -- & -- & -- & -- & 0.57 & -- & 0.57 & 1.00 & 1.04 & 0.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nuinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.36 & 1.00 & 0.60 & 0.96 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.06 & 0.19 & 0.11 & 0.17 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.01 & 0.01 \\
\hline Angle collision & 0.82 & 0.29 & 0.72 & 0.43 & 0.72 \\
\hline Sideswipe & 0.02 & 0.01 & 0.08 & 0.05 & 0.05 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c} 
(9) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.03 & 1.00 & 0.03 & 1.00 & 1.04 & 0.03 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.02 & -- & 0.02 & 1.00 & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.02 & 0.03 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.01 & 0.01 \\
\hline Collision with fixed object & 0.68 & 0.01 & 0.57 & 0.01 & 0.02 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.96 & 0.03 & 0.99 & 0.02 & 1.04 & 0.02 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.96 & 0.03 & 0.99 & 0.01 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.06 & 0.11 & 0.17 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.01 & 0.01 \\
\hline Angle collisions (from Worksheet 2D) & 0.29 & 0.43 & 0.72 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.05 & 0.05 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.36 & 0.60 & 0.96 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.01 & 0.01 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.01 & 0.02 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.02 & 0.00 & 0.02 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.01 & 0.00 & 0.01 \\
\hline Subtotal & 0.03 & 0.02 & 0.05 \\
\hline Total & 0.39 & 0.62 & 1.01 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 1.01 \\
\hline Property damage only (PDO) & 0.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & 138 at Blue HIII Terrace Street and Cheever \\
\hline Agency or Company & CTPS & Intersection Type & 4SG \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 3 & 3 & 1.56 & 1.84 & 2.78 \\
\hline 2014 & 2 & 2 & 1.55 & 1.82 & 2.78 \\
\hline 2013 & 0 & 0 & 1.53 & 1.80 & 2.78 \\
\hline 2012 & 4 & 4 & 1.50 & 1.77 & 2.78 \\
\hline 2011 & 1 & 1 & 1.46 & 1.72 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{10.00} & \multirow{5}{*}{2.00} & \multirow{5}{*}{7.61} & \multirow{5}{*}{1.79} & \multirow{5}{*}{0.05} & \multirow{5}{*}{0.58} & \multirow{5}{*}{8.61} & 2.04 & \multirow{5}{*}{1.99} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.20} & \multirow{5}{*}{\(Y\)} \\
\hline & & & & & & & 2.02 & & & & \\
\hline & & & & & & & 2.00 & & & & \\
\hline & & & & & & & 1.96 & & & & \\
\hline & & & & & & & 1.91 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.884 & 1.000 & 0.960 & 1.000 & 2.780 & 1.000 & 1.000 & 1.638 & 0.130 & 0.069 & 1.838 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{\star}(2)^{\star}(3){ }^{\star}(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 0.88 & 1.00 & 0.96 & 1.00 & 1.00 & 0.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) Total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 1.84 & 1.00 & 1.84 & 0.85 & 1.00 & 1.56 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.51 & -- & 0.51 & 0.85 & 1.00 & 0.43 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.33 & -- & 1.33 & 0.85 & 1.00 & 1.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.43 & 1.00 & 1.13 & 1.56 \\
\hline & & (2)* \(\left.{ }^{*}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.20 & 0.42 & 0.48 & 0.67 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.04 & 0.06 \\
\hline Angle collision & 0.49 & 0.21 & 0.43 & 0.48 & 0.69 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.13 & 0.14 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \(^{*}\) (5)} & (7) from Worksheet 2B & & \multirow[t]{2}{*}{\((6)^{\star}(7)^{\star}(8)\)} \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.09 & 1.00 & 0.09 & 0.85 & 1.00 & 0.08 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.85 & 1.00 & 0.01 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.07 & -- & 0.07 & 0.85 & 1.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.06 & 0.08 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.05 & 0.06 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 1.56 & 0.08 & 1.64 & 0.03 & 0.05 & 1.00 & 0.13 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathbf{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 1.56 & 0.08 & 1.64 & 0.04 & 1.00 & 0.07 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.20 & 0.48 & 0.67 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.04 & 0.06 \\
\hline Angle collisions (from Worksheet 2D) & 0.21 & 0.48 & 0.69 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.13 & 0.14 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.43 & 1.13 & 1.56 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.05 & 0.06 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.13 & 0.00 & 0.13 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.07 & 0.00 & 0.07 \\
\hline Subtotal & 0.21 & 0.06 & 0.28 \\
\hline Total & 0.65 & 1.19 & 1.84 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 1.84 \\
\hline Fatal and injury (FI) & 0.65 \\
\hline Property damage only (PDO) & 1.19 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & \(\mathrm{CMF}_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.884 & 1.000 & 0.960 & 1.000 & 2.780 & 1.000 & 1.000 & 1.623 & 0.129 & 0.069 & 1.821 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{\star}(2)^{\star}(3){ }^{\star}(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 0.88 & 1.00 & 0.96 & 1.00 & 1.00 & 0.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 1.82 & 1.00 & 1.82 & 0.85 & 1.00 & 1.55 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.51 & -- & 0.51 & 0.85 & 1.00 & 0.43 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.32 & -- & 1.32 & 0.85 & 1.00 & 1.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.43 & 1.00 & 1.12 & 1.55 \\
\hline & & (2)* \(\left.{ }^{*}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.19 & 0.42 & 0.47 & 0.67 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.04 & 0.06 \\
\hline Angle collision & 0.49 & 0.21 & 0.43 & 0.48 & 0.69 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.13 & 0.13 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \(^{*}\) (5)} & (7) from Worksheet 2B & & \multirow[t]{2}{*}{\((6)^{\star}(7)^{\star}(8)\)} \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.09 & 1.00 & 0.09 & 0.85 & 1.00 & 0.08 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.85 & 1.00 & 0.01 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.07 & -- & 0.07 & 0.85 & 1.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.06 & 0.08 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.05 & 0.06 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 1.55 & 0.08 & 1.62 & 0.03 & 0.05 & 1.00 & 0.13 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 1.55 & 0.08 & 1.62 & 0.04 & 1.00 & 0.07 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.19 & 0.47 & 0.67 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.04 & 0.06 \\
\hline Angle collisions (from Worksheet 2D) & 0.21 & 0.48 & 0.69 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.13 & 0.13 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.43 & 1.12 & 1.55 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.05 & 0.06 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.13 & 0.00 & 0.13 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.07 & 0.00 & 0.07 \\
\hline Subtotal & 0.21 & 0.06 & 0.27 \\
\hline Total & 0.64 & 1.18 & 1.82 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 1.82 \\
\hline Fatal and injury (FI) & 0.64 \\
\hline Property damage only (PDO) & 1.18 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & CMF \(_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & \(\mathrm{CMF}_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.884 & 1.000 & 0.960 & 1.000 & 2.780 & 1.000 & 1.000 & 1.609 & 0.128 & 0.068 & 1.805 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{\star}(2)^{\star}(3){ }^{\star}(4)^{*}(5){ }^{\star}(6)\) \\
\hline 1.00 & 0.88 & 1.00 & 0.96 & 1.00 & 1.00 & 0.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { from Equation 12- } \\
21 \\
\hline
\end{gathered}
\]} & & (4) Total \(^{*}\) (5) & (7) from & & \((6) *(7) \star(8)\) \\
\hline & a & b & c & & & & (4) total \({ }^{\text {(5) }}\) & Worksheet 2B & & (6)(7) (8) \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 1.81 & 1.00 & 1.81 & 0.85 & 1.00 & 1.53 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.50 & -- & 0.50 & 0.85 & 1.00 & 0.43 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.30 & -- & 1.30 & 0.85 & 1.00 & 1.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nobinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.43 & 1.00 & 1.11 & 1.53 \\
\hline & & (2)* \(\left.{ }^{*}\right)_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.19 & 0.42 & 0.47 & 0.66 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.04 & 0.06 \\
\hline Angle collision & 0.49 & 0.21 & 0.43 & 0.47 & 0.68 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bisv }}\) & Combined
CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted
\(\mathrm{N}_{\text {bisv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \(^{*}\) (5)} & (7) from Worksheet 2B & & \multirow[t]{2}{*}{\((6)^{\star}(7)^{\star}(8)\)} \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -- & -- & -- & 0.05 & 0.09 & 1.00 & 0.09 & 0.85 & 1.00 & 0.08 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.85 & 1.00 & 0.01 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.07 & -- & 0.07 & 0.85 & 1.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.06 & 0.08 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.05 & 0.06 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 1.53 & 0.08 & 1.61 & 0.03 & 0.05 & 1.00 & 0.13 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2 C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 1.53 & 0.08 & 1.61 & 0.04 & 1.00 & 0.07 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.19 & 0.47 & 0.66 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.04 & 0.06 \\
\hline Angle collisions (from Worksheet 2D) & 0.21 & 0.47 & 0.68 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.43 & 1.11 & 1.53 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.05 & 0.06 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.13 & 0.00 & 0.13 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.07 & 0.00 & 0.07 \\
\hline Subtotal & 0.21 & 0.06 & 0.27 \\
\hline Total & 0.64 & 1.17 & 1.80 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 1.80 \\
\hline Fatal and injury (FI) & 0.64 \\
\hline Property damage only (PDO) & 1.17 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \(3 p\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.884 & 1.000 & 0.960 & 1.000 & 2.780 & 1.000 & 1.000 & 1.579 & 0.126 & 0.067 & 1.771 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.88 & 1.00 & 0.96 & 1.00 & 1.00 & 0.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{Initial \(\mathrm{N}_{\text {bimv }}\) from Equation 1221} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & (4) Total \(^{*}{ }^{*}(5)\) & (7) from & & \((6)^{*}(7) *\) (8) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 1.77 & 1.00 & 1.77 & 0.85 & 1.00 & 1.50 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.49 & -- & 0.49 & 0.85 & 1.00 & 0.42 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.28 & -- & 1.28 & 0.85 & 1.00 & 1.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(FI) \(^{\text {Typ }}\) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimu (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ef from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Niminv from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 0.42 & 1.00 & 1.09 & 1.50 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {pDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.19 & 0.42 & 0.46 & 0.65 \\
\hline Head-on collision & 0.04 & 0.02 & 0.04 & 0.04 & 0.06 \\
\hline Angle collision & 0.49 & 0.21 & 0.43 & 0.46 & 0.67 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & (9) \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{array}
\] & Combined CMFs & & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathrm{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & from Table 1A & (3) * (4) From Worksheet 2C & & (4) тtola \(^{*}\) (5) & (7) from Worksheet 2B & & \((6)^{\star}(7)^{\star}(8)\) \\
\hline Total & -- & -- & -- & 0.05 & 0.09 & 1.00 & 0.09 & 0.85 & 1.00 & 0.07 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.85 & 1.00 & 0.01 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.07 & -- & 0.07 & 0.85 & 1.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.06 & 0.07 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.05 & 0.06 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 1.50 & 0.07 & 1.58 & 0.03 & 0.05 & 1.00 & 0.13 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5) *\) (6) \\
\hline Total & 1.50 & 0.07 & 1.58 & 0.04 & 1.00 & 0.07 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.19 & 0.46 & 0.65 \\
\hline Head-on collisions (from Worksheet 2D) & 0.02 & 0.04 & 0.06 \\
\hline Angle collisions (from Worksheet 2D) & 0.21 & 0.46 & 0.67 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.42 & 1.09 & 1.50 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.05 & 0.06 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 2I) & 0.13 & 0.00 & 0.13 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.07 & 0.00 & 0.07 \\
\hline Subtotal & 0.21 & 0.06 & 0.27 \\
\hline Total & 0.62 & 1.15 & 1.77 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 1.77 \\
\hline Fatal and injury (FI) & 0.62 \\
\hline Property damage only (PDO) & 1.15 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline CMF \(_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \(_{5 i}\) & CMF \(_{1 p}\) & CMF \({ }_{2 p}\) & CMF \({ }_{3 p}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi total }}\) & \(N_{\text {bikei total }}\) & \(N_{\text {predictedint }}\) \\
\hline 1.000 & 0.884 & 1.000 & 0.960 & 1.000 & 2.780 & 1.000 & 1.000 & 1.534 & 0.122 & 0.065 & 1.721 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF 2i & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3){ }^{\star}(4)^{*}(5){ }^{*}(6)\) \\
\hline 1.00 & 0.88 & 1.00 & 0.96 & 1.00 & 1.00 & 0.85 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21
\end{array}
\]} & \multirow[t]{3}{*}{Proportion of Total Crashes} & \[
\begin{gathered}
\hline \text { Adjusted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] & Combined CMFs & \multirow[t]{3}{*}{\begin{tabular}{l}
Calibration \\
Factor, \(\mathrm{C}_{\mathrm{i}}\)
\end{tabular}} & Predicted \(\mathrm{N}_{\text {bimv }}\) \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & \multirow[t]{2}{*}{from Table 12-10} & & & & (7) from & & \\
\hline & a & b & c & & & & & Worksheet 2B & & \\
\hline Total & -11.79 & 0.92 & 0.52 & 0.10 & 1.72 & 1.00 & 1.72 & 0.85 & 1.00 & 1.46 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.48 & -- & 0.48 & 0.85 & 1.00 & 0.41 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.24 & -- & 1.24 & 0.85 & 1.00 & 1.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(f) & Adjusted \(\mathbf{N}\) bimv (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDO) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( }}\) (total) (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2 C & from Table 12-11 & (9)poo from Worksheet 2C & (9) Ninim \(^{\text {from Worksheet } 2 \mathrm{C}}\) \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 0.41 & 1.00 & 1.06 & 1.46 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.45 & 0.18 & 0.42 & 0.45 & 0.63 \\
\hline Head-on collision & 0.04 & 0.01 & 0.04 & 0.04 & 0.06 \\
\hline Angle collision & 0.49 & 0.20 & 0.43 & 0.45 & 0.65 \\
\hline Sideswipe & 0.02 & 0.01 & 0.11 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & 2) & & (3) & (4) & \multirow[t]{3}{*}{\begin{tabular}{l}
(5) \\
Proportion of Total Crashes
\end{tabular}} & (6) & (7) & (8) & \multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline (9) \\
\begin{tabular}{c} 
Predicted \\
\(N_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\) \\
\hline
\end{tabular}} \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & \multirow[b]{3}{*}{\begin{tabular}{l}
Initial \(\mathrm{N}_{\text {bisv }}\) \\
(3) * (4) From \\
Worksheet 2 C
\end{tabular}} & & \[
\begin{gathered}
\text { Adjusted } \\
\mathbf{N}_{\text {bisv }}
\end{gathered}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \\
\hline & & be & & \multirow[t]{2}{*}{from Table 1A} & & & (4) тtota \(^{*}\) (5) & (7) from & & \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.05 & 0.08 & 1.00 & 0.08 & 0.85 & 1.00 & 0.07 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.18 & 0.02 & -- & 0.02 & 0.85 & 1.00 & 0.01 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.82 & 0.07 & -- & 0.07 & 0.85 & 1.00 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}_{\text {bisv (F) }}\) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisy (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)pdo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.01 & 1.00 & 0.06 & 0.07 \\
\hline & & (2)* 3\()_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.63 & 0.01 & 0.86 & 0.05 & 0.06 \\
\hline Collision with other object & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.13 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline (1) & (2) & (3) & (4) \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12-28 & from Table 12-29 & from Table 12-30 & \((1) *(2) *(3)\) \\
\hline 2.78 & 1.00 & 1.00 & 2.78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[b]{2}{*}{Veh-Ped \(\omega\)} & \multirow[b]{2}{*}{Npedbase} & \multirow[b]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & & (4) from Worksheet \(2 \mathrm{H}^{*}(6)^{\star}(7)\) \\
\hline Total & 1.46 & 0.07 & 1.53 & 0.03 & 0.04 & 1.00 & 0.12 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & & 1.00 & 0.12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh-Bike \(\omega\)} & \multirow{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (4) from Worksheet 2E & (2) + (3) & & & \((4)^{*}(5){ }^{*}(6)\) \\
\hline Total & 1.46 & 0.07 & 1.53 & 0.04 & 1.00 & 0.07 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.00 & 0.07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} & (5) from Worksheet 2D and 2F & \begin{tabular}{l}
(6) from Worksheet 2D and 2F; \\
(8) from Worksheet 2G and (7) from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.18 & 0.45 & 0.63 \\
\hline Head-on collisions (from Worksheet 2D) & 0.01 & 0.04 & 0.06 \\
\hline Angle collisions (from Worksheet 2D) & 0.20 & 0.45 & 0.65 \\
\hline Sideswipe (from Worksheet 2D) & 0.01 & 0.12 & 0.13 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.41 & 1.06 & 1.46 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.01 & 0.05 & 0.06 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.12 & 0.00 & 0.12 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.07 & 0.00 & 0.07 \\
\hline Subtotal & 0.20 & 0.06 & 0.26 \\
\hline Total & 0.61 & 1.11 & 1.72 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{ (1) } \\
\hline \multirow{3}{*}{ Crash severity level } & (2) \\
& \begin{tabular}{c} 
Predicted average crash frequency, \(\mathbf{N}_{\text {predicted int }}\) \\
(crashes/year)
\end{tabular} \\
\hline & Total \\
\hline Total & 1.72 \\
\hline Fatal and injury (FI) & 0.61 \\
\hline Property damage only (PDO) & 1.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Oak Street \\
\hline Agency or Company & CTPS & Intersection Type & 4ST \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 1 & 1 & 0.40 & 0.41 & 1.00 \\
\hline 2014 & 0 & 0 & 0.40 & 0.41 & 1.00 \\
\hline 2013 & 1 & 1 & 0.39 & 0.41 & 1.00 \\
\hline 2012 & 0 & 0 & 0.39 & 0.41 & 1.00 \\
\hline 2011 & 0 & 0 & 0.39 & 0.40 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{2.00} & \multirow{5}{*}{0.40} & \multirow{5}{*}{1.97} & \multirow{5}{*}{0.41} & \multirow{5}{*}{0.00} & \multirow{5}{*}{0.58} & \multirow{5}{*}{1.98} & 0.44 & \multirow{5}{*}{0.44} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.04} & \multirow{5}{*}{\(N\)} \\
\hline & & & & & & & 0.44 & & & & \\
\hline & & & & & & & 0.44 & & & & \\
\hline & & & & & & & 0.44 & & & & \\
\hline & & & & & & & 0.44 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei itoal }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.41 & 0.01 & 0.00 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1) *(2) *(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{array}{|c}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{array}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & \((6) \star(7)^{\star}(8)\) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{{ }^{(4)_{\text {total }}} \text { (5) }}{0.38}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & \(\frac{(6)(7)(8)}{0.40}\) \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.14 & -- & 0.14 & 1.00 & 1.04 & 0.15 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & -- & 0.24 & -- & 0.24 & 1.00 & 1.04 & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimu (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv ( }}\) (TOtaL) (crashes/year) \\
\hline & from Table 12-11 & (9)fl from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) N(binv \({ }_{\text {from }}\) Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 0.15 & 1.00 & 0.25 & 0.40 \\
\hline & & (2) \({ }^{*}(3)_{\text {Fl }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.02 & 0.19 & 0.05 & 0.07 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Angle collision & 0.82 & 0.12 & 0.72 & 0.18 & 0.30 \\
\hline Sideswipe & 0.02 & 0.00 & 0.08 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & (6) & (7) & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathbf{N}_{\text {bisy }}\) & & \[
\begin{aligned}
& \text { Adjusted } \\
& \mathbf{N}_{\text {bimv }}
\end{aligned}
\] & Combined CMFs & & \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \({ }^{*}(5)\)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.01 & 1.00 & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.00 & -- & 0.00 & 1.00 & 1.04 & 0.00 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.70 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.00 & 1.00 & 0.01 & 0.01 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.68 & 0.00 & 0.57 & 0.00 & 0.01 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.40 & 0.01 & 0.41 & 0.02 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.40 & 0.01 & 0.41 & 0.01 & 1.04 & 0.00 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2G and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.02 & 0.05 & 0.07 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Angle collisions (from Worksheet 2D) & 0.12 & 0.18 & 0.30 \\
\hline Sideswipe (from Worksheet 2D) & 0.00 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.15 & 0.25 & 0.40 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.01 & 0.00 & 0.01 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.01 & 0.01 & 0.02 \\
\hline Total & 0.16 & 0.26 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.42 \\
\hline Property damage only (PDO) & 0.16 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei itoal }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.41 & 0.01 & 0.00 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1) *(2) *(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{array}{|c}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{array}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & \((6) \star(7)^{\star}(8)\) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{{ }^{(4)_{\text {total }}} \text { (5) }}{0.38}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & \(\frac{(6)(7)(8)}{0.40}\) \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.14 & -- & 0.14 & 1.00 & 1.04 & 0.15 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & -- & 0.24 & -- & 0.24 & 1.00 & 1.04 & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nuinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.15 & 1.00 & 0.25 & 0.40 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.02 & 0.19 & 0.05 & 0.07 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Angle collision & 0.82 & 0.12 & 0.72 & 0.18 & 0.30 \\
\hline Sideswipe & 0.02 & 0.00 & 0.08 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & (6) & (7) & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathbf{N}_{\text {bisy }}\) & & \[
\begin{aligned}
& \text { Adjusted } \\
& \mathbf{N}_{\text {bimv }}
\end{aligned}
\] & Combined CMFs & & \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \({ }^{*}(5)\)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.01 & 1.00 & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.00 & -- & 0.00 & 1.00 & 1.04 & 0.00 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.70 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.00 & 1.00 & 0.01 & 0.01 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.68 & 0.00 & 0.57 & 0.00 & 0.01 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2 C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.40 & 0.01 & 0.41 & 0.02 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.40 & 0.01 & 0.41 & 0.01 & 1.04 & 0.00 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2G and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.02 & 0.05 & 0.07 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Angle collisions (from Worksheet 2D) & 0.12 & 0.18 & 0.30 \\
\hline Sideswipe (from Worksheet 2D) & 0.00 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.15 & 0.25 & 0.40 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.01 & 0.00 & 0.01 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.01 & 0.01 & 0.02 \\
\hline Total & 0.16 & 0.26 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.42 \\
\hline Property damage only (PDO) & 0.16 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei itoal }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.41 & 0.01 & 0.00 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1) *(2) *(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & (6)* 7 )*(8) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{{ }^{(4)_{\text {total }}} \text { (5) }}{0.38}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6)(7)(8) 0.39 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.14 & -- & 0.14 & 1.00 & 1.04 & 0.15 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & -- & 0.24 & -- & 0.24 & 1.00 & 1.04 & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimu (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv ( }}\) (TOtaL) (crashes/year) \\
\hline & from Table 12-11 & (9)fl from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) \({ }_{\text {Nbimv }}\) from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 0.15 & 1.00 & 0.25 & 0.39 \\
\hline & & (2) \({ }^{*}(3)_{\text {Fl }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.02 & 0.19 & 0.05 & 0.07 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Angle collision & 0.82 & 0.12 & 0.72 & 0.18 & 0.30 \\
\hline Sideswipe & 0.02 & 0.00 & 0.08 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.01 & 1.00 & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.00 & -- & 0.00 & 1.00 & 1.04 & 0.00 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.00 & 1.00 & 0.01 & 0.01 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.68 & 0.00 & 0.57 & 0.00 & 0.01 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.41 & 0.02 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.41 & 0.01 & 1.04 & 0.00 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2G and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.02 & 0.05 & 0.07 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Angle collisions (from Worksheet 2D) & 0.12 & 0.18 & 0.30 \\
\hline Sideswipe (from Worksheet 2D) & 0.00 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.15 & 0.25 & 0.39 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.01 & 0.00 & 0.01 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.01 & 0.01 & 0.02 \\
\hline Total & 0.16 & 0.25 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.42 \\
\hline Property damage only (PDO) & 0.16 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei Itoal }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.41 & 0.01 & 0.00 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1) *(2) *(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & (6)* 7 )*(8) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{{ }^{(4)_{\text {total }}} \text { (5) }}{0.38}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6)(7)(8) 0.39 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.14 & -- & 0.14 & 1.00 & 1.04 & 0.15 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) }
\end{aligned}
\] & -- & -- & -- & -- & 0.24 & -- & 0.24 & 1.00 & 1.04 & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted N bimu (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv ( }}\) (TOtaL) (crashes/year) \\
\hline & from Table 12-11 & (9)fl from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) \({ }_{\text {Nbimv }}\) from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.00 & 0.15 & 1.00 & 0.25 & 0.39 \\
\hline & & (2) \({ }^{*}(3)_{\text {Fl }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.02 & 0.19 & 0.05 & 0.07 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Angle collision & 0.82 & 0.12 & 0.72 & 0.18 & 0.30 \\
\hline Sideswipe & 0.02 & 0.00 & 0.08 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\((6)\)
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular}
\((4)_{\text {TOTAL }}{ }^{\star}(5)\)} & \multirow[t]{4}{*}{\begin{tabular}{c}
\((7)\) \\
\hline Combined \\
CMFs \\
(7) from \\
Worksheet 2B
\end{tabular}} & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & & & & \\
\hline Crash Severity Level & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & & & & \\
\hline & a & b & C & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.01 & 1.00 & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.00 & -- & 0.00 & 1.00 & 1.04 & 0.00 \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Property Damage Only } \\
\text { (PDO) }
\end{array} \\
\hline
\end{array}
\] & -- & -- & -- & 0.70 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.00 & 1.00 & 0.01 & 0.01 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.68 & 0.00 & 0.57 & 0.00 & 0.01 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.41 & 0.02 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.41 & 0.01 & 1.04 & 0.00 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2G and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.02 & 0.05 & 0.07 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Angle collisions (from Worksheet 2D) & 0.12 & 0.18 & 0.30 \\
\hline Sideswipe (from Worksheet 2D) & 0.00 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.15 & 0.25 & 0.39 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.01 & 0.00 & 0.01 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.01 & 0.01 & 0.02 \\
\hline Total & 0.16 & 0.25 & 0.42 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.42 \\
\hline Property damage only (PDO) & 0.16 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{4 i}\) & CMF \({ }_{5 i}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei total }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.40 & 0.01 & 0.00 & 0.41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF \(5 i\) & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1) *(2) *(3) *(4)^{*}(5) *(6)\) \\
\hline 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, \(\mathbf{k}\) & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{3}{*}{Proportion of Total Crashes} & Adjusted \(\mathrm{N}_{\text {bimv }}\) & \[
\begin{gathered}
\text { Combined } \\
\text { CMFs } \\
\hline
\end{gathered}
\] & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \[
\begin{array}{|c}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bimv }} \\
\hline
\end{array}
\] \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12- & & (4) total \({ }^{*}(5)\) & (7) from & & \((6) \star(7)^{\star}(8)\) \\
\hline & a & b 0.31 & c & \(\frac{0.36}{}\) & 21 0 & & \(\frac{{ }^{(4)_{\text {total }}} \text { (5) }}{0.38}\) & \[
\frac{\text { Worksheet 2B }}{1.00}
\] & & (6)(7) \({ }^{(8)}\)
0.39 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.14 & -- & 0.14 & 1.00 & 1.04 & 0.15 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 0.23 & -- & 0.23 & 1.00 & 1.04 & 0.24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2D -- Multiple-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Adjusted \(\mathbf{N}\) bimu (F) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathbf{N}_{\text {bimv (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)FI from Worksheet 2C & from Table 12-11 & (9)pdo from Worksheet 2C & (9) Nuinv from Worksheet 2 C \\
\hline Total & 1.00 & 0.15 & 1.00 & 0.24 & 0.39 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.16 & 0.02 & 0.19 & 0.05 & 0.07 \\
\hline Head-on collision & 0.01 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Angle collision & 0.82 & 0.12 & 0.72 & 0.18 & 0.30 \\
\hline Sideswipe & 0.02 & 0.00 & 0.08 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & (6) & (7) & \multirow[t]{3}{*}{(8)
Calibration
Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{c}
\((9)\) \\
\hline \begin{tabular}{c} 
Predicted \\
\(\mathbf{N}_{\text {bisv }}\)
\end{tabular} \\
\hline\((6)^{\star}(7)^{\star}(8)\)
\end{tabular}} \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathbf{N}_{\text {bisy }}\) & & \[
\begin{aligned}
& \text { Adjusted } \\
& \mathbf{N}_{\text {bimv }}
\end{aligned}
\] & Combined CMFs & & \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) total \({ }^{*}(5)\)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.03 & 0.01 & 1.00 & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.30 & 0.00 & -- & 0.00 & 1.00 & 1.04 & 0.00 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.70 & 0.01 & -- & 0.01 & 1.00 & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F -- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type (f) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted \(\mathbf{N}\) bisu (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & from Table 12-13 & (9)FIf from Worksheet 2E & from Table 12-13 & (9)poo from Worksheet 2E & (9)pdo from Worksheet 2E \\
\hline Total & 1.00 & 0.00 & 1.00 & 0.01 & 0.01 \\
\hline & & (2)*(3) \({ }_{\text {FI }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Collision with parked vehicle & 0.00 & 0.00 & 0.14 & 0.00 & 0.00 \\
\hline Collision with animal & 0.00 & 0.00 & 0.29 & 0.00 & 0.00 \\
\hline Collision with fixed object & 0.68 & 0.00 & 0.57 & 0.00 & 0.01 \\
\hline Collision with other object & 0.09 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2G -- Vehicle-Pedestrian Collisions for Urban and Suburban Arterial Stop-Controlled Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & Veh- Ped \(\omega\) & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) + (3) & from Table 1B & & \((4)^{\star}(5){ }^{*}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.40 & 0.02 & 1.04 & 0.01 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2J -- Vehicle-Bicycle Collisions for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[b]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh-Bike \(\omega\)
\[
(4) *(5)
\]} & \multirow[t]{2}{*}{Calibration factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & (9) from Worksheet 2C & (9) from Worksheet 2E & (2) \(+(3)\) & & & \((4)^{\star}(5)^{\star}(6)\) \\
\hline Total & 0.39 & 0.01 & 0.40 & 0.01 & 1.04 & 0.00 \\
\hline Fatal and injury (FI) & -- & -- & -- & -- & 1.04 & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K -- Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) \\
\hline & Fatal and injury (FI) & Property damage only (PDO) & Total \\
\hline Collision type & \begin{tabular}{l}
(3) from Worksheet 2D and 2F; \\
(7) from Worksheet 2G and 2 J
\end{tabular} & (5) from Worksheet 2D and 2F & (6) from Worksheet 2D and 2F; (7) from Worksheet 2G and 2 J \\
\hline \multicolumn{4}{|c|}{MULTIPLE-VEHICLE} \\
\hline Rear-end collisions (from Worksheet 2D) & 0.02 & 0.05 & 0.07 \\
\hline Head-on collisions (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Angle collisions (from Worksheet 2D) & 0.12 & 0.18 & 0.30 \\
\hline Sideswipe (from Worksheet 2D) & 0.00 & 0.02 & 0.02 \\
\hline Other multiple-vehicle collision (from Worksheet 2D) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.15 & 0.24 & 0.39 \\
\hline \multicolumn{4}{|c|}{SINGLE-VEHICLE} \\
\hline Collision with parked vehicle (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with animal (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with fixed object (from Worksheet 2F) & 0.00 & 0.00 & 0.01 \\
\hline Collision with other object (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Other single-vehicle collision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Single-vehicle noncollision (from Worksheet 2F) & 0.00 & 0.00 & 0.00 \\
\hline Collision with pedestrian (from Worksheet 2G or 21) & 0.01 & 0.00 & 0.01 \\
\hline Collision with bicycle (from Worksheet 2J) & 0.00 & 0.00 & 0.00 \\
\hline Subtotal & 0.01 & 0.01 & 0.02 \\
\hline Total & 0.16 & 0.25 & 0.41 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L -- Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{2}{|c|}{\((1)\)} \\
\((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency, \(\mathrm{N}_{\text {predicted int }}\) \\
(crasheslyear)
\end{tabular} \\
\hline Total & (Total) from Worksheet 2K \\
\hline Fatal and injury (FI) & 0.41 \\
\hline Property damage only (PDO) & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ General Information } & \multicolumn{2}{c|}{ Location Information } \\
\hline Analyst & Ben Erban & Intersection & Route 138 and Brook Road \\
\hline Agency or Company & CTPS & Intersection Type & 3SG \\
\hline Date Performed & May-18 & Jurisdiction & MassDOT Highwat District 6 \\
\hline City & Milton & Analysis Year & 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Input Information } \\
\hline Year & \begin{tabular}{c} 
Oserved \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Observed \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
MV \\
crashes
\end{tabular} & \begin{tabular}{c} 
Predicted \\
total \\
crashes
\end{tabular} & \begin{tabular}{c} 
Combined \\
CMF for \\
veh-ped \\
crashes
\end{tabular} \\
\hline 2015 & 3 & 4 & 1.41 & 1.70 & 5.60 \\
\hline 2014 & 1 & 1 & 1.40 & 1.69 & 5.60 \\
\hline 2013 & 3 & 3 & 1.39 & 1.67 & 5.60 \\
\hline 2012 & 2 & 2 & 1.37 & 1.65 & 5.60 \\
\hline 2011 & 1 & 2 & 1.35 & 1.63 & 5.60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Output Information} \\
\hline Observed MV crashes & Average observed total crashes & Total predicted MV crashes & Average predicted total crashes & Standard deviation of predicted total crashes & Weight & Total expected MV crashes & No of expected total crashes & Average expected total crashes & High-risk Intersection (Y/N) & Potential for Safety Improvement (PSI) & If avg observed total crashes > avg expected crashes \\
\hline \multirow{5}{*}{10.00} & \multirow{5}{*}{2.40} & \multirow{5}{*}{6.92} & \multirow{5}{*}{1.67} & \multirow{5}{*}{0.03} & \multirow{5}{*}{0.26} & \multirow{5}{*}{9.19} & 2.28 & \multirow{5}{*}{2.23} & \multirow{5}{*}{\(Y\)} & \multirow{5}{*}{0.56} & \multirow{5}{*}{\(Y\)} \\
\hline & & & & & & & 2.26 & & & & \\
\hline & & & & & & & 2.24 & & & & \\
\hline & & & & & & & 2.21 & & & & \\
\hline & & & & & & & 2.18 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brook Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018
\end{tabular} & Jurisdiction & MassDOT District 6 \\
\hline & Analysis Year & 2015 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 3SG \\
\hline \begin{tabular}{|l|lll}
\hline AADT \\
major (veh/day) & AADT \(_{\text {MAX }}=\) & 58,100 & (veh/day) \\
\hline
\end{tabular} & -- & 6,400 \\
\hline  & -- & 2,250 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 0.95 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Protected \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Not Applicable \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection & 0 & 4 \\
\hline Schools within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \(4 i\) & CMF 5 5i & CMF \({ }_{\text {1p }}\) & \(\mathrm{CMF}_{2 p}\) & CMF \({ }_{\text {3p }}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei }}\) total & \(N_{\text {preaictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 4.150 & 1.350 & 1.000 & 1.509 & 0.164 & 0.031 & 1.704 \\
\hline
\end{tabular}

\section*{ADDITIONAL COMMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 11 & CMF \(2 i\) & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)^{*}(6)\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 0.940 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{} & & (2) & & (3) & (4) & & \multirow[t]{3}{*}{\begin{tabular}{l}
(6)
Adjusted
\(\mathrm{N}_{\text {bimv }}\) \\
(4) TOTAL \({ }^{*}(5)\)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{|c}
\hline (7) \\
\hline \begin{tabular}{c} 
Combined \\
CMFs
\end{tabular} \\
\hline (7) from \\
\hline
\end{tabular}} & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion Parameter, k & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- } \\
21 \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{Proportion of Total Crashes} & & & & \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & & & & & & \\
\hline Total & -8.299 & 0.812 & 0.212 & 0.407 & 1.580 & 1.000 & 1.580 & 0.940 & 0.950 & 1.411 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.471 & -- & 0.471 & 0.940 & 0.950 & 0.420 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.109 & -- & 1.109 & 0.940 & 0.950 & 0.990 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9) F f from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) vian \(^{\text {from }}\) Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.420 & 1.000 & 0.990 & 1.411 \\
\hline & & (2)* \({ }^{\text {(3) }}\) ¢ & & (4)*(5) \({ }_{\text {PDo }}\) & (3)+(5) \\
\hline Rear-end collision & 0.580 & 0.244 & 0.605 & 0.599 & 0.843 \\
\hline Head-on collision & 0.034 & 0.014 & 0.014 & 0.014 & 0.029 \\
\hline Angle collision & 0.341 & 0.144 & 0.265 & 0.262 & 0.406 \\
\hline Sideswipe & 0.039 & 0.016 & 0.116 & 0.115 & 0.131 \\
\hline Other multiple-vehicle collision & 0.005 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & \multirow{3}{*}{Proportion of Total Crashes} & (6) & (7) & (8) & (9) \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
N_{\text {bisv }}
\end{array}
\] & Combined CMFs & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Calibration } \\
\text { Factor, } \mathrm{C}_{\mathrm{i}}
\end{array}
\]} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) тotal \(^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6)^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.070 & 0.110 & 1.000 & 0.110 & 0.940 & 0.950 & 0.098 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.208 & 0.023 & -- & 0.023 & 0.940 & 0.950 & 0.021 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & 0.792 & 0.087 & -- & 0.087 & 0.940 & 0.950 & 0.078 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & & IV. from M/nrkchoot P & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & יטーי＇ &  & ＂レーי＇ & （0رruv invil vavinulucla & （uرruv יuvirvovinuluul \\
\hline Total & 1.000 & 0.021 & 1.000 & 0.078 & 0.098 \\
\hline & & （2）＊（3）\({ }_{\text {FI }}\) & & （4）＊ 5\()_{\text {PDO }}\) & （3）＋（5） \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.053 & 0.004 & 0.004 \\
\hline Collision with animal & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object & 0.900 & 0.018 & 0.895 & 0.070 & 0.088 \\
\hline Collision with other object & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Other single－vehicle collision & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision & 0.100 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline （1） & （2） & （3） & （4） \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12－28 & from Table 12－29 & from Table 12－30 & （1）＊ 2 ）＊（3） \\
\hline 4.150 & 1.350 & 1.000 & 5.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G－－Vehicle－Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） & （8） \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh－Ped \(\omega\)} & \multirow[t]{2}{*}{Npedbase} & \multirow[t]{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & （9）from Worksheet 2 C & （4）from Worksheet 2E & （2）＋（3） & & & & （4）from Worksheet \(2 \mathrm{H}^{\star}(6) \star(7)\) \\
\hline Total & 1.411 & 0.098 & 1.509 & 0.020 & 0.031 & 0.950 & 0.164 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & & 0.950 & 0.164 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh－Bike \(\omega\)} & \multirow{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）\(+(3)\) & & & \((4) *(5) *\)（6） \\
\hline Total & 1.411 & 0.098 & 1.509 & 0.022 & 0.950 & 0.031 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & 0.950 & 0.031 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K－－Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） \\
\hline & Fatal and injury（FI） & Property damage only（PDO） & Total \\
\hline Collision type & \begin{tabular}{l}
（3）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2J
\end{tabular} & （5）from Worksheet 2D and 2F & \begin{tabular}{l}
（6）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE－VEHICLE} \\
\hline Rear－end collisions（from Worksheet 2D） & 0.244 & 0.599 & 0.843 \\
\hline Head－on collisions（from Worksheet 2D） & 0.014 & 0.014 & 0.029 \\
\hline Angle collisions（from Worksheet 2D） & 0.144 & 0.262 & 0.406 \\
\hline Sideswipe（from Worksheet 2D） & 0.016 & 0.115 & 0.131 \\
\hline Other multiple－vehicle collision（from Worksheet 2D） & 0.002 & 0.000 & 0.002 \\
\hline Subtotal & 0.420 & 0.990 & 1.411 \\
\hline \multicolumn{4}{|c|}{SINGLE－VEHICLE} \\
\hline Collision with parked vehicle（from Worksheet 2F） & 0.000 & 0.004 & 0.004 \\
\hline Collision with animal（from Worksheet 2F） & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object（from Worksheet 2F） & 0.018 & 0.070 & 0.088 \\
\hline Collision with other object（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Other single－vehicle collision（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision（from Worksheet 2F） & 0.002 & 0.000 & 0.002 \\
\hline Collision with pedestrian（from Worksheet 2G or 2I） & 0.164 & 0.000 & 0.164 \\
\hline Collision with bicycle（from Worksheet 2J） & 0.031 & 0.000 & 0.031 \\
\hline Subtotal & 0.215 & 0.078 & 0.293 \\
\hline Total & 0.636 & 1.068 & 1.704 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L－－Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{3}{|c|}{\((1)\)} & \((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency， \(\mathbf{N}_{\text {predicted int }}\) \\
（crashes／year）
\end{tabular} \\
\hline Total & Total \\
\cline { 2 - 2 } & 1.704 \\
\hline Fatal and injury（FI） & 0.636 \\
\hline Property damage only（PDO） & 1.068 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brook Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018
\end{tabular} & Jurisdiction & MassDOT District 6 \\
\hline & Analysis Year & 2014 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 3SG \\
\hline  & -- & 6,350 \\
\hline  & -- & 2,250 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 0.95 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Protected \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Not Applicable \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection & 0 & 4 \\
\hline Schools within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \(4 i\) & CMF \({ }_{5 i}\) & CMF \({ }_{\text {1p }}\) & \(\mathrm{CMF}_{2 p}\) & CMF \({ }_{\text {3p }}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei }}\) total & \(N_{\text {preaictededint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 4.150 & 1.350 & 1.000 & 1.500 & 0.163 & 0.031 & 1.693 \\
\hline
\end{tabular}

\section*{ADDITIONAL COMMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF \(1 i\) & CMF \(2 i\) & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{\star}(3)^{*}(4)^{*}(5)^{*}(6)\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 0.940 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{orksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{(1)} & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{2}{*}{\(\xrightarrow{(9)}\) \(\mathrm{N}_{\text {bimv }}\)} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & \begin{tabular}{l}
Adjusted \\
\(\mathrm{N}_{\text {bimv }}\)
\end{tabular} & Combined CMFs & & \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12 & & (4) total \(^{*}\) (5) & (7) from & & (6)* 7\()^{*}(8)\) \\
\hline Total & \(\stackrel{\mathrm{a}}{-8.299}\) & \({ }_{0}^{\text {b }}\) & \({ }_{0}^{\text {c }}\) & 0.407 & 21 1.570 & 1.000 & 1.570 & 0.940 & 0.950 & 1.402 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.468 & -- & 0.468 & 0.940 & 0.950 & 0.418 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & -- & 1.102 & -- & 1.102 & 0.940 & 0.950 & 0.984 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ff from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) vian \(^{\text {from }}\) Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.418 & 1.000 & 0.984 & 1.402 \\
\hline & & (2)* \({ }^{\text {(3) }}\) F & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.580 & 0.242 & 0.605 & 0.595 & 0.837 \\
\hline Head-on collision & 0.034 & 0.014 & 0.014 & 0.014 & 0.029 \\
\hline Angle collision & 0.341 & 0.143 & 0.265 & 0.261 & 0.403 \\
\hline Sideswipe & 0.039 & 0.016 & 0.116 & 0.114 & 0.130 \\
\hline Other multiple-vehicle collision & 0.005 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Proportion of Total } \\
& \text { Crashes }
\end{aligned}
\]} & Adjusted & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \\
\hline & \multicolumn{3}{|c|}{from Table 12-12} & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & (4) тtola \(^{*}\) (5) & (7) from & & \((6)^{\star}(7)^{*}(8)\) \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.070 & 0.110 & 1.000 & 0.110 & 0.940 & 0.950 & 0.098 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.208 & 0.023 & -- & 0.023 & 0.940 & 0.950 & 0.020 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & 0.792 & 0.087 & -- & 0.087 & 0.940 & 0.950 & 0.077 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Type(f) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & יטーי＇ &  & ＂レーי＇ & （0رruv invil vavinulucla & （uرruv יuvirvovinuluul \\
\hline Total & 1.000 & 0.020 & 1.000 & 0.077 & 0.098 \\
\hline & & （2）＊（3）\({ }_{\text {FI }}\) & & （4）＊（5）\({ }_{\text {PDO }}\) & （3）＋（5） \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.053 & 0.004 & 0.004 \\
\hline Collision with animal & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object & 0.900 & 0.018 & 0.895 & 0.069 & 0.088 \\
\hline Collision with other object & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Other single－vehicle collision & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision & 0.100 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline （1） & （2） & （3） & （4） \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12－28 & from Table 12－29 & from Table 12－30 & （1）＊ 2 ）＊（3） \\
\hline 4.150 & 1.350 & 1.000 & 5.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G－－Vehicle－Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） & （8） \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh－Ped \(\omega\)} & \multirow[t]{2}{*}{Npedbase} & \multirow[t]{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & & （4）from Worksheet \(2 \mathrm{H}^{\star}(6) \star(7)\) \\
\hline Total & 1.402 & 0.098 & 1.500 & 0.020 & 0.031 & 0.950 & 0.163 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & & 0.950 & 0.163 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh－Bike \(\omega\)} & \multirow{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & \((4)^{*}(5) *\)（6） \\
\hline Total & 1.402 & 0.098 & 1.500 & 0.022 & 0.950 & 0.031 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & 0.950 & 0.031 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K－－Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） \\
\hline & Fatal and injury（FI） & Property damage only（PDO） & Total \\
\hline Collision type & \begin{tabular}{l}
（3）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} & （5）from Worksheet 2D and 2F & \begin{tabular}{l}
（6）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} \\
\hline \multicolumn{4}{|r|}{MULTIPLE－VEHICLE} \\
\hline Rear－end collisions（from Worksheet 2D） & 0.242 & 0.595 & 0.837 \\
\hline Head－on collisions（from Worksheet 2D） & 0.014 & 0.014 & 0.029 \\
\hline Angle collisions（from Worksheet 2D） & 0.143 & 0.261 & 0.403 \\
\hline Sideswipe（from Worksheet 2D） & 0.016 & 0.114 & 0.130 \\
\hline Other multiple－vehicle collision（from Worksheet 2D） & 0.002 & 0.000 & 0.002 \\
\hline Subtotal & 0.418 & 0.984 & 1.402 \\
\hline \multicolumn{4}{|c|}{SINGLE－VEHICLE} \\
\hline Collision with parked vehicle（from Worksheet 2F） & 0.000 & 0.004 & 0.004 \\
\hline Collision with animal（from Worksheet 2F） & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object（from Worksheet 2F） & 0.018 & 0.069 & 0.088 \\
\hline Collision with other object（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Other single－vehicle collision（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision（from Worksheet 2F） & 0.002 & 0.000 & 0.002 \\
\hline Collision with pedestrian（from Worksheet 2G or 21） & 0.163 & 0.000 & 0.163 \\
\hline Collision with bicycle（from Worksheet 2J） & 0.031 & 0.000 & 0.031 \\
\hline Subtotal & 0.214 & 0.077 & 0.291 \\
\hline Total & 0.632 & 1.062 & 1.693 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L－－Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{3}{|c|}{\((1)\)} & \((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency， \(\mathbf{N}_{\text {predicted int }}\) \\
（crashes／year）
\end{tabular} \\
\hline Total & Total \\
\cline { 2 - 2 } & 1.693 \\
\hline Fatal and injury（FI） & 0.632 \\
\hline Property damage only（PDO） & 1.062 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brook Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018
\end{tabular} & Jurisdiction & MassDOT District 6 \\
\hline & Analysis Year & 2013 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 3SG \\
\hline \begin{tabular}{|l|lll} 
AADT \\
major (veh/day) & AADT \(_{\text {MAX }}=588,100\) & (veh/day) \\
\hline
\end{tabular} & -- & 6,300 \\
\hline  & -- & 2,200 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 0.95 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Protected \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Not Applicable \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection & 0 & 4 \\
\hline Schools within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \(4 i\) & CMF \({ }_{5 i}\) & CMF \({ }_{\text {1p }}\) & \(\mathrm{CMF}_{2 p}\) & CMF \({ }_{\text {3p }}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei }}\) total & \(N_{\text {preaictedint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 4.150 & 1.350 & 1.000 & 1.483 & 0.161 & 0.031 & 1.675 \\
\hline
\end{tabular}

\section*{ADDITIONAL COMMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF \(1 i\) & CMF \(2 i\) & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{\star}(3)^{*}(4)^{*}(5)^{*}(6)\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 0.940 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{(1)} & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\frac{(9)}{} \begin{array}{c}
\text { Predicted } \\
\mathbf{N}_{\text {bimv }}
\end{array}
\end{gathered}
\]} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & \begin{tabular}{l}
Adjusted \\
\(\mathrm{N}_{\text {bimv }}\)
\end{tabular} & Combined CMFs & & \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12 & & (4) total \(^{*}\) (5) & (7) from & & (6)* 7\()^{*}(8)\) \\
\hline Total & \(\stackrel{\mathrm{a}}{-8.299}\) & \({ }_{0}^{\text {b }}\) & \({ }_{0}^{\text {c }}\) & 0.407 & 21 1.552 & 1.000 & 1.552 & 0.940 & 0.950 & 1.386 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.463 & -- & 0.463 & 0.940 & 0.950 & 0.413 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & -- & 1.090 & -- & 1.090 & 0.940 & 0.950 & 0.973 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9) Ff from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {vian }}\) from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.413 & 1.000 & 0.973 & 1.386 \\
\hline & & (2)* \({ }^{\text {(3) }}\) ¢ & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.580 & 0.240 & 0.605 & 0.588 & 0.828 \\
\hline Head-on collision & 0.034 & 0.014 & 0.014 & 0.014 & 0.028 \\
\hline Angle collision & 0.341 & 0.141 & 0.265 & 0.258 & 0.399 \\
\hline Sideswipe & 0.039 & 0.016 & 0.116 & 0.113 & 0.129 \\
\hline Other multiple-vehicle collision & 0.005 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & \multirow{3}{*}{Proportion of Total Crashes} & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
N_{\text {bisv }}
\end{array}
\] & Combined CMFs & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Calibration } \\
\text { Factor, } \mathrm{C}_{\mathrm{i}}
\end{array}
\]} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) тotal \(^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6)^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.070 & 0.108 & 1.000 & 0.108 & 0.940 & 0.950 & 0.097 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.208 & 0.023 & -- & 0.023 & 0.940 & 0.950 & 0.020 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & 0.792 & 0.086 & -- & 0.086 & 0.940 & 0.950 & 0.077 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total }}\) (crashes/year) \\
\hline & from Tahlo 19-12 & (alir from W/nrkchoot गF & & & (19)nn from M/nrkchoot P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & יטーי＇ &  & ＂レーי＇ & （0رruv invil vavinulucla & （uرruv יuvirvovinuluul \\
\hline Total & 1.000 & 0.020 & 1.000 & 0.077 & 0.097 \\
\hline & & （2）＊（3）\({ }_{\text {FI }}\) & & （4）＊（5）\({ }_{\text {PDO }}\) & （3）＋（5） \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.053 & 0.004 & 0.004 \\
\hline Collision with animal & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object & 0.900 & 0.018 & 0.895 & 0.069 & 0.087 \\
\hline Collision with other object & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Other single－vehicle collision & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision & 0.100 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline （1） & （2） & （3） & （4） \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12－28 & from Table 12－29 & from Table 12－30 & （1）＊ 2 ）＊（3） \\
\hline 4.150 & 1.350 & 1.000 & 5.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G－－Vehicle－Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） & （8） \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh－Ped \(\omega\)} & \multirow[t]{2}{*}{Npedbase} & \multirow[t]{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & & （4）from Worksheet \(2 \mathrm{H}^{\star}(6) \star(7)\) \\
\hline Total & 1.386 & 0.097 & 1.483 & 0.020 & 0.030 & 0.950 & 0.161 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & & 0.950 & 0.161 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh－Bike \(\omega\)} & \multirow{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）\(+(3)\) & & & \((4) *\)（5）＊ 6 ） \\
\hline Total & 1.386 & 0.097 & 1.483 & 0.022 & 0.950 & 0.031 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & 0.950 & 0.031 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K－－Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） \\
\hline & Fatal and injury（FI） & Property damage only（PDO） & Total \\
\hline Collision type & \begin{tabular}{l}
（3）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} & （5）from Worksheet 2D and 2F & \begin{tabular}{l}
（6）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} \\
\hline \multicolumn{4}{|r|}{MULTIPLE－VEHICLE} \\
\hline Rear－end collisions（from Worksheet 2D） & 0.240 & 0.588 & 0.828 \\
\hline Head－on collisions（from Worksheet 2D） & 0.014 & 0.014 & 0.028 \\
\hline Angle collisions（from Worksheet 2D） & 0.141 & 0.258 & 0.399 \\
\hline Sideswipe（from Worksheet 2D） & 0.016 & 0.113 & 0.129 \\
\hline Other multiple－vehicle collision（from Worksheet 2D） & 0.002 & 0.000 & 0.002 \\
\hline Subtotal & 0.413 & 0.973 & 1.386 \\
\hline \multicolumn{4}{|c|}{SINGLE－VEHICLE} \\
\hline Collision with parked vehicle（from Worksheet 2F） & 0.000 & 0.004 & 0.004 \\
\hline Collision with animal（from Worksheet 2F） & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object（from Worksheet 2F） & 0.018 & 0.069 & 0.087 \\
\hline Collision with other object（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Other single－vehicle collision（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision（from Worksheet 2F） & 0.002 & 0.000 & 0.002 \\
\hline Collision with pedestrian（from Worksheet 2G or 21） & 0.161 & 0.000 & 0.161 \\
\hline Collision with bicycle（from Worksheet 2J） & 0.031 & 0.000 & 0.031 \\
\hline Subtotal & 0.212 & 0.077 & 0.288 \\
\hline Total & 0.625 & 1.050 & 1.675 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L－－Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{3}{|c|}{\((1)\)} & \((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & \begin{tabular}{c} 
Predicted average crash frequency， \(\mathbf{N}_{\text {predicted int }}\) \\
（crashes／year）
\end{tabular} \\
\hline Total & Total \\
\cline { 2 - 2 } & 1.675 \\
\hline Fatal and injury（FI） & 0.625 \\
\hline Property damage only（PDO） & 1.050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brook Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018
\end{tabular} & Jurisdiction & MassDOT District 6 \\
\hline & Analysis Year & 2012 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 3SG \\
\hline \begin{tabular}{|l|lll} 
AADT \\
major (veh/day) & AADT \(_{\text {MAX }}=588,100\) & (veh/day) \\
\hline
\end{tabular} & -- & 6,200 \\
\hline  & -- & 2,200 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 0.95 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Protected \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Not Applicable \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection & 0 & 4 \\
\hline Schools within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \(4 i\) & CMF \({ }_{5 i}\) & CMF \({ }_{\text {1p }}\) & \(\mathrm{CMF}_{2 p}\) & CMF \({ }_{\text {3p }}\) & \(N_{\text {bi }}\) total & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei }}\) total & \(N_{\text {preaictededint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 4.150 & 1.350 & 1.000 & 1.464 & 0.159 & 0.030 & 1.653 \\
\hline
\end{tabular}

\section*{ADDITIONAL COMMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF \(1 i\) & CMF \(2 i\) & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & CMF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{\star}(3)^{*}(4)^{*}(5)^{*}(6)\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 0.940 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{4}{*}{(1)} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\(\frac{(2)}{\text { SPF Coefficients }}\)}} & (3) & \multirow[b]{3}{*}{\[
\begin{array}{|l|}
\hline \text { Initial } \mathbf{N}_{\text {bimv }} \\
\hline \text { from Equation 12- }
\end{array}
\]
\[
21
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline(5) \\
\hline \text { Proportion of Total } \\
\text { Crashes }
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{c} 
(6) \\
\begin{tabular}{c} 
Adjusted \\
\(\mathbf{N}_{\text {bimv }}\)
\end{tabular} \\
\hline (4) TOTAL \(^{*}\) (5)
\end{tabular}} & \multirow[t]{3}{*}{(7)
\begin{tabular}{c} 
Combined \\
CMFs
\end{tabular}
(7) from
Worksheet 2B} & \multirow[t]{3}{*}{(8) Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline Plicted \\
\hline Predicter \\
\(\mathrm{N}_{\text {bimv }}\) \\
\hline\((6)^{*}(7) *(8)\) \\
\hline
\end{tabular}} \\
\hline & & & & Overdispersion Parameter, k & & & & & & \\
\hline & & Table 1 & & from Table 12-10 & & & & & & \\
\hline & \[
\frac{\mathrm{a}}{-8.299}
\] & b 0.812 & \({ }_{0}^{\text {c }}\) & 0.407 & 21 & 1.000 & 1.532 & \[
\frac{\text { Worksheet 2B }}{0.940}
\] & 0.950 & 1.368 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.457 & -- & 0.457 & 0.940 & 0.950 & 0.408 \\
\hline Property Damage Only (PDO) & -- & -- & -- & -- & 1.076 & -- & 1.076 & 0.940 & 0.950 & 0.961 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ff from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {vian }}\) from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.408 & 1.000 & 0.961 & 1.368 \\
\hline & & (2)* 3 ( \({ }_{\text {F }}\) & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.580 & 0.237 & 0.605 & 0.581 & 0.817 \\
\hline Head-on collision & 0.034 & 0.014 & 0.014 & 0.014 & 0.028 \\
\hline Angle collision & 0.341 & 0.139 & 0.265 & 0.255 & 0.394 \\
\hline Sideswipe & 0.039 & 0.016 & 0.116 & 0.111 & 0.127 \\
\hline Other multiple-vehicle collision & 0.005 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & & (2) & & (3) & (4) & \multirow{3}{*}{Proportion of Total Crashes} & (6) & (7) & (8) & (9) \\
\hline \multirow[t]{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisv }}\) & & \[
\begin{array}{c|}
\hline \text { Adjusted } \\
N_{\text {bisv }}
\end{array}
\] & Combined CMFs & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Calibration } \\
\text { Factor, } \mathrm{C}_{\mathrm{i}}
\end{array}
\]} & \[
\begin{gathered}
\hline \text { Predicted } \\
\mathbf{N}_{\text {bisv }} \\
\hline
\end{gathered}
\] \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4) тotal \(^{*}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6)^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.070 & 0.107 & 1.000 & 0.107 & 0.940 & 0.950 & 0.095 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.208 & 0.022 & -- & 0.022 & 0.940 & 0.950 & 0.020 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & 0.792 & 0.085 & -- & 0.085 & 0.940 & 0.950 & 0.076 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Туре(F) & Predicted \(\mathbf{N}\) bisv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisv (PDO) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total }}\) (crashes/year) \\
\hline & from Tahlo 19-12 & (alir from W/nrkchoot गF & & & (19)nn from M/nrkchoot P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & יטーי＇ &  & ＂レーי＇ & （0رruv invil vavinulucla & （uرruv יuvirvovinulucuく \\
\hline Total & 1.000 & 0.020 & 1.000 & 0.076 & 0.095 \\
\hline & & （2）＊（3）\({ }_{\text {FI }}\) & & （4）＊（5）\({ }_{\mathrm{PDO}}\) & （3）＋（5） \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.053 & 0.004 & 0.004 \\
\hline Collision with animal & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object & 0.900 & 0.018 & 0.895 & 0.068 & 0.086 \\
\hline Collision with other object & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Other single－vehicle collision & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision & 0.100 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline （1） & （2） & （3） & （4） \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12－28 & from Table 12－29 & from Table 12－30 & （1）＊ 2 ）＊（3） \\
\hline 4.150 & 1.350 & 1.000 & 5.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G－－Vehicle－Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） & （8） \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh－Ped \(\omega\)} & \multirow[t]{2}{*}{Npedbase} & \multirow[t]{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & & （4）from Worksheet \(2 \mathrm{H}^{*}(6) *(7)\) \\
\hline Total & 1.368 & 0.095 & 1.464 & 0.020 & 0.030 & 0.950 & 0.159 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & & 0.950 & 0.159 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh－Bike \(\omega\)} & \multirow{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）\(+(3)\) & & & \((4) *\)（5）＊ 6 ） \\
\hline Total & 1.368 & 0.095 & 1.464 & 0.022 & 0.950 & 0.030 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & 0.950 & 0.030 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K－－Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） \\
\hline & Fatal and injury（FI） & Property damage only（PDO） & Total \\
\hline Collision type & \begin{tabular}{l}
（3）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} & （5）from Worksheet 2D and 2F & \begin{tabular}{l}
（6）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE－VEHICLE} \\
\hline Rear－end collisions（from Worksheet 2D） & 0.237 & 0.581 & 0.817 \\
\hline Head－on collisions（from Worksheet 2D） & 0.014 & 0.014 & 0.028 \\
\hline Angle collisions（from Worksheet 2D） & 0.139 & 0.255 & 0.394 \\
\hline Sideswipe（from Worksheet 2D） & 0.016 & 0.111 & 0.127 \\
\hline Other multiple－vehicle collision（from Worksheet 2D） & 0.002 & 0.000 & 0.002 \\
\hline Subtotal & 0.408 & 0.961 & 1.368 \\
\hline \multicolumn{4}{|c|}{SINGLE－VEHICLE} \\
\hline Collision with parked vehicle（from Worksheet 2F） & 0.000 & 0.004 & 0.004 \\
\hline Collision with animal（from Worksheet 2F） & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object（from Worksheet 2F） & 0.018 & 0.068 & 0.086 \\
\hline Collision with other object（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Other single－vehicle collision（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision（from Worksheet 2F） & 0.002 & 0.000 & 0.002 \\
\hline Collision with pedestrian（from Worksheet 2G or 21） & 0.159 & 0.000 & 0.159 \\
\hline Collision with bicycle（from Worksheet 2J） & 0.030 & 0.000 & 0.030 \\
\hline Subtotal & 0.209 & 0.076 & 0.284 \\
\hline Total & 0.617 & 1.036 & 1.653 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Worksheet 2L－－Summary Results for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） \\
\hline Crash severity level & Predicted average crash frequency， \(\mathbf{N}_{\text {predicted int }}\) （crashes／year） \\
\hline & Total \\
\hline Total & 1.653 \\
\hline Fatal and injury（FI） & 0.617 \\
\hline Property damage only（PDO） & 1.036 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline General Information & \multicolumn{2}{|c|}{Location Information} \\
\hline Analyst \({ }^{\text {a }}\) ( Ben Erban & City & Milton \\
\hline \begin{tabular}{|l|l}
\hline Agency or Company & CTPS \\
\hline
\end{tabular} & Intersection & Route 138 and Brook Road \\
\hline \begin{tabular}{|l|r} 
Date Performed & 5/1/2018
\end{tabular} & Jurisdiction & MassDOT District 6 \\
\hline & Analysis Year & 2011 \\
\hline Input Data & Base Conditions & Site Conditions \\
\hline Intersection type (3ST, 3SG, 4ST, 4SG) & -- & 3SG \\
\hline \begin{tabular}{|l|lll} 
AADT \\
major (veh/day) & AADT \(_{\text {MAX }}=588,100\) & (veh/day) \\
\hline
\end{tabular} & -- & 6,150 \\
\hline  & -- & 2,150 \\
\hline Intersection lighting (present/not present) & Not Present & Not Present \\
\hline Calibration factor, \(\mathrm{C}_{\mathrm{i}}\) & 1.00 & 0.95 \\
\hline Data for signalized intersections only: & -- & -- \\
\hline Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with right-turn lanes ( \(0,1,2,3,4\) ) [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] & -- & 0 \\
\hline Type of left-turn signal phasing for Leg \#1 & Permissive & Permissive \\
\hline Type of left-turn signal phasing for Leg \#2 & -- & Permissive \\
\hline Type of left-turn signal phasing for Leg \#3 & -- & Protected \\
\hline Type of left-turn signal phasing for Leg \#4 (if applicable) & -- & Not Applicable \\
\hline Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] & 0 & 0 \\
\hline Intersection red light cameras (present/not present) & Not Present & Not Present \\
\hline Sum of all pedestrian crossing volumes (PedVol) -- Signalized intersections only & & 0 \\
\hline Maximum number of lanes crossed by a pedestrian ( \(\mathrm{l}_{\text {lanesx }}\) ) & -- & 2 \\
\hline Number of bus stops within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection & 0 & 4 \\
\hline Schools within 300 m ( \(1,000 \mathrm{ft}\) ) of the intersection (present/not present) & Not Present & Present \\
\hline Number of alcohol sales establishments within \(300 \mathrm{~m}(1,000 \mathrm{ft})\) of the intersection & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SUMMARY OF INTERSECTION \& CRASHES} \\
\hline \(\mathrm{CMF}_{1 i}\) & \(\mathrm{CMF}_{2 i}\) & \(\mathrm{CMF}_{3 i}\) & CMF \({ }_{\text {4i }}\) & \(\mathrm{CMF}_{5 i}\) & \(\mathrm{CMF}_{1 p}\) & CMF 2 p & CMF \({ }_{\text {3p }}\) & \(N_{\text {bi total }}\) & \(\mathrm{N}_{\text {pedi }}\) total & \(N_{\text {bikei total }}\) & \(N_{\text {predictededint }}\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 4.150 & 1.350 & 1.000 & 1.447 & 0.157 & 0.030 & 1.634 \\
\hline
\end{tabular}

\section*{ADDITIONAL COMMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Worksheet 2B -- Crash Modification Factors for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline CMF for Left-Turn Lanes & CMF for Left-Turn Signal
Phasing & CMF for Right-Turn Lanes & CMF for Right Turn on Red & CMF for Lighting & CMF for Red Light Cameras & Combined CMF \\
\hline CMF 1i & CMF \(2 i\) & CMF 3i & CMF 4i & CMF 5 i & CMF 6 i & СМF сомв \\
\hline from Table 12-24 & from Table 12-25 & from Table 12-26 & from Equation 12-35 & from Equation 12-36 & from Equation 12-37 & \((1)^{*}(2)^{\star}(3)^{\star}(4)^{*}(5)^{*}(6)\) \\
\hline 1.000 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 0.940 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2C -- Multiple-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline \multirow[t]{3}{*}{(1)} & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & \multirow[t]{3}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\frac{(9)}{} \begin{array}{c}
\text { Predicted } \\
\mathbf{N}_{\text {bimv }}
\end{array}
\end{gathered}
\]} \\
\hline & \multicolumn{3}{|c|}{SPF Coefficients} & Overdispersion & Initial \(\mathrm{N}_{\text {bimv }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & \begin{tabular}{l}
Adjusted \\
\(\mathrm{N}_{\text {bimv }}\)
\end{tabular} & Combined CMFs & & \\
\hline & \multicolumn{3}{|c|}{from Table 12-10} & from Table 12-10 & from Equation 12 & & (4) total \(^{*}\) (5) & (7) from & & (6)* 7\()^{*}(8)\) \\
\hline Total & \(\stackrel{\mathrm{a}}{-8.299}\) & \({ }_{0}^{\text {b }}\) & \({ }_{0}^{\text {c }}\) & 0.407 & 21 1.515 & 1.000 & 1.515 & 0.940 & 0.950 & 1.353 \\
\hline Fatal and Injury (FI) & -- & -- & -- & -- & 0.451 & -- & 0.451 & 0.940 & 0.950 & 0.403 \\
\hline \[
\begin{aligned}
& \text { Property Damage Only } \\
& \text { (PDO) } \\
& \hline
\end{aligned}
\] & -- & -- & -- & -- & 1.064 & -- & 1.064 & 0.940 & 0.950 & 0.950 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision Tуре(F) & Adjusted \(\mathbf{N}\) bimv (FI) (crashes/year) & Proportion of Collision Type (PDO) & Adjusted \(\mathbf{N}\) bimv (PDo) (crashes/year) & Adjusted \(\mathrm{N}_{\text {bimv ( (total) }}\) (crashes/year) \\
\hline & from Table 12-11 & (9)ff from Worksheet 2C & from Table 12-11 & (9)poo from Worksheet 2C & (9) \({ }_{\text {vian }}\) from Worksheet 2 C \\
\hline \multirow[t]{2}{*}{Total} & 1.000 & 0.403 & 1.000 & 0.950 & 1.353 \\
\hline & & (2)* \((3)\) FI & & (4)*(5) \({ }_{\text {PDO }}\) & (3)+(5) \\
\hline Rear-end collision & 0.580 & 0.234 & 0.605 & 0.574 & 0.808 \\
\hline Head-on collision & 0.034 & 0.014 & 0.014 & 0.014 & 0.028 \\
\hline Angle collision & 0.341 & 0.138 & 0.265 & 0.252 & 0.389 \\
\hline Sideswipe & 0.039 & 0.016 & 0.116 & 0.110 & 0.126 \\
\hline Other multiple-vehicle collision & 0.005 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Worksheet 2E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Arterial Intersections} \\
\hline (1) & \multicolumn{3}{|c|}{(2)} & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline \multirow{3}{*}{Crash Severity Level} & \multicolumn{3}{|c|}{SPF Coefficients} & Historical Data & Initial \(\mathrm{N}_{\text {bisy }}\) & \multirow[t]{2}{*}{Proportion of Total Crashes} & \[
\begin{aligned}
& \hline \text { Adjusted } \\
& \mathbf{N}_{\text {bisv }}
\end{aligned}
\] & Combined CMFs & \multirow[t]{2}{*}{Calibration Factor, \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bisy }}\) \\
\hline & & ble & & \multirow[b]{2}{*}{from Table 1A} & \multirow[b]{2}{*}{(3) * (4) From Worksheet 2C} & & \multirow[t]{2}{*}{(4)тtota \({ }^{\star}\) (5)} & \multirow[t]{2}{*}{(7) from Worksheet 2B} & & \multirow[t]{2}{*}{\((6)^{*}(7)^{*}(8)\)} \\
\hline & a & b & c & & & & & & & \\
\hline Total & -- & -- & -- & 0.070 & 0.106 & 1.000 & 0.106 & 0.940 & 0.950 & 0.094 \\
\hline Fatal and Injury (FI) & -- & -- & -- & 0.208 & 0.022 & -- & 0.022 & 0.940 & 0.950 & 0.020 \\
\hline Property Damage Only (PDO) & -- & -- & -- & 0.792 & 0.084 & -- & 0.084 & 0.940 & 0.950 & 0.075 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Worksheet 2F --- Single-Vehicle Collisions by Collision Type for Urban and Suburban Arterial Intersections} \\
\hline (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \multirow[t]{2}{*}{Collision Type} & Proportion of Collision
Type(F) & Predicted \(\mathbf{N}\) bisv (F) (crashes/year) & Proportion of Collision Type (PDO) & Predicted N bisy (PDo) (crashes/year) & Predicted \(\mathrm{N}_{\text {bisv (total) }}\) (crashes/year) \\
\hline & Thla & W/rrkchoot 3 F & from Tahla 12.12 & nn from \(\mathrm{N} / \mathrm{n}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & יטーי＇ &  & ＂レーי＇ & （0رruv invil vavinulucla & （uرruv יuvirvovinuluul \\
\hline Total & 1.000 & 0.020 & 1.000 & 0.075 & 0.094 \\
\hline & & （2）＊（3）\({ }_{\text {FI }}\) & & （4）＊（5）\({ }_{\mathrm{PDO}}\) & （3）＋（5） \\
\hline Collision with parked vehicle & 0.000 & 0.000 & 0.053 & 0.004 & 0.004 \\
\hline Collision with animal & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object & 0.900 & 0.018 & 0.895 & 0.067 & 0.085 \\
\hline Collision with other object & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Other single－vehicle collision & 0.000 & 0.000 & 0.026 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision & 0.100 & 0.002 & 0.000 & 0.000 & 0.002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline （1） & （2） & （3） & （4） \\
\hline CMF for Bus Stops & CMF for Schools & CMF for Alcohol Sales Establishments & \multirow[b]{2}{*}{Combined CMF} \\
\hline \(\mathrm{CMF}_{1 \mathrm{p}}\) & \(\mathrm{CMF}_{2 p}\) & \(\mathrm{CMF}_{3 \mathrm{p}}\) & \\
\hline from Table 12－28 & from Table 12－29 & from Table 12－30 & （1）＊ 2 ）＊（3） \\
\hline 4.150 & 1.350 & 1.000 & 5.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Worksheet 2G－－Vehicle－Pedestrian Collisions for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） & （8） \\
\hline \multirow[t]{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow[t]{2}{*}{Veh－Ped \(\omega\)} & \multirow[t]{2}{*}{Npedbase} & \multirow[t]{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {pedi }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & & （4）from Worksheet \(2 \mathrm{H}^{*}(6) *(7)\) \\
\hline Total & 1.353 & 0.094 & 1.447 & 0.020 & 0.029 & 0.950 & 0.157 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & & 0.950 & 0.157 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \multirow{2}{*}{Crash Severity Level} & Predicted \(\mathrm{N}_{\text {bimv }}\) & Predicted \(\mathrm{N}_{\text {bisv }}\) & Predicted \(\mathrm{N}_{\mathrm{bi}}\) & \multirow{2}{*}{Veh－Bike \(\omega\)} & \multirow{2}{*}{Calibration factor， \(\mathrm{C}_{\mathrm{i}}\)} & Predicted \(\mathrm{N}_{\text {bikei }}\) \\
\hline & （9）from Worksheet 2C & （4）from Worksheet 2E & （2）＋（3） & & & \((4)^{*}(5)^{*}(6)\) \\
\hline Total & 1.353 & 0.094 & 1.447 & 0.022 & 0.950 & 0.030 \\
\hline Fatal and injury（FI） & －－ & －－ & －－ & －－ & 0.950 & 0.030 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Worksheet 2K－－Crash Severity Distribution for Urban and Suburban Arterial Intersections} \\
\hline （1） & （2） & （3） & （4） \\
\hline & Fatal and injury（FI） & Property damage only（PDO） & Total \\
\hline Collision type & \begin{tabular}{l}
（3）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} & （5）from Worksheet 2D and 2F & \begin{tabular}{l}
（6）from Worksheet 2D and 2F； \\
（8）from Worksheet 2G and（7）from 2 J
\end{tabular} \\
\hline \multicolumn{4}{|c|}{MULTIPLE－VEHICLE} \\
\hline Rear－end collisions（from Worksheet 2D） & 0.234 & 0.574 & 0.808 \\
\hline Head－on collisions（from Worksheet 2D） & 0.014 & 0.014 & 0.028 \\
\hline Angle collisions（from Worksheet 2D） & 0.138 & 0.252 & 0.389 \\
\hline Sideswipe（from Worksheet 2D） & 0.016 & 0.110 & 0.126 \\
\hline Other multiple－vehicle collision（from Worksheet 2D） & 0.002 & 0.000 & 0.002 \\
\hline Subtotal & 0.403 & 0.950 & 1.353 \\
\hline \multicolumn{4}{|c|}{SINGLE－VEHICLE} \\
\hline Collision with parked vehicle（from Worksheet 2F） & 0.000 & 0.004 & 0.004 \\
\hline Collision with animal（from Worksheet 2F） & 0.000 & 0.000 & 0.000 \\
\hline Collision with fixed object（from Worksheet 2F） & 0.018 & 0.067 & 0.085 \\
\hline Collision with other object（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Other single－vehicle collision（from Worksheet 2F） & 0.000 & 0.002 & 0.002 \\
\hline Single－vehicle noncollision（from Worksheet 2F） & 0.002 & 0.000 & 0.002 \\
\hline Collision with pedestrian（from Worksheet 2G or 21） & 0.157 & 0.000 & 0.157 \\
\hline Collision with bicycle（from Worksheet 2J） & 0.030 & 0.000 & 0.030 \\
\hline Subtotal & 0.207 & 0.075 & 0.281 \\
\hline Total & 0.610 & 1.024 & 1.634 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Worksheet 2L－－Summary Results for Urban and Suburban Arterial Intersections } \\
\hline \multicolumn{3}{|c|}{\((1)\)} & \((2)\) \\
\hline \multirow{3}{*}{ Crash severity level } & Predicted average crash frequency， \(\mathbf{N}_{\text {predicted int }}\) \\
（crashes／year）
\end{tabular}\(|\)\begin{tabular}{l} 
Total \\
\hline Total \\
\hline Fatal and injury（FI） \\
\hline Property damage only（PDO） \\
\hline
\end{tabular}

\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & Two-Lane Undivided Segment (2U) & \\
\hline Segment Type & 0.13 & AADT (veh/day) & 33950 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Proportion w/On-street Parking & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 1 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 0 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.20 & AADT (veh/day) & 33950 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 1 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 1 \\
\hline \# Major Industrial/Insti. Driveways & Calibration Factor & 5 \\
\hline \# Major Residential Driveways & 1 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.44 & AADT (veh/day) & 21000 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & Calibration Factor & 10 \\
\hline \# Major Residential Driveways & 1 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.23 & AADT (veh/day) & 14300 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 35 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 0 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}
\begin{tabular}{|c|c|c|c|}
\hline Crash Severity & \multicolumn{2}{|l|}{Predicted Crash Frequency} & Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.219} & 0.950 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{0.580} & 2.523 \\
\hline Total & \multicolumn{2}{|l|}{0.799} & 3.474 \\
\hline \multicolumn{4}{|l|}{Expected Roadway Section Crashes} \\
\hline Crash Severity & \multicolumn{2}{|l|}{Expected Crash Frequency} & Expected Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.310} & 1.346 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{0.822} & 3.575 \\
\hline Total & \multicolumn{2}{|l|}{1.132} & 4.922 \\
\hline \multicolumn{4}{|l|}{Economic Analysis (Expected Crashes)} \\
\hline Crash Severity & Per Crash Societal Crash Cost & Expected Annual Crashes & Total Societal Crash Cost \\
\hline Fatal and Injury (FI) & \$158,200.00 & 0.310 & \$48,991.62 \\
\hline Property Damage Only (PDO) & \$7,400.00 & 0.822 & \$6,085.16 \\
\hline Total & - & 1.132 & \$55,076.78 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{lcc} 
Copyright © 2018 University of Florida. All Rights Reserved. & HSS \(^{\text {TM }}\) Version 7.5 & Generated: 5/21/2018 4:56:09 \\
& \(4 . x h z\) &
\end{tabular}} \\
\hline
\end{tabular}

\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.28 & AADT (veh/day) & 16000 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 1 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 4 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.27 & AADT (veh/day) & 16000 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 15 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 1 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 7 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.061 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.061 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.67 & AADT (veh/day) & 12300 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & None & Posted Speed (mph) & 0.00 \\
\hline Type of On-street Parking & No & Offset to Roadside Fixed Obj. (ft) & 40 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 10 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 19 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.000 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.095 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.095 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.68 & AADT (veh/day) & 9800 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & Parallel Parking & Proportion w/On-street Parking & 0.20 \\
\hline Type of On-street Parking & No & Posted Speed (mph) & 45 \\
\hline Automated Speed Enforcement & 30 & \# Minor Commercial Driveways & 10 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 45 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & Roadside Fixed Obj. (ft) & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.068 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.095 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.170 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}
\begin{tabular}{|c|c|c|c|}
\hline Crash Severity & \multicolumn{2}{|l|}{Predicted Crash Frequency} & Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.620} & 0.911 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{1.516} & 2.230 \\
\hline Total & \multicolumn{2}{|l|}{2.136} & 3.141 \\
\hline \multicolumn{4}{|l|}{Expected Roadway Section Crashes} \\
\hline Crash Severity & \multicolumn{2}{|l|}{Expected Crash Frequency} & Expected Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.691} & 1.017 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{1.692} & 2.488 \\
\hline Total & \multicolumn{2}{|l|}{2.383} & 3.504 \\
\hline \multicolumn{4}{|l|}{Economic Analysis (Expected Crashes)} \\
\hline Crash Severity & Per Crash Societal Crash Cost & Expected Annual Crashes & Total Societal Crash Cost \\
\hline Fatal and Injury (FI) & \$158,200.00 & 0.691 & \$109,362.22 \\
\hline Property Damage Only (PDO) & \$7,400.00 & 1.692 & \$12,518.65 \\
\hline Total & - & 2.383 & \$121,880.87 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{lcc} 
Copyright © 2018 University of Florida. All Rights Reserved. & HSS \(^{\text {TM }}\) Version 7.5 & 8.xhz
\end{tabular} Generated: 5/22/2018 12:00:45} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
File Name: & 9.xhz \\
Analyst: & Ben Erban \\
Agency: & CTPS \\
Jurisdiction: & MassDOT Hwy District 6 \\
Date: & \(5 / 21 / 2018\) \\
Analysis Year: & 2018 \\
Project Description: & Priority Corridors - Route 138 in Milton \\
Units: & U.S. Customary
\end{tabular}
The total number of predicted crashes is: \(0.981 \quad\) crashes/year

Number of Observed Crashes 0

\begin{tabular}{lll} 
Expected Crashes(mv, Driveway) & 1.174 & crashes/year \\
Expected Crashes(mv, Non-Driveway) & 0.612 & crashes/year \\
Expected Crashes(sv) & 0.467 & crashes/year \\
Total Expected Crashes & 2.253 & crashes/year
\end{tabular}
------------------------------------------- Economic Analysis ---------------------------------------------------------
*Based on Expected Crash Frequency
Annual Societal Crash Cost (FI) \$106,827.04
Annual Societal Crash Cost (PDO)
\(\$ 11,675.23\)
Total Annual Societal Crash Cost
\$118,502.27

This Highway Safety Software text report was created in HSS \({ }^{\text {M }}\) Version 7.5 on 5/23/2018 11:59:14

\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.11 & AADT (veh/day) & 9800 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & Parallel Parking & Proportion w/On-street Parking & 0.08 \\
\hline Type of On-street Parking & No & Posted Speed (mph) & 35 \\
\hline Automated Speed Enforcement & 40 & \# Minor Commercial Driveways & 10 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 12 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & Roadside Fixed Obj. (ft) & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l|}
\hline On-Street Parking - CMF1 & 1.169 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.146 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.340 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}
\begin{tabular}{|c|c|c|c|}
\hline Crash Severity & \multicolumn{2}{|l|}{Predicted Crash Frequency} & Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.137} & 1.243 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{0.326} & 2.961 \\
\hline Total & \multicolumn{2}{|l|}{0.462} & 4.204 \\
\hline \multicolumn{4}{|l|}{Expected Roadway Section Crashes} \\
\hline Crash Severity & \multicolumn{2}{|l|}{Expected Crash Frequency} & Expected Crash Rate (crashes/mi/year) \\
\hline Fatal and Injury (FI) & \multicolumn{2}{|l|}{0.159} & 1.449 \\
\hline Property Damage Only (PDO) & \multicolumn{2}{|l|}{0.380} & 3.451 \\
\hline Total & \multicolumn{2}{|l|}{0.539} & 4.900 \\
\hline \multicolumn{4}{|l|}{Economic Analysis (Expected Crashes)} \\
\hline Crash Severity & Per Crash Societal Crash Cost & Expected Annual Crashes & Total Societal Crash Cost \\
\hline Fatal and Injury (FI) & \$158,200.00 & 0.159 & \$25,215.27 \\
\hline Property Damage Only (PDO) & \$7,400.00 & 0.380 & \$2,809.12 \\
\hline Total & - & 0.539 & \$28,024.40 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{lll} 
Copyright © 2018 University of Florida. All Rights Reserved. & HSS \(^{T M}\) Version 7.5 & Generated: 5/22/2018 12:06:08
\end{tabular}} \\
\hline
\end{tabular}

\section*{Project Information}
\begin{tabular}{|l|l|l|l|l|}
\hline Analyst & Ben Erban & Date & \(5 / 21 / 2018\) \\
\hline Jurisdiction & MassDOT Hwy District 6 & Analysis Year & 2018 \\
\hline Project Description & Priority Corridors - Route 138 in Milton & \\
\hline Input Data & \multicolumn{2}{|l|}{ Two-Lane Undivided Segment (2U) } & \\
\hline Segment Type & 0.12 & AADT (veh/day) & 9800 \\
\hline Length of Segment (mi) & 2 & Lighting & No \\
\hline Median Width (ft) & Parallel Parking & Proportion w/On-street Parking & 0.12 \\
\hline Type of On-street Parking & No & Posted Speed (mph) & 30 \\
\hline Automated Speed Enforcement & 40 & \# Minor Commercial Driveways & 10 \\
\hline Roadside Fixed Object Density & 0 & \# Minor Industrial/Insti. Driveways & 0 \\
\hline \# Major Commercial Driveways & 0 & \# Minor Residential Driveways & 0 \\
\hline \# Major Industrial/Insti. Driveways & 0 & Calibration Factor & 13 \\
\hline \# Major Residential Driveways & 0 & & 1.00 \\
\hline \# Other Driveways & 0 & Roadside Fixed Obj. (ft) & \\
\hline
\end{tabular}

\section*{Crash Modification Factors}
\begin{tabular}{|l|l|l|l}
\hline On-Street Parking - CMF1 & 1.233 & Lighting - CMF4 & 1.000 \\
\hline Roadside Fixed Objects - CMF2 & 1.146 & Automated Speed Enforcement - CMF5 & 1.000 \\
\hline Median Width - CMF3 & 1.000 & Combined CMF & 1.413 \\
\hline
\end{tabular}

\section*{Predicted Roadway Section Crashes}


\section*{Appendix F: Level of Service Analysis}

Part 1: Existing and Future Pedestrian Report Card Assessment
Part 2: Existing Intersection Levels of Service
Part 3: Future Intersection Levels of Service

\section*{Part 1: Existing and Future Pedestrian Report Card Assessment}


Central Transportation Planning Staff (CTPS) to the Boston Region MPO: www.ctps.org | 857.702.3700 | ctps@ctps.org

Ryan Hicks, Congestion Management Process Manager:
www.ctps.org/cmp | 857.702.3661 | rhicks@ctps.org
Casey Claude, Bicycle and Pedestrian Program Manager: www.ctps.org/livability | 857.702.3707 | cclaude@ctps.org

\section*{Pedestrian Report Card Assessment (PRCA): \\ Roadway Segment}

Roadway Segment Location
Route 138 - Milton, MA
\begin{tabular}{|c|c|c|}
\hline Grading Categories & Score & Rating \\
\hline Safety & 2.8 & Good \\
\hline System Preservation & N/A & Fair \\
\hline \begin{tabular}{c} 
Capacity Management \\
and Mobility
\end{tabular} & 1.5 & Poor \\
\hline Economic Vitality & 1.5 & Poor \\
\hline
\end{tabular}

\section*{Transportation Equity}
\begin{tabular}{|c|c|}
\hline High Priority Area & \(\checkmark\) \\
\hline Moderate Priority Area & \\
\hline Not a Priority Area & \\
\hline
\end{tabular}

\section*{Category Ratings}

Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

\section*{Grading Categories: Scoring Breakdown Roadway Segment}

Capacity Management and Mobility
\begin{tabular}{|c|c|c|c|}
\hline Performance Measure & weight & Rating & \begin{tabular}{c} 
Weighted \\
score
\end{tabular} \\
\hline Sidewalk Presence & 3 & Fair & 6 \\
\hline Crossing Opportunities & 2 & Poor & 2 \\
\hline Walkway Width & 1 & Poor & 1 \\
\hline Total & 6 & & \(\mathbf{9}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Economic Vitality } \\
\hline Performance Measure & weight & Rating & \begin{tabular}{c} 
Weighted \\
score
\end{tabular} \\
\hline Pedestrian Volumes & 1 & Fair & 2 \\
\hline Adjacent Bicycle Accommodations & 1 & Poor & 1 \\
\hline Total & \(\mathbf{2}\) & & \(\mathbf{3}\) \\
\hline
\end{tabular}

Category rating = total rating/total weight
Rating Score:
Good = 3
Fair \(=2\)
Poor \(=1\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Safety } \\
\hline Performance Measure & weight & Rating & \begin{tabular}{c} 
weighted \\
score
\end{tabular} \\
\hline Pedestrian Crashes & 3 & Good & 9 \\
\hline Pedestrian-Vehicle Buffer & 1 & Good & 3 \\
\hline Vehicle Travel Speed & 1 & Fair & 2 \\
\hline Total & 5 & & 14 \\
\hline
\end{tabular}

\section*{System Preservation}
\begin{tabular}{|c|c|}
\hline Performance Measure & Rating \\
\hline Sidewalk Condition & Fair \\
\hline
\end{tabular}

Transportation Equity Priority
\begin{tabular}{|c|c|}
\hline Area Condition & Yes/No \\
\hline Environmental Justice zone? & \(\checkmark\) \\
\hline School or college within one-quarter mile? & \(\checkmark\) \\
\hline \begin{tabular}{c} 
More than 8.9\% of population older than 75 \\
years?
\end{tabular} & \(\checkmark\) \\
\hline \begin{tabular}{c} 
More than 27.5\% of households do not \\
own a vehicle?
\end{tabular} & \\
\hline
\end{tabular}

Category Ratings
Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

\section*{Detailed Performance Measure Information: Roadway Segment}
\begin{tabular}{|c|c|c|}
\hline Goal & \begin{tabular}{l}
Performance \\
Measure
\end{tabular} & Features of Analyzed Locations \\
\hline \multirow{3}{*}{Mobility} & Sidewalk Presence & Sidewalks are present on one side of the street \\
\hline & Crossing Opportunities & 9 crosswalks/ 3.6 miles \(=2.5\) crosswalks per mile \\
\hline & Walkway Width & 4 foot sidewalks \\
\hline Economic Vitality & Pedestrian Volumes & Estimated 5 to 60 pedestrians \\
\hline \multirow{4}{*}{Safety} & Adjacent Bicycle Accommodations & Some bike lanes are present at the southern portion of the corridor but the bike lanes are inconsistent \\
\hline & Pedestrian Crashes & Not in HSIP cluster \\
\hline & Pedestrian-Vehicle Buffer & 13 feet \\
\hline & Vehicle Travel Speed & 32 MPH \\
\hline System Preservation & Sidewalk Condition & Fair \\
\hline
\end{tabular}

\section*{Pedestrian Report Card Assessment with Improvements}


Central Transportation Planning Staff (CTPS) to the Boston Region MPO: www.ctps.org|857.702.3700|ctps@ctps.org

Ryan Hicks, Congestion Management Process Manager:
www.ctps.org/cmp | 857.702.3661 | rhicks@ctps.org
Casey Claude, Bicycle and Pedestrian Program Manager: www.ctps.org/livability | 857.702.3707 | cclaude@ctps.org

\section*{Pedestrian Report Card Assessment (PRCA): \\ Roadway Segment}

Roadway Segment Location
Route 138 - Milton, MA
\begin{tabular}{|c|c|c|}
\hline Grading Categories & Score & Rating \\
\hline Safety & 2.8 & Good \\
\hline System Preservation & 3.0 & Good \\
\hline \begin{tabular}{c} 
Capacity Management \\
and Mobility
\end{tabular} & 2.7 & Good \\
\hline Economic Vitality & 2.5 & Good \\
\hline
\end{tabular}

\section*{Transportation Equity}
\begin{tabular}{|c|c|}
\hline High Priority Area & \(\checkmark\) \\
\hline Moderate Priority Area & \\
\hline Not a Priority Area & \\
\hline
\end{tabular}

\section*{Category Ratings}

Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

\section*{Grading Categories: Scoring Breakdown Roadway Segment}

Capacity Management and Mobility
\begin{tabular}{|c|c|l|c|}
\hline Performance Measure & Weight & Rating & \begin{tabular}{c} 
Weighted \\
score
\end{tabular} \\
\hline Sidewalk Presence & 3 & Good & 9 \\
\hline Crossing Opportunities & 2 & Fair & 4 \\
\hline Walkway Width & 1 & Good & 3 \\
\hline Total & 6 & & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Economic Vitality } \\
\hline Performance Measure & weight & Rating & \begin{tabular}{c} 
Weighted \\
score
\end{tabular} \\
\hline Pedestrian Volumes & 1 & Fair & 2 \\
\hline Adjacent Bicycle Accommodations & 1 & Good & 3 \\
\hline Total & 2 & & 5 \\
\hline
\end{tabular}

Category rating = total rating/total weight
Rating Score:
Good = 3
Fair \(=2\)
Poor \(=1\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Safety } \\
\hline Performance Measure & weight & Rating & \begin{tabular}{c} 
Weighted \\
score
\end{tabular} \\
\hline Pedestrian Crashes & 3 & Good & 9 \\
\hline Pedestrian-Vehicle Buffer & 1 & Good & 3 \\
\hline Vehicle Travel Speed & 1 & Fair & 2 \\
\hline Total & 5 & & 14 \\
\hline
\end{tabular}

\section*{System Preservation}
\begin{tabular}{|c|c|}
\hline Performance Measure & Rating \\
\hline Sidewalk Condition & Good \\
\hline
\end{tabular}

Transportation Equity Priority
\begin{tabular}{|c|c|}
\hline Area Condition & Yes/No \\
\hline Environmental Justice zone? & \(\checkmark\) \\
\hline School or college within one-quarter mile? & \(\checkmark\) \\
\hline \begin{tabular}{c} 
More than 8.9\% of population older than 75 \\
years?
\end{tabular} & \(\checkmark\) \\
\hline \begin{tabular}{c} 
More than 27.5\% of households do not \\
own a vehicle?
\end{tabular} & \\
\hline
\end{tabular}

\footnotetext{
Category Ratings
}

Good: Score of 2.3 or more (maximum 3.0)
Fair: Score is between 1.7 and 2.3
Poor: Score is 1.7 or less (minimum 0 )

\section*{Detailed Performance Measure Information: Roadway Segment}
\begin{tabular}{|c|c|c|}
\hline Goal & Performance Measure & Features of Analyzed Locations \\
\hline \multirow{3}{*}{Mobility} & Sidewalk Presence & Sidewalks are present at least on one side of the street \\
\hline & Crossing Opportunities & 16 crosswalks/ 3.5 miles \(=5.1\) crosswalks per mile \\
\hline & Walkway Width & 5.5 foot sidewalks \\
\hline Economic Vitality & Pedestrian Volumes & Estimated 5 to 60 pedestrians \\
\hline \multirow{4}{*}{Safety} & Adjacent Bicycle Accommodations & Bike lanes or multi-use path are present in the corridor \\
\hline & Pedestrian Crashes & Not in HSIP cluster \\
\hline & Pedestrian-Vehicle Buffer & 10 feet \\
\hline & Vehicle Travel Speed & 32 MPH \\
\hline System Preservation & Sidewalk Condition & Good \\
\hline
\end{tabular}

\section*{Part 2: Existing Intersection Levels of Service}

Table F-1
Summary of Intersection Capacity Analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline Analysis Period \\
\hline Scenario \\
\hline
\end{tabular} Scenario}} & \multicolumn{6}{|c|}{AM Peak Hour} & \multicolumn{6}{|c|}{PM Peak Hour} & \multicolumn{6}{|c|}{Weekend Peak Hour} \\
\hline & & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} \\
\hline Intersection & Movement & LOS & Delay & \begin{tabular}{l}
95th \\
Queue
\end{tabular} & LOS & Delay & \[
\begin{gathered}
\hline \text { 95th } \\
\text { Queue }
\end{gathered}
\] & LOS & Delay & 95th Queue & LOS & Delay & \[
\begin{gathered}
\hline \text { 95th } \\
\text { Queue }
\end{gathered}
\] & LOS & Delay & 95th Queue & LOS & Delay & 95th Queue \\
\hline \multicolumn{20}{|l|}{Route 138 at Green Street} \\
\hline Route 138 Northbound & LTR & A & 0.0 & 0 & A & 0.0 & 0 & A & 0.1 & 3 & A & 0.1 & 3 & A & 0.0 & 0 & A & 0.0 & 0 \\
\hline Route 138 Southbound & TR & A & 0.0 & 0 \\
\hline Green Street & LR & F & 272.8 & 45 & F & 272.8 & 45 & F & 69.4 & 13 & F & 69.4 & 13 & F & 138.5 & 33 & F & 138.5 & 33 \\
\hline Parking Lot Exit & LTR & D & 34.4 & 8 & D & 34.4 & 8 & C & 21.3 & 8 & C & 21.3 & 8 & F & 65.9 & 75 & F & 65.9 & 75 \\
\hline Intersection Average & & A & 1.6 & & A & 1.6 & & A & 0.5 & & A & 0.5 & & A & 2.7 & & A & 2.7 & \\
\hline \multicolumn{20}{|l|}{Route 138 at Brush Hill Road} \\
\hline Route 138 Northbound & TR & F & 116.1 & \#779 & F & 118.3 & \#779 & E & 62.3 & \#606 & E & 62.4 & \#606 & D & 41.6 & \#652 & D & 41.6 & \#652 \\
\hline Route 138 Southbound & LTR & C & 21.1 & 378 & C & 21.3 & 378 & F & 181.9 & \#589 & F & 182.0 & \#589 & D & 51.7 & \#573 & D & 51.7 & \#570 \\
\hline Brush Hill Road Eastbound & LR & E & 59.7 & \#259 & D & 48.6 & 235 & F & 290.7 & \#323 & F & 290.9 & \#323 & F & 207.7 & 166 & F & 207.7 & \#297 \\
\hline Brush Hill Road Westbound & L & F & 127.2 & \#181 & F & 135.2 & \#186 & F & 119.8 & \#151 & F & 121.5 & \#151 & F & 179.5 & \#205 & F & 180.3 & \#205 \\
\hline & TR & C & 25.7 & 92 & C & 25.7 & 92 & C & 21.3 & 57 & C & 21.2 & 57 & C & 21.7 & 87 & C & 21.7 & 87 \\
\hline Intersection Average & & E & 75.5 & & E & 75.6 & & F & 147.7 & & F & 147.9 & & E & 79.1 & & E & 79.2 & \\
\hline \multicolumn{20}{|l|}{Route 138 at Neponset Valley Parkway} \\
\hline Route 138 Northbound & L & D & 32.3 & 193 & B & 16.8 & \#299 & C & 19.7 & 90 & D & 54.1 & \#203 & B & 11.2 & 50 & E & 74.1 & \#319 \\
\hline & T & A & 0.0 & 0 & A & 6.4 & 199 & A & 0.0 & 0 & B & 10.1 & 181 & A & 0.0 & 0 & A & 8.9 & 172 \\
\hline Route 138 Southbound & TR & A & 0.0 & 0 & C & 24.4 & \#390 & A & 0.0 & 0 & D & 51.2 & \#438 & A & 0.0 & 0 & E & 58.9 & \#520 \\
\hline Neponset Valley Parkway & LR & E & 44.2 & 113 & C & 30.2 & 145 & F & 293.0 & 390 & D & 38.3 & \#235 & C & 23.8 & 75 & D & 42.3 & \#232 \\
\hline Intersection Average & & B & 13.2 & & B & 17.0 & & E & 48.1 & & D & 37.0 & & A & 5.6 & & D & 45.6 & \\
\hline \multicolumn{20}{|l|}{Route 138 at Milton St. and Dollar Ln.} \\
\hline \multirow[t]{2}{*}{Route 138 Northbound} & L & B & 13.3 & 263 & A & 5.5 & 7 & B & 11.2 & 227 & A & 5.4 & 11 & A & 7.9 & 199 & A & 5.4 & 10 \\
\hline & TR & B & 13.3 & 263 & B & 13.6 & 237 & B & 11.2 & 227 & B & 11.3 & 214 & A & 7.9 & 199 & B & 10.9 & 195 \\
\hline Route 138 Southbound & LTR & A & 9.9 & 222 & A & 9.7 & 207 & D & 40.3 & 262 & D & 52.7 & 263 & B & 14.4 & 250 & C & 30.9 & 261 \\
\hline Milton Street & LTR & C & 23.5 & 77 & C & 23.9 & 78 & E & 71.8 & 114 & E & 78.5 & 123 & E & 58.8 & 98 & E & 72.8 & 100 \\
\hline Dollar Lane & LTR & D & 35.6 & 134 & D & 37.0 & 136 & D & 41.7 & 101 & D & 43.6 & 109 & C & 29.8 & 76 & D & 39.1 & 78 \\
\hline Intersection Average & & B & 16.9 & & B & 17.2 & & C & 33.6 & & D & 39.6 & & B & 17.9 & & C & 28.5 & \\
\hline \multicolumn{20}{|l|}{Route 138 at Blue Jay Way} \\
\hline Route 138 Northbound & LT & A & 3.3 & 30 & A & 3.3 & 30 & A & 2.1 & 15 & A & 2.1 & 15 & & & & & & \\
\hline Route 138 Southbound & TR & A & 0.0 & 0 & & & & & & \\
\hline Blue Jay Way & LR & D & 32.9 & 15 & D & 32.9 & 15 & E & 43.4 & 102 & E & 43.4 & 102 & & & & & & \\
\hline Intersection Average & & A & 2.4 & & A & 2.4 & & A & 6.6 & & A & 6.6 & & & & & & & \\
\hline \multicolumn{20}{|l|}{Route 138 at Atherton St./Bradlee Rd.} \\
\hline Route 138 Northbound & LTR & B & 15.8 & \#429 & B & 16.5 & \#456 & B & 10.8 & \#299 & A & 9.3 & 255 & & & & & & \\
\hline Route 138 Southbound & LTR & B & 14.3 & 354 & B & 15.0 & \#382 & A & 8.9 & 217 & A & 7.9 & 188 & & & & & & \\
\hline Atherton Street Eastbound & LTR & C & 30.6 & 18 & C & 31.4 & 18 & C & 25.2 & 10 & C & 27.0 & 11 & & & & & & \\
\hline Atherton Street Westbound & LTR & C & 25.8 & 127 & C & 24.5 & 126 & C & 21.0 & 71 & C & 21.6 & 78 & & & & & & \\
\hline Bradlee Road & LTR & C & 22.8 & 63 & C & 22.1 & 63 & B & 19.5 & 48 & C & 20.6 & 53 & & & & & & \\
\hline Intersection Average & & B & 16.7 & & B & 17.1 & & B & 11.3 & & B & 10.3 & & & & & & & \\
\hline
\end{tabular}

Table F-1
Summary of Intersection Capacity Analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Analysis Period Scenario}} & \multicolumn{6}{|c|}{AM Peak Hour} & \multicolumn{6}{|c|}{PM Peak Hour} & \multicolumn{6}{|c|}{Weekend Peak Hour} \\
\hline & & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{Existing Conditions} & \multicolumn{3}{|l|}{With Improvements} \\
\hline Intersection & Movement & LOS & Delay & 95th Queue & LOS & Delay & \[
\begin{gathered}
\hline \text { 95th } \\
\text { Queue }
\end{gathered}
\] & LOS & Delay & 95th Queue & LOS & Delay & \[
\begin{gathered}
\text { 95th } \\
\text { Queue }
\end{gathered}
\] & LOS & Delay & 95th Queue & LOS & Delay & 95th Queue \\
\hline \multicolumn{20}{|l|}{Route 138 at Robbins St.} \\
\hline Route 138 Northbound & LTR & A & 8.4 & 163 & A & 8.6 & 221 & A & 8.4 & 298 & A & 7.5 & 267 & & & & & & \\
\hline Route 138 Southbound & LTR & A & 8.1 & 149 & A & 8.0 & 201 & A & 8.0 & 259 & A & 7.1 & 233 & & & & & & \\
\hline Robbins Street Eastbound & LTR & B & 12.8 & 24 & B & 13.1 & 25 & C & 21.8 & 52 & C & 21.7 & 53 & & & & & & \\
\hline Robbins Street Westbound & LTR & B & 13.5 & 50 & B & 13.9 & 52 & C & 22.1 & 56 & C & 21.7 & 57 & & & & & & \\
\hline Intersection Average & & A & 8.7 & & A & 8.8 & & A & 9.5 & & A & 8.6 & & & & & & & \\
\hline \multicolumn{20}{|l|}{Route 138 at Blue Hill Terrace/Cheever St.} \\
\hline Route 138 Northbound & LTR & D & 42.9 & \#402 & B & 19.7 & \#626 & B & 15.4 & \#324 & B & 11.1 & 287 & & & & & & \\
\hline Route 138 Southbound & LTR & D & 42.9 & \#402 & B & 19.7 & \#626 & B & 15.4 & \#324 & B & 11.1 & 287 & & & & & & \\
\hline Blue Hill Terrace & LTR & D & 43.6 & \#136 & C & 34.4 & 156 & D & 39.3 & \#47 & D & 47.6 & 61 & & & & & & \\
\hline Cheever Street & LTR & D & 35.1 & 24 & D & 43.2 & 35 & D & 51.4 & 15 & E & 55.7 & 21 & & & & & & \\
\hline Intersection Average & & C & 32.7 & & B & 19.2 & & B & 16.2 & & B & 13.4 & & & & & & & \\
\hline \multicolumn{20}{|l|}{Route 138 at Aberdeen Road} \\
\hline Route 138 Northbound & LT & A & 0.1 & 0 & A & 0.1 & 0 & A & 0.2 & 3 & A & 0.2 & 3 & A & 0.1 & 0 & A & 0.1 & 0 \\
\hline Route 138 Southbound & TR & A & 0.0 & 0 \\
\hline Aberdeen Road & LTR & C & 20.3 & 5 & C & 20.3 & 5 & D & 26.1 & 5 & D & 26.1 & 5 & B & 11.6 & 0 & B & 11.6 & 0 \\
\hline Intersection Average & & A & 0.3 & & A & 0.3 & & A & 0.4 & & A & 0.4 & & A & 0.1 & & A & 0.1 & \\
\hline \multicolumn{20}{|l|}{Route 138 at Oak Street} \\
\hline Route 138 Northbound & LTR & A & 0.0 & 0 & A & 0.0 & 0 & A & 0.4 & 3 & A & 0.4 & 3 & & & & & & \\
\hline Route 138 Southbound & LTR & A & 0.2 & 0 & A & 0.2 & 0 & A & 0.3 & 3 & A & 0.3 & 3 & & & & & & \\
\hline Oak Street Eastbound & LTR & C & 23.5 & 5 & C & 23.5 & 5 & D & 34.1 & 10 & D & 34.1 & 10 & & & & & & \\
\hline Oak Street Westbound & LTR & A & 0.0 & 0 & A & 0.0 & 0 & A & 0.4 & 3 & A & 0.4 & 3 & & & & & & \\
\hline Intersection Average & & A & 0.7 & & A & 0.7 & & A & 1.2 & & A & 1.2 & & & & & & & \\
\hline \multicolumn{20}{|l|}{Route 138 at Brook Road} \\
\hline Route 138 Northbound & LTR & B & 11.3 & 281 & B & 10.8 & 272 & B & 10.2 & 177 & A & 9.9 & 188 & & & & & & \\
\hline Route 138 Southbound & LTR & A & 9.4 & 194 & A & 9.2 & 189 & B & 11.1 & 197 & B & 10.6 & 210 & & & & & & \\
\hline Brook Road & LTR & D & 37.8 & 124 & D & 40.6 & 144 & D & 46.2 & 96 & D & 44.4 & 99 & & & & & & \\
\hline Intersection Average & & B & 15.2 & & B & 15.3 & & B & 16.2 & & B & 15.6 & & & & & & & \\
\hline
\end{tabular}
\# = 95th percentile volume exceeds capacity, queue shown is after two cycles but may be longer. 95th Queue = 95th percentile queue length (feet). Delay = Average vehicle delay (seconds per vehicle). Err = Value exceeds constraints of HCM 2000 formulas. L = Left turning traffic. LOS = Level of Service. LT = Left and through traffic. LTR = Left, through, and right traffic. \(m=\) Volume for 95 th percentile queue is metered by upstream signal. R = Right turning traffic. TR = Through and right traffic.
Note:
Shaded cells indicate intersections with no available count data.
Analysis uses Highway Capacity Manual (HCM) 2010 formulas.

Table F-2
Intersection Capacity Analysis with Left Turn Bay at Brush Hill Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analysis Period & & \multicolumn{6}{|c|}{AM Peak Hour} & \multicolumn{6}{|c|}{PM Peak Hour} & \multicolumn{6}{|c|}{Weekend Peak Hour} \\
\hline Scenario & & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{With Left Turn Bay} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{With Left Turn Bay} & \multicolumn{3}{|l|}{With Improvements} & \multicolumn{3}{|l|}{With Left Turn Bay} \\
\hline Intersection & Movement & LOS & Delay & 95th Queue \\
\hline \multicolumn{20}{|l|}{Route 138 at Brush Hill Road} \\
\hline \multirow[t]{2}{*}{Route 138 Northbound} & L & & & & C & 22.8 & 60 & & & & C & 25.1 & 41 & & & & F & 191.8 & \#191 \\
\hline & T & F & 118.3 & \#779 & D & 49.3 & \#787 & E & 62.4 & \#606 & C & 28.4 & \#639 & D & 41.6 & \#652 & C & 28.2 & \#719 \\
\hline Route 138 Southbound & TR & C & 21.3 & 378 & C & 35.0 & \#492 & F & 182.0 & \#589 & F & 222.5 & \#717 & D & 51.7 & \#570 & F & 141.8 & \#727 \\
\hline Brush Hill Road Eastbound & LR & D & 48.6 & 235 & F & 188.5 & \#321 & F & 290.9 & \#323 & F & 407.1 & \#406 & F & 207.7 & \#297 & F & 233.1 & \#352 \\
\hline \multirow[t]{2}{*}{Brush Hill Road Westbound} & L & F & 135.2 & \#186 & E & 70.7 & \#178 & F & 121.5 & \#151 & F & 280.2 & \#199 & F & 180.3 & \#205 & F & 261.9 & \#250 \\
\hline & TR & C & 25.7 & 92 & C & 29.5 & 17 & C & 21.2 & 57 & C & 27.4 & 16 & C & 21.7 & 87 & C & 25.2 & 22 \\
\hline Intersection Average & & E & 75.6 & & E & 63.8 & & F & 147.9 & & F & 179.4 & & E & 79.2 & & F & 125.0 & \\
\hline
\end{tabular}
\# = 95th percentile volume exceeds capacity, queue shown is after two cycles but may be longer. 95th Queue = 95th percentile queue length (feet). Delay = Average vehicle delay (seconds per vehicle). Err = Value exceeds constraints of HCM 2000 formulas. L = Left turning traffic. LOS = Level of Service. LT = Left and through traffic. LTR = Left, through, and right traffic. \(\mathrm{m}=\) Volume for 95 th percentile queue is metered by upstream signal. \(\mathrm{R}=\) Right turning traffic.
TR = Through and right traffic.
Note:
- Shaded cells indicate intersections with no available count data - Analysis uses Highway Capacity Manual (HCM) 2010 formulas.


\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & 4 \\
Traffic Vol, veh/h & 0 & 1 & 1490 & 0 & 0 & 1080 \\
Future Vol, veh/h & 0 & 1 & 1490 & 0 & 0 & 1080 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 5 & 2 & 2 & 6 \\
Mvmt Flow & 0 & 1 & 1568 & 0 & 0 & 1137
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\dagger\) & & 4 & 4 & \(\dagger\) & & * & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \(\dagger\) & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Future Volume (vph) & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Satd. Flow (prot) & 0 & 1671 & 0 & 0 & 1444 & 0 & 0 & 1766 & 0 & 0 & 1732 & 0 \\
\hline Flt Permitted & & 0.976 & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1671 & 0 & 0 & 1444 & 0 & 0 & 1766 & 0 & 0 & 1732 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 2\% & 2\% & 10\% & 0\% & 4\% & 0\% & 2\% & 6\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 14 & 0 & 0 & 11 & 0 & 0 & 1559 & 0 & 0 & 1154 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 92.5\% ICU Level of Service F
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 1.6 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & & & 4 & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Future Vol, veh/h & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 2 & 2 & 10 & 0 & 4 & 0 & 2 & 6 & 0 \\
\hline Mvmt Flow & 7 & 0 & 7 & 0 & 0 & 11 & 1 & 1558 & 0 & 0 & 1147 & 7 \\
\hline
\end{tabular}


\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 1 & 970 & 550 & 7 & 1090 \\
Future Vol, veh/h & 0 & 1 & 970 & 550 & 7 & 1090 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \(\%\) & 0 & 2 & 7 & 0 & 2 & 7 \\
Mvmt Flow & 0 & 1 & 1021 & 579 & 7 & 1147
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 2473 & 1311 & 0 & 0 & 1600 & 0 \\
\hline Stage 1 & 1311 & - & - & - & - & - \\
\hline Stage 2 & 1162 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.22 & - & - & 4.12 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.318 & - & - & 2.218 & - \\
\hline Pot Cap-1 Maneuver & 33 & 194 & - & & 409 & - \\
\hline Stage 1 & 255 & - & - & - & - & - \\
\hline Stage 2 & 300 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 31 & 194 & - & - & 409 & - \\
\hline Mov Cap-2 Maneuver & 31 & - & - & - & - & - \\
\hline Stage 1 & 255 & - & - & - & - & - \\
\hline Stage 2 & 286 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 23.7 & & 0 & & 0.1 & \\
\hline HCM LOS & C & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & 194 & 409 & - \\
\hline HCM Lane V/C Ratio & & - & - & 0.005 & 0.018 & - \\
\hline HCM Control Delay (s) & & - & - & 23.7 & 14 & 0 \\
\hline HCM Lane LOS & & - & - & C & B & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & 0 & 0.1 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & & \(\uparrow\) & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 0 & 9 & 3 & 960 & 1080 & 45 \\
\hline Future Volume (vph) & 0 & 9 & 3 & 960 & 1080 & 45 \\
\hline Satd. Flow (prot) & 1589 & 0 & 0 & 1733 & 1728 & 0 \\
\hline Flt Permitted & & & & & & \\
\hline Satd. Flow (perm) & 1589 & 0 & 0 & 1733 & 1728 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 2\% & 0\% & 0\% & 6\% & 6\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 10 & 0 & 0 & 1024 & 1197 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 69.6\% ICU Level of Service C} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Major/Minor & Minor2 & Major1 & \multicolumn{2}{l}{ Major2 } \\
\hline Conflicting Flow All & 2201 & 1173 & 1197 & 0 & - & 0 \\
\(\quad\) Stage 1 & 1173 & - & - & - & - & - \\
\(\quad\) Stage 2 & 1028 & - & - & - & - & - \\
Critical Hdwy & 6.42 & 6.2 & 4.1 & - & - & - \\
Critical Hdwy Stg 1 & 5.42 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.42 & - & - & - & - & - \\
Follow-up Hdwy & 3.518 & 3.3 & 2.2 & - & - & - \\
Pot Cap-1 Maneuver & 49 & \(* 109\) & \(* 327\) & - & - & - \\
\(\quad\) Stage 1 & 294 & - & - & - & - & - \\
\(\quad\) Stage 2 & 345 & - & - & - & - & - \\
Platoon blocked, \% & & 1 & 1 & - & - & - \\
Mov Cap-1 Maneuver & 48 & *109 & *327 & - & - & - \\
Mov Cap-2 Maneuver & 48 & - & - & - & - & - \\
\(\quad\) Stage 1 & 294 & - & - & - & - & - \\
Stage 2 & 338 & - & - & - & - & - \\
& & & & & &
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, s & 41.2 & 0.1 & 0 \\
HCM LOS & E & &
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & \(* 327\) & -109 & - & - \\
HCM Lane V/C Ratio & 0.01 & -0.088 & - & - \\
HCM Control Delay (s) & 16.1 & 0 & 41.2 & - & - \\
HCM Lane LOS & C & A & E & - & - \\
HCM 95th \%tile Q(veh) & 0 & - & 0.3 & - & -
\end{tabular}

\section*{Notes}
\(\sim\) : Volume exceeds capacity \(\$\) : Delay exceeds \(300 s \quad+\) : Computation Not Defined \(\quad\) : All major volume in platoon

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & 7 & & & & 4 & & \(\downarrow\) & \(\frac{1}{7}\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \% & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (vph) & & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Satd. Flow (prot) & 0 & 1545 & 0 & 1728 & 1760 & 0 & 0 & 1733 & 0 & 0 & 1683 & 0 \\
\hline Flt Permitted & & 0.995 & & 0.396 & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1539 & 0 & 720 & 1760 & 0 & 0 & 1733 & 0 & 0 & 1683 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 3\% & 1\% & 1\% & 13\% & 0\% & 6\% & 2\% & 2\% & 9\% & 14\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 329 & 0 & 167 & 131 & 0 & 0 & 1010 & 0 & 0 & 695 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 16.0 & 16.0 & & 20.0 & 20.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & & 50.0 & & & 50.0 & \\
\hline Total Split (\%) & 37.5\% & 37.5\% & & 37.5\% & 37.5\% & & & 62.5\% & & & 62.5\% & \\
\hline Yellow Time (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & & 4.0 & & & 4.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & 5.0 & & & 5.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & & None & & & None & \\
\hline Act Effct Green (s) & & 20.2 & & 20.2 & 20.2 & & & 45.1 & & & 45.1 & \\
\hline Actuated g/C Ratio & & 0.26 & & 0.26 & 0.26 & & & 0.59 & & & 0.59 & \\
\hline v/c Ratio & & 0.81 & & 0.88 & 0.28 & & & 0.99 & & & 0.70 & \\
\hline Control Delay & & 42.6 & & 68.7 & 23.6 & & & 44.2 & & & 16.7 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 42.6 & & 68.7 & 23.6 & & & 44.2 & & & 16.7 & \\
\hline LOS & & D & & E & C & & & D & & & B & \\
\hline Approach Delay & & 42.6 & & & 48.9 & & & 44.2 & & & 16.7 & \\
\hline Approach LOS & & D & & & D & & & D & & & B & \\
\hline Queue Length 50th (tt) & & 145 & & 76 & 49 & & & \(\sim 495\) & & & 230 & \\
\hline Queue Length 95th (tt) & & \#259 & & \#181 & 92 & & & \#779 & & & 378 & \\
\hline Internal Link Dist (t) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 484 & & 227 & 554 & & & 1023 & & & 994 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.68 & & 0.74 & 0.24 & & & 0.99 & & & 0.70 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Cycle Length: 80
Actuated Cycle Length: 76.4
```

Natural Cycle: }9
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.99
Intersection Signal Delay: 36.4 Intersection LOS: D
Intersection Capacity Utilization 93.6% ICU Level of Service F
Analysis Period (min) }1

```
~ Volume exceeds capacity, queue is theoretically infinite.
    Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \({ }^{7}\) & \(\hat{\beta}\) & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (veh/h) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & 5 & 10 & 0 & 0 & 20 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1846 & 1900 & 1881 & 1854 & 1900 & 0 & 1792 & 0 & 0 & 1742 & 1900 \\
\hline Adj Flow Rate, veh/h & 6 & 0 & 323 & 167 & 115 & 16 & 0 & 1010 & 0 & 0 & 688 & 7 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 1 & 1 & 0 & 6 & 0 & 0 & 9 & 9 \\
\hline Cap, veh/h & 46 & 6 & 370 & 179 & 518 & 59 & 0 & 1008 & 0 & 0 & 978 & 9 \\
\hline Arrive On Green & 0.29 & 0.00 & 0.29 & 0.29 & 0.29 & 0.29 & 0.00 & 0.57 & 0.00 & 0.00 & 0.57 & 0.57 \\
\hline Sat Flow, veh/h & 9 & 20 & 1541 & 1063 & 1593 & 222 & 0 & 1792 & , & 0 & 1722 & 18 \\
\hline Grp Volume(v), veh/h & 329 & 0 & 0 & 167 & 0 & 131 & 0 & 1010 & 0 & 0 & 0 & 695 \\
\hline Grp Sat Flow(s),veh/h/ln & 1570 & 0 & 0 & 1063 & 0 & 1815 & 0 & 1792 & 0 & 0 & 0 & 1739 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 5.4 & 0.0 & 4.4 & 0.0 & 43.7 & 0.0 & 0.0 & 0.0 & 22.6 \\
\hline Cycle Q Clear(g_c), s & 14.8 & 0.0 & 0.0 & 20.2 & 0.0 & 4.4 & 0.0 & 43.7 & 0.0 & 0.0 & 0.0 & 22.6 \\
\hline Prop In Lane & 0.02 & & 0.98 & 1.00 & & 0.12 & 0.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 398 & 0 & 0 & 179 & 0 & 529 & 0 & 1008 & 0 & 0 & 0 & 989 \\
\hline VIC Ratio( X ) & 0.83 & 0.00 & 0.00 & 0.93 & 0.00 & 0.25 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.70 \\
\hline Avail Cap(c_a), veh/h & 524 & 0 & 0 & 303 & 0 & 552 & 0 & 1022 & 0 & 0 & 0 & 992 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 25.1 & 0.0 & 0.0 & 34.0 & 0.0 & 22.0 & 0.0 & 17.5 & 0.0 & 0.0 & 0.0 & 13.3 \\
\hline Incr Delay (d2), s/veh & 8.2 & 0.0 & 0.0 & 23.2 & 0.0 & 0.2 & 0.0 & 28.5 & 0.0 & 0.0 & 0.0 & 2.2 \\
\hline Initial Q Delay(d3),s/veh & 26.4 & 0.0 & 0.0 & 70.0 & 0.0 & 3.4 & 0.0 & 70.1 & 0.0 & 0.0 & 0.0 & 5.6 \\
\hline \%ile BackOfQ(50\%),veh/ln & 10.2 & 0.0 & 0.0 & 8.6 & 0.0 & 3.7 & 0.0 & 49.8 & 0.0 & 0.0 & 0.0 & 15.0 \\
\hline LnGrp Delay(d),s/veh & 59.7 & 0.0 & 0.0 & 127.2 & 0.0 & 25.7 & 0.0 & 116.1 & 0.0 & 0.0 & 0.0 & 21.1 \\
\hline LnGrp LOS & E & & & F & & C & & F & & & & C \\
\hline Approach Vol, veh/h & & 329 & & & 298 & & & 1010 & & & 695 & \\
\hline Approach Delay, s/veh & & 59.7 & & & 82.6 & & & 116.1 & & & 21.1 & \\
\hline Approach LOS & & E & & & F & & & F & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 50.0 & & 28.9 & & 50.0 & & 28.9 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 5.0 & & 6.0 & & 5.0 & & 6.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 45.0 & & 24.0 & & 45.0 & & 24.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 45.7 & & 16.8 & & 24.6 & & 22.2 & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & 2.2 & & 13.4 & & 0.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 75.5 & & & & & & & & & \\
\hline HCM 2010 LOS & & & E & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \({ }_{1}\) & 4 & & 「 \\
\hline Traffic Volume (vph) & 0 & 0 & 160 & 390 & 0 & 130 \\
\hline Future Volume (vph) & 0 & 0 & 160 & 390 & 0 & 130 \\
\hline Satd. Flow (prot) & 0 & 0 & 1711 & 1801 & 0 & 1573 \\
\hline Flt Permitted & & & 0.950 & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1711 & 1801 & 0 & 1573 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.84 & 0.86 & 0.92 & 0.85 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 190 & 453 & 0 & 153 \\
\hline Sign Control & Free & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 23.9\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}

16: Route 138 \& Neponset Valley Pkwy.


HCM 2010 TWSC
16: Route 138 \& Neponset Valley Pkwy.

\begin{tabular}{lrrrrrr}
\hline Major/Minor & Minor2 & \multicolumn{2}{r}{ Major1 } & \multicolumn{2}{l}{ Major2 } \\
\hline Conflicting Flow All & 1961 & 502 & 503 & 0 & - & 0 \\
\(\quad\) Stage 1 & 502 & - & - & - & - & - \\
\(\quad\) Stage 2 & 1459 & - & - & - & - & - \\
Critical Hdwy & 6.65 & 6.38 & 4.15 & - & - & - \\
Critical Hdwy Stg 1 & 5.65 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.65 & - & - & - & - & - \\
Follow-up Hdwy & 3.725 & 3.462 & 2.245 & - & - & - \\
Pot Cap-1 Maneuver & 60 & \(* 260\) & \(* 561\) & - & - & - \\
\(\quad\) Stage 1 & 564 & - & - & - & - & - \\
\(\quad\) Stage 2 & 190 & - & - & - & - & - \\
Platoon blocked, \% & & 1 & 1 & - & - & - \\
Mov Cap-1 Maneuver & 0 & \(* 260\) & \(* 561\) & - & - & - \\
Mov Cap-2 Maneuver & 0 & - & - & - & - & - \\
\(\quad\) Stage 1 & 564 & - & - & - & - & - \\
Stage 2 & 0 & - & - & - & - & - \\
& & & & & &
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, S & 44.2 & 14.4 & 0
\end{tabular}
HCM LOS E
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR & \\
\hline Capacity (veh/h) & *561 & -260 & - & - & \\
HCM Lane V/C Ratio & 0.8 & -0.683 & - & - \\
HCM Control Delay (s) & 32.3 & 0 & 44.2 & - & - \\
HCM Lane LOS & D & A & E & - & - \\
HCM 95th \%ttile Q(veh) & 7.7 & - & 4.5 & - & - \\
Notes & & & & \\
\hline\(\because\) Volume exceeds capacity & \(\$:\) Delay exceeds 300s & + . Computation Not Defined & \(*:\) All major volume in platoon
\end{tabular}

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & & ¢ & & & \$ & \\
\hline Traffic Volume (vph) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Future Volume (vph) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Satd. Flow (prot) & 0 & 1731 & 0 & 0 & 1758 & 0 & 0 & 1716 & 0 & 0 & 1719 & 0 \\
\hline Flt Permitted & & 0.907 & & & 0.949 & & & 0.991 & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1588 & 0 & 0 & 1678 & 0 & 0 & 1702 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 3\% & 4\% & 0\% & 0\% & 2\% & 3\% & 0\% & 7\% & 0\% & 0\% & 6\% & 3\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 139 & 0 & 0 & 253 & 0 & 0 & 571 & 0 & 0 & 511 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (\%) & 40.3\% & 40.3\% & & 40.3\% & 40.3\% & & 59.7\% & 59.7\% & & 59.7\% & 59.7\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 14.7 & & & 15.1 & & & 30.1 & & & 30.1 & \\
\hline Actuated g/C Ratio & & 0.26 & & & 0.26 & & & 0.53 & & & 0.53 & \\
\hline v/c Ratio & & 0.34 & & & 0.57 & & & 0.64 & & & 0.57 & \\
\hline Control Delay & & 19.2 & & & 23.6 & & & 14.7 & & & 13.2 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 19.2 & & & 23.6 & & & 14.7 & & & 13.2 & \\
\hline LOS & & B & & & C & & & B & & & B & \\
\hline Approach Delay & & 19.2 & & & 23.6 & & & 14.7 & & & 13.2 & \\
\hline Approach LOS & & B & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 38 & & & 75 & & & 127 & & & 108 & \\
\hline Queue Length 95th (tt) & & 77 & & & 134 & & & 263 & & & 222 & \\
\hline Internal Link Dist (t) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 556 & & & 588 & & & 894 & & & 902 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.25 & & & 0.43 & & & 0.64 & & & 0.57 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 62
Actuated Cycle Length: 57.3

Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.64
Intersection Signal Delay: \(16.1 \quad\) Intersection LOS: B
Intersection Capacity Utilization 60.9\% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & & & 4 & 4 & 4 & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \$ & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Future Volume (veh/h) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & 0 & 15 & 0 & 0 & 15 & 0 & 0 & 10 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/n & 1900 & 1838 & 1900 & 1900 & 1865 & 1900 & 1900 & 1779 & 1900 & 1900 & 1796 & 1900 \\
\hline Adj Flow Rate, veh/h & 31 & 93 & 15 & 31 & 186 & 36 & 9 & 557 & 5 & 1 & 474 & 36 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Percent Heavy Veh, \% & 4 & 4 & 4 & 2 & 2 & 2 & 7 & 7 & 7 & 6 & 6 & 6 \\
\hline Cap, veh/h & 124 & 321 & 36 & 96 & 335 & 49 & 70 & 961 & 8 & 67 & 913 & 63 \\
\hline Arrive On Green & 0.22 & 0.22 & 0.22 & 0.22 & 0.22 & 0.22 & 0.56 & 0.56 & 0.56 & 0.56 & 0.56 & 0.56 \\
\hline Sat Flow, veh/h & 216 & 1319 & 186 & 123 & 1390 & 251 & 8 & 1744 & 15 & 0 & 1648 & 125 \\
\hline Grp Volume(v), veh/h & 139 & 0 & 0 & 253 & 0 & 0 & 571 & 0 & 0 & 511 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1720 & 0 & 0 & 1764 & 0 & 0 & 1767 & 0 & 0 & 1774 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 2.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 3.5 & 0.0 & 0.0 & 6.9 & 0.0 & 0.0 & 11.2 & 0.0 & 0.0 & 9.5 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.22 & & 0.11 & 0.12 & & 0.14 & 0.02 & & 0.01 & 0.00 & & 0.07 \\
\hline Lane Grp Cap(c), veh/h & 469 & 0 & 0 & 486 & 0 & 0 & 1033 & 0 & 0 & 1047 & 0 & 0 \\
\hline VIC Ratio( X ) & 0.30 & 0.00 & 0.00 & 0.52 & 0.00 & 0.00 & 0.55 & 0.00 & 0.00 & 0.49 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 704 & 0 & 0 & 727 & 0 & 0 & 1057 & 0 & 0 & 1060 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 18.1 & 0.0 & 0.0 & 19.5 & 0.0 & 0.0 & 9.3 & 0.0 & 0.0 & 8.2 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.7 & 0.0 & 0.0 & 1.8 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 4.6 & 0.0 & 0.0 & 14.3 & 0.0 & 0.0 & 3.4 & 0.0 & 0.0 & 1.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 3.2 & 0.0 & 0.0 & 6.7 & 0.0 & 0.0 & 8.3 & 0.0 & 0.0 & 6.1 & 0.0 & 0.0 \\
\hline LnGrp Delay (d),s/veh & 23.5 & 0.0 & 0.0 & 35.6 & 0.0 & 0.0 & 13.3 & 0.0 & 0.0 & 9.9 & 0.0 & 0.0 \\
\hline LnGrp LOS & C & & & D & & & B & & & A & & \\
\hline Approach Vol, veh/h & & 139 & & & 253 & & & 571 & & & 511 & \\
\hline Approach Delay, s/veh & & 23.5 & & & 35.6 & & & 13.3 & & & 9.9 & \\
\hline Approach LOS & & C & & & D & & & B & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 37.0 & & 16.6 & & 37.0 & & 16.6 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 30.0 & & 20.0 & & 30.0 & & 20.0 & & & & \\
\hline Max Q Clear Time ( \(g_{-}\)c+11), \(s\) & & 13.2 & & 5.5 & & 11.5 & & 8.9 & & & & \\
\hline Green Ext Time (p_c), s & & 6.8 & & 3.5 & & 7.2 & & 3.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 16.9 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 & \(\checkmark\) & 4 & 4 & \(\downarrow\) & 4 \\
\hline Lane Group EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \(\uparrow\) & \(\dagger\) & \\
\hline Traffic Volume (vph) 5 & 15 & 130 & 480 & 480 & 60 \\
\hline Future Volume (vph) 5 & 15 & 130 & 480 & 480 & 60 \\
\hline Satd. Flow (prot) 1596 & 0 & 0 & 1705 & 1717 & 0 \\
\hline Flt Permitted 0.979 & & & 0.989 & & \\
\hline Satd. Flow (perm) 1596 & 0 & 0 & 1705 & 1717 & 0 \\
\hline Confl. Peds. (\#/hr) 1 & & 16 & & & 16 \\
\hline Peak Hour Factor 0.42 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) 0\% & 7\% & 1\% & 8\% & 6\% & 0\% \\
\hline \multicolumn{6}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) 28 & 0 & 0 & 663 & 587 & 0 \\
\hline Sign Control Stop & & & Free & Free & \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline \multicolumn{6}{|l|}{Control Type: Unsignalized} \\
\hline Intersection Capacity Utilization 74.9\% & & \multicolumn{4}{|r|}{ICU Level of Service D} \\
\hline Analysis Period (min) 15 & & & & & \\
\hline
\end{tabular}



\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton 2018 Existing Conditions - AM Peak Hour
}

19: Route 138 \& Atherton St. \& Bradlee Rd.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & T & & 4 & \(\cdots\) & \(\dagger\) & Pa & 4 & \(\frac{1}{1}\) & \(\downarrow\) & - & \(\cdots\) \\
\hline Lane Group & EBL & EBR & EBR2 & NBL2 & NBL & NBT & NBR & SBL & SBT & SBR & SBR2 & SEL \\
\hline Lane Configurations & * & & & & & \$ & & & \& & & & \\
\hline Traffic Volume (vph) & 2 & 2 & 3 & 2 & 25 & 450 & 9 & 2 & 460 & 1 & 1 & 5 \\
\hline Future Volume (vph) & 2 & 2 & 3 & 2 & 25 & 450 & 9 & 2 & 460 & 1 & 1 & 5 \\
\hline Satd. Flow (prot) & 1432 & 0 & 0 & 0 & 0 & 1689 & 0 & 0 & 1732 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.986 & & & & & 0.960 & & & 0.998 & & & \\
\hline Satd. Flow (perm) & 1432 & 0 & 0 & 0 & 0 & 1627 & 0 & 0 & 1728 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 50\% & 0\% & 0\% & 50\% & 7\% & 8\% & 11\% & 0\% & 6\% & 0\% & 0\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 7 & 0 & 0 & 0 & 0 & 506 & 0 & 0 & 483 & 0 & 0 & 0 \\
\hline Turn Type & Prot & & & Perm & Perm & NA & & Perm & NA & & & Perm \\
\hline Protected Phases & 10 & & & & & 2 & & & 6 & & & \\
\hline Permitted Phases & & & & 2 & 2 & & & 6 & & & & 4 \\
\hline Detector Phase & 10 & & & 2 & 2 & 2 & & 6 & 6 & & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & & & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & & & 10.0 \\
\hline Minimum Split (s) & 9.0 & & & 28.0 & 28.0 & 28.0 & & 28.0 & 28.0 & & & 15.0 \\
\hline Total Split (s) & 10.0 & & & 40.0 & 40.0 & 40.0 & & 40.0 & 40.0 & & & 20.0 \\
\hline Total Split (\%) & 11.1\% & & & 44.4\% & 44.4\% & 44.4\% & & 44.4\% & 44.4\% & & & 22.2\% \\
\hline Yellow Time (s) & 4.0 & & & 5.0 & 5.0 & 5.0 & & 5.0 & 5.0 & & & 4.0 \\
\hline All-Red Time (s) & 1.0 & & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 \\
\hline Lost Time Adjust (s) & 0.0 & & & & & 0.0 & & & 0.0 & & & \\
\hline Total Lost Time (s) & 5.0 & & & & & 6.0 & & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & & & Min & Min & Min & & Min & Min & & & None \\
\hline Act Effct Green (s) & 5.4 & & & & & 31.0 & & & 31.0 & & & \\
\hline Actuated g/C Ratio & 0.10 & & & & & 0.58 & & & 0.58 & & & \\
\hline v/c Ratio & 0.05 & & & & & 0.53 & & & 0.48 & & & \\
\hline Control Delay & 30.6 & & & & & 15.8 & & & 14.3 & & & \\
\hline Queue Delay & 0.0 & & & & & 0.0 & & & 0.0 & & & \\
\hline Total Delay & 30.6 & & & & & 15.8 & & & 14.3 & & & \\
\hline LOS & C & & & & & B & & & B & & & \\
\hline Approach Delay & 30.6 & & & & & 15.8 & & & 14.3 & & & \\
\hline Approach LOS & C & & & & & B & & & B & & & \\
\hline Queue Length 50th (ft) & 2 & & & & & 76 & & & 70 & & & \\
\hline Queue Length 95th (ft) & 18 & & & & & \#429 & & & 354 & & & \\
\hline Internal Link Dist (ft) & 1228 & & & & & 1586 & & & 2667 & & & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & 146 & & & & & 1201 & & & 1276 & & & \\
\hline Starvation Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Storage Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Reduced v/c Ratio & 0.05 & & & & & 0.42 & & & 0.38 & & & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 90
Actuated Cycle Length: 53.1

```

Natural Cycle: 75
Control Type: Actuated-Uncoordinated

```

Maximum v/c Ratio: 0.53
Intersection Signal Delay: 16.7 Intersection LOS: B
Intersection Capacity Utilization 74.3\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & & & 4 & 4 & & ( & \(\dagger\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & \$ & & & \& & & & \(\ddagger\) & \\
\hline Traffic Volume (vph) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Future Volume (vph) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Satd. Flow (prot) & 0 & 1778 & 0 & 0 & 1690 & 0 & 0 & 1696 & 0 & 0 & 1715 & 0 \\
\hline Flt Permitted & & 0.845 & & & 0.855 & & & 0.997 & & & & \\
\hline Satd. Flow (perm) & 0 & 1530 & 0 & 0 & 1474 & 0 & 0 & 1691 & 0 & 0 & 1715 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 3\% & 0\% & 13\% & 0\% & 8\% & 8\% & 0\% & 7\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 30 & 0 & 0 & 82 & 0 & 0 & 548 & 0 & 0 & 519 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & Perm & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (\%) & 30.8\% & 30.8\% & & 30.8\% & 30.8\% & & 69.2\% & 69.2\% & & 69.2\% & 69.2\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 8.3 & & & 8.3 & & & 27.9 & & & 27.9 & \\
\hline Actuated g/C Ratio & & 0.22 & & & 0.22 & & & 0.72 & & & 0.72 & \\
\hline v/c Ratio & & 0.09 & & & 0.26 & & & 0.45 & & & 0.42 & \\
\hline Control Delay & & 15.3 & & & 17.1 & & & 7.1 & & & 6.7 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 15.3 & & & 17.1 & & & 7.1 & & & 6.7 & \\
\hline LOS & & B & & & B & & & A & & & A & \\
\hline Approach Delay & & 15.3 & & & 17.1 & & & 7.1 & & & 6.7 & \\
\hline Approach LOS & & B & & & B & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 6 & & & 16 & & & 71 & & & 65 & \\
\hline Queue Length 95th (ft) & & 24 & & & 50 & & & 163 & & & 149 & \\
\hline Internal Link Dist (ft) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 615 & & & 592 & & & 1592 & & & 1615 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.05 & & & 0.14 & & & 0.34 & & & 0.32 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 65
Actuated Cycle Length: 38.6
```

Natural Cycle: 40
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.45
Intersection Signal Delay: 7.8 Intersection LOS: A
Intersection Capacity Utilization 44.6% ICU Level of Service A
Analysis Period (min) }1

```

Splits and Phases: 20: Route 138 \& Robbins St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Future Volume (veh/h) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Number & 7 & 4 & 14 & , & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 10 & 0 & 0 & 10 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1900 & 1900 & 1900 & 1831 & 1900 & 1900 & 1760 & 1900 & 1900 & 1777 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 16 & 3 & 33 & 33 & 16 & 4 & 533 & 11 & 0 & 511 & 8 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 7 & 7 & 7 \\
\hline Cap, veh/h & 201 & 176 & 22 & 219 & 127 & 41 & 107 & 894 & 18 & 0 & 923 & 14 \\
\hline Arrive On Green & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.52 & 0.52 & 0.52 & 0.00 & 0.52 & 0.52 \\
\hline Sat Flow, veh/h & 380 & 1172 & 173 & 490 & 804 & 314 & 3 & 1713 & 35 & 0 & 1745 & 27 \\
\hline Grp Volume(v), veh/h & 30 & 0 & 0 & 82 & 0 & 0 & 548 & 0 & 0 & 0 & 0 & 519 \\
\hline Grp Sat Flow(s),veh/h/ln & 1725 & 0 & 0 & 1608 & 0 & 0 & 1751 & 0 & 0 & 0 & 0 & 1773 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.4 \\
\hline Cycle Q Clear(g_c), s & 0.5 & 0.0 & 0.0 & 1.4 & 0.0 & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.4 \\
\hline Prop In Lane & 0.37 & & 0.10 & 0.40 & & 0.20 & 0.01 & & 0.02 & 0.00 & & 0.02 \\
\hline Lane Grp Cap(c), veh/h & 390 & 0 & 0 & 378 & 0 & 0 & 1014 & 0 & 0 & 0 & 0 & 939 \\
\hline VIC Ratio( X ) & 0.08 & 0.00 & 0.00 & 0.22 & 0.00 & 0.00 & 0.54 & 0.00 & 0.00 & 0.00 & 0.00 & 0.55 \\
\hline Avail Cap(c_a), veh/h & 922 & 0 & 0 & 884 & 0 & 0 & 2208 & 0 & 0 & 0 & 0 & 2130 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 12.5 & 0.0 & 0.0 & 12.9 & 0.0 & 0.0 & 6.4 & 0.0 & 0.0 & 0.0 & 0.0 & 5.8 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\
\hline Initial Q Delay(d3),s/veh & 0.2 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 & 1.5 & 0.0 & 0.0 & 0.0 & 0.0 & 1.8 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.4 & 0.0 & 0.0 & 0.9 & 0.0 & 0.0 & 5.2 & 0.0 & 0.0 & 0.0 & 0.0 & 4.8 \\
\hline LnGrp Delay(d),s/veh & 12.8 & 0.0 & 0.0 & 13.5 & 0.0 & 0.0 & 8.4 & 0.0 & 0.0 & 0.0 & 0.0 & 8.1 \\
\hline LnGrp LOS & B & & & B & & & A & & & & & A \\
\hline Approach Vol, veh/h & & 30 & & & 82 & & & 548 & & & 519 & \\
\hline Approach Delay, s/veh & & 12.8 & & & 13.5 & & & 8.4 & & & 8.1 & \\
\hline Approach LOS & & B & & & B & & & A & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 23.0 & & 9.4 & & 23.0 & & 9.4 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 39.0 & & 15.0 & & 39.0 & & 15.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 9.0 & & 2.5 & & 8.4 & & 3.4 & & & & \\
\hline Green Ext Time (p_c), s & & 8.0 & & 0.4 & & 8.0 & & 0.4 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 8.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
4
\] & \(\rightarrow\) & & 7 & & & \[
4
\] & \(\dagger\) & \% & & & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \& & & & \& & & & \$ & \\
\hline Traffic Volume (vph) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Future Volume (vph) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Satd. Flow (prot) & 0 & 1777 & 0 & 0 & 1735 & 0 & 0 & 1519 & 0 & 0 & 1525 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.967 & & & 0.999 & & & 0.983 & \\
\hline Satd. Flow (perm) & 0 & 1776 & 0 & 0 & 1730 & 0 & 0 & 1518 & 0 & 0 & 1501 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & 1 & & 1 & & & 2 & 2 & & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 0\% & 8\% & 0\% & 13\% & 8\% & 0\% \\
\hline Parking (\#/hr) & & & & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 27 & 0 & 0 & 177 & 0 & 0 & 708 & 0 & 0 & 520 & 0 \\
\hline Turn Type & Split & NA & & Split & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Minimum Split (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 13.0 & 13.0 & & 13.0 & 13.0 & \\
\hline Total Split (s) & 13.0 & 13.0 & & 13.0 & 13.0 & & 28.0 & 28.0 & & 28.0 & 28.0 & \\
\hline Total Split (\%) & 24.1\% & 24.1\% & & 24.1\% & 24.1\% & & 51.9\% & 51.9\% & & 51.9\% & 51.9\% & \\
\hline Yellow Time (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 5.9 & & & 6.1 & & & 24.8 & & & 24.8 & \\
\hline Actuated g/C Ratio & & 0.12 & & & 0.13 & & & 0.52 & & & 0.52 & \\
\hline v/c Ratio & & 0.12 & & & 0.80 & & & 0.89 & & & 0.66 & \\
\hline Control Delay & & 19.9 & & & 49.8 & & & 30.8 & & & 17.1 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 19.9 & & & 49.8 & & & 30.8 & & & 17.1 & \\
\hline LOS & & B & & & D & & & C & & & B & \\
\hline Approach Delay & & 19.9 & & & 49.8 & & & 30.8 & & & 17.1 & \\
\hline Approach LOS & & B & & & D & & & C & & & B & \\
\hline Queue Length 50th (ft) & & 6 & & & 40 & & & 129 & & & 78 & \\
\hline Queue Length 95th (ft) & & 24 & & & \#136 & & & \#402 & & & \#268 & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 228 & & & 222 & & & 793 & & & 784 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.12 & & & 0.80 & & & 0.89 & & & 0.66 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Cycle Length: 54
Actuated Cycle Length: 47.5
Natural Cycle: 75
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.89
\begin{tabular}{ll} 
Intersection Signal Delay: 27.9 & Intersection LOS: C \\
Intersection Capacity Utilization 57.8\% & ICU Level of Service B
\end{tabular}

\section*{Analysis Period (min) 15}
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Future Volume (veh/h) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 0.99 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 & 1.00 & 1.00 & 0.90 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1900 & 1900 & 1900 & 1887 & 1900 & 1900 & 1771 & 1900 & 1900 & 1760 & 1900 \\
\hline Adj Flow Rate, veh/h & 5 & 18 & 4 & 122 & 37 & 18 & 1 & 646 & 61 & 10 & 500 & 10 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline Cap, veh/h & 9 & 31 & 7 & 130 & 99 & 16 & 73 & 625 & 46 & 79 & 654 & 13 \\
\hline Arrive On Green & 0.03 & 0.03 & 0.03 & 0.12 & 0.12 & 0.12 & 0.43 & 0.43 & 0.43 & 0.43 & 0.43 & 0.43 \\
\hline Sat Flow, veh/h & 339 & 1222 & 272 & 1235 & 375 & 182 & 0 & 1434 & 135 & 9 & 1533 & 30 \\
\hline Grp Volume(v), veh/h & 27 & 0 & 0 & 177 & 0 & 0 & 708 & 0 & 0 & 520 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1833 & 0 & 0 & 1792 & 0 & 0 & 1569 & 0 & 0 & 1573 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.7 & 0.0 & 0.0 & 4.7 & 0.0 & 0.0 & 3.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.7 & 0.0 & 0.0 & 4.7 & 0.0 & 0.0 & 21.0 & 0.0 & 0.0 & 13.9 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.19 & & 0.15 & 0.69 & & 0.10 & 0.00 & & 0.09 & 0.02 & & 0.02 \\
\hline Lane Grp Cap(c), veh/h & 46 & 0 & 0 & 220 & 0 & 0 & 746 & 0 & 0 & 745 & 0 & 0 \\
\hline VIC Ratio( X ) & 0.59 & 0.00 & 0.00 & 0.80 & 0.00 & 0.00 & 0.95 & 0.00 & 0.00 & 0.70 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 223 & 0 & 0 & 218 & 0 & 0 & 742 & 0 & 0 & 745 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 23.7 & 0.0 & 0.0 & 21.1 & 0.0 & 0.0 & 14.9 & 0.0 & 0.0 & 12.1 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 11.3 & 0.0 & 0.0 & 19.4 & 0.0 & 0.0 & 21.6 & 0.0 & 0.0 & 2.9 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 6.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.5 & 0.0 & 0.0 & 3.8 & 0.0 & 0.0 & 15.5 & 0.0 & 0.0 & 6.5 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 35.1 & 0.0 & 0.0 & 43.6 & 0.0 & 0.0 & 42.9 & 0.0 & 0.0 & 14.9 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & D & & & D & & & B & & \\
\hline Approach Vol, veh/h & & 27 & & & 177 & & & 708 & & & 520 & \\
\hline Approach Delay, s/veh & & 35.1 & & & 43.6 & & & 42.9 & & & 14.9 & \\
\hline Approach LOS & & D & & & D & & & D & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 28.0 & & 8.2 & & 28.0 & & 13.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 7.0 & & 7.0 & & 7.0 & & 7.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 21.0 & & 6.0 & & 21.0 & & 6.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 23.0 & & 2.7 & & 15.9 & & 6.7 & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & 0.0 & & 3.3 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 32.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrl} 
Major/Minor & Minor2 & \multicolumn{2}{r}{ Major1 } & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 1108 & 483 & 500 & 0 & - \\
\(\quad\) Stage 1 & 483 & - & - & - & - \\
Stage 2 & 625 & - & - & - \\
Critical Hdwy & 6.4 & 6.2 & 4.1 & - & - \\
\hline
\end{tabular}
HCMLOS C


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & 4 & 4 & 4 & \(\uparrow\) & \(>\) & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \(\$\) & & & ¢ & & & \({ }_{\$}\) & \\
\hline Traffic Volume (vph) & 2 & 6 & 2 & 4 & 6 & 7 & 3 & 540 & 35 & 10 & 400 & 1 \\
\hline Future Volume (vph) & 2 & 6 & 2 & 4 & 6 & 7 & 3 & 540 & 35 & 10 & 400 & 1 \\
\hline Satd. Flow (prot) & 0 & 1775 & 0 & 0 & 1616 & 0 & 0 & 1710 & 0 & 0 & 1702 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.988 & & & & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1775 & 0 & 0 & 1616 & 0 & 0 & 1710 & 0 & 0 & 1702 & 0 \\
\hline Confl. Peds. (\#hr) & 7 & & & & & 7 & 1 & & 16 & 16 & & 1 \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 25\% & 0\% & 0\% & 0\% & 7\% & 0\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 11 & 0 & 0 & 20 & 0 & 0 & 664 & 0 & 0 & 472 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 44.1\%
ICU Level of Service A
Analysis Period (min) 15



\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton 2018 Existing Conditions - AM Peak Hour
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
y
\] & \(\rightarrow\) & & & & & \[
4
\] & 4 & \(p\) & & \(\pm\) & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & & & & \& & & & \& & \\
\hline Traffic Volume (vph) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Future Volume (vph) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Satd. Flow (prot) & 0 & 1802 & 0 & 0 & 0 & 0 & 0 & 1689 & 0 & 0 & 1695 & 0 \\
\hline Flt Permitted & & 0.998 & & & & & & 0.996 & & & 0.986 & \\
\hline Satd. Flow (perm) & 0 & 1802 & 0 & 0 & 0 & 0 & 0 & 1682 & 0 & 0 & 1673 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & & & & 1 & & 7 & 7 & & 1 \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 13\% & 1\% & 0\% & 2\% & 2\% & 2\% & 20\% & 7\% & 9\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 224 & 0 & 0 & 0 & 0 & 0 & 612 & 0 & 0 & 476 & 0 \\
\hline Turn Type & Perm & NA & & & & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & & & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & & & & 36.0 & 36.0 & & 36.0 & 36.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & & & & 40.0 & 40.0 & & 40.0 & 40.0 & \\
\hline Total Split (\%) & 38.5\% & 38.5\% & & & & & 61.5\% & 61.5\% & & 61.5\% & 61.5\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 14.0 & & & & & & 30.9 & & & 30.9 & \\
\hline Actuated g/C Ratio & & 0.25 & & & & & & 0.55 & & & 0.55 & \\
\hline v/c Ratio & & 0.50 & & & & & & 0.66 & & & 0.52 & \\
\hline Control Delay & & 22.1 & & & & & & 14.0 & & & 11.1 & \\
\hline Queue Delay & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 22.1 & & & & & & 14.0 & & & 11.1 & \\
\hline LOS & & C & & & & & & B & & & B & \\
\hline Approach Delay & & 22.1 & & & & & & 14.0 & & & 11.1 & \\
\hline Approach LOS & & C & & & & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 62 & & & & & & 124 & & & 86 & \\
\hline Queue Length 95th (ft) & & 124 & & & & & & 281 & & & 194 & \\
\hline Internal Link Dist (ft) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 648 & & & & & & 1029 & & & 1023 & \\
\hline Starvation Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.35 & & & & & & 0.59 & & & 0.47 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 65 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 56
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.66
Intersection Signal Delay: \(14.3 \quad\) Intersection LOS: B
Intersection Capacity Utilization 51.6\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 24: Route 138 \& Brook Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & & & & 4 & \(\dagger\) & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Contigurations & & ¢ & & & & & & ¢ & & & \(\dagger\) & \\
\hline Traffic Volume (veh/h) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Future Volume (veh/h) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Number & 7 & 4 & 14 & & & & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & 0 & 10 & 0 & & & & 0 & 15 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 0.99 & 1.00 & & 0.99 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1873 & 1900 & & & & 1900 & 1771 & 1900 & 1900 & 1768 & 1900 \\
\hline Adj Flow Rate, veh/h & 9 & 211 & 4 & & & & 6 & 556 & 50 & 10 & 444 & 22 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & & & & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & & & & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Percent Heavy Veh, \% & 0 & 1 & 0 & & & & 7 & 7 & 7 & 8 & 8 & 8 \\
\hline Cap, veh/h & 12 & 348 & 5 & & & & 72 & 950 & 77 & 77 & 980 & 43 \\
\hline Arrive On Green & 0.18 & 0.18 & 0.18 & & & & 0.60 & 0.60 & 0.60 & 0.60 & 0.60 & 0.60 \\
\hline Sat Flow, veh/h & 75 & 1755 & 33 & & & & 4 & 1595 & 142 & 10 & 1649 & 80 \\
\hline Grp Volume(v), veh/h & 224 & 0 & 0 & & & & 612 & 0 & 0 & 476 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1863 & 0 & 0 & & & & 1741 & 0 & 0 & 1740 & 0 & 0 \\
\hline Q Serve(g_s), s & 5.6 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 5.6 & 0.0 & 0.0 & & & & 10.8 & 0.0 & 0.0 & 7.4 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.04 & & 0.02 & & & & 0.01 & & 0.08 & 0.02 & & 0.05 \\
\hline Lane Grp Cap(c), veh/h & 361 & 0 & 0 & & & & 1096 & 0 & 0 & 1102 & 0 & 0 \\
\hline V/C Ratio(X) & 0.62 & 0.00 & 0.00 & & & & 0.56 & 0.00 & 0.00 & 0.43 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 746 & 0 & 0 & & & & 1257 & 0 & 0 & 1256 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & & & & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 19.5 & 0.0 & 0.0 & & & & 7.8 & 0.0 & 0.0 & 6.8 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 3.7 & 0.0 & 0.0 & & & & 0.4 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 14.6 & 0.0 & 0.0 & & & & 3.1 & 0.0 & 0.0 & 2.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 5.5 & 0.0 & 0.0 & & & & 8.2 & 0.0 & 0.0 & 6.0 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 37.8 & 0.0 & 0.0 & & & & 11.3 & 0.0 & 0.0 & 9.4 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & & & & B & & & A & & \\
\hline Approach Vol, veh/h & & 224 & & & & & & 612 & & & 476 & \\
\hline Approach Delay, s/veh & & 37.8 & & & & & & 11.3 & & & 9.4 & \\
\hline Approach LOS & & D & & & & & & B & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 36.0 & & 13.9 & & 36.0 & & & & & & \\
\hline Change Period ( \(Y+R \mathrm{R}\) ), s & & 6.0 & & 5.0 & & 6.0 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 34.0 & & 20.0 & & 34.0 & & & & & & \\
\hline Max Q Clear Time ( \(\mathrm{g}_{\mathrm{c}} \mathrm{c}+11\) ), s & & 12.8 & & 7.6 & & 9.4 & & & & & & \\
\hline Green Ext Time (p_c), s & & 7.4 & & 1.7 & & 7.9 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.2 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 4 & \(\dagger\) & & & \(\dagger\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & *T & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 550 & 3 & 3 & 410 \\
\hline Future Volume (vph) & 0 & 0 & 550 & 3 & 3 & 410 \\
\hline Satd. Flow (prot) & 1837 & 0 & 1831 & 0 & 0 & 1835 \\
\hline Flt Permitted & & & & & & 0.999 \\
\hline Satd. Flow (perm) & 1837 & 0 & 1831 & 0 & 0 & 1835 \\
\hline Confl. Peds. (\#/hr) & & & & 4 & 4 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.86 & 0.75 & 0.38 & 0.89 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 33\% & 0\% & 0\% \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 644 & 0 & 0 & 469 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 32.5\%
ICU Level of Service A
Analysis Period (min) 15
}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 0 & 550 & 3 & 3 & 410 \\
Future Vol, veh/h & 0 & 0 & 550 & 3 & 3 & 410 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 4 & 4 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 92 & 92 & 86 & 75 & 38 & 89 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 33 & 0 & 0 \\
Mvmt Flow & 0 & 0 & 640 & 4 & 8 & 461 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor1 & & Major1 & & ajor2 & \\
\hline Conflicting Flow All & 1122 & 646 & 0 & 0 & 648 & 0 \\
\hline Stage 1 & 646 & - & - & - & - & - \\
\hline Stage 2 & 476 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.1 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.2 & - \\
\hline Pot Cap-1 Maneuver & 230 & 475 & - & - & 947 & - \\
\hline Stage 1 & 526 & - & - & - & - & - \\
\hline Stage 2 & 629 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 227 & 473 & - & - & 947 & - \\
\hline Mov Cap-2 Maneuver & 227 & - & - & - & - & - \\
\hline Stage 1 & 524 & - & - & - & - & - \\
\hline Stage 2 & 622 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 0 & & 0 & & 0.1 & \\
\hline HCM LOS & A & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & - & 947 & - \\
\hline HCM Lane V/C Ratio & & - & - & - & 0.008 & - \\
\hline HCM Control Delay (s) & & - & - & 0 & 8.8 & 0 \\
\hline HCM Lane LOS & & - & - & A & A & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & - & 0 & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & \(\dagger\) & & & \(\dagger\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & 4 & & & 4 \\
\hline Traffic Volume (vph) & 3 & 10 & 1130 & 0 & 0 & 1270 \\
\hline Future Volume (vph) & 3 & 10 & 1130 & 0 & 0 & 1270 \\
\hline Satd. Flow (prot) & 1453 & 0 & 1580 & 0 & 0 & 1595 \\
\hline Flt Permitted & 0.989 & & & & & \\
\hline Satd. Flow (perm) & 1453 & 0 & 1580 & 0 & 0 & 1595 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 4\% & 2\% & 2\% & 3\% \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 14 & 0 & 1215 & 0 & 0 & 1366 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 84.7\% ICU Level of Service E
Analysis Period (min) 15
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.3 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Yr & & 个 & & & 4 \\
Traffic Vol, veh/h & 3 & 10 & 1130 & 0 & 0 & 1270 \\
Future Vol, veh/h & 3 & 10 & 1130 & 0 & 0 & 1270 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 4 & 2 & 2 & 3 \\
Mvmt Flow & 3 & 11 & 1215 & 0 & 0 & 1366
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\geqslant\) & 7 & 4 & & 4 & \(\uparrow\) & 7 & , & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Future Volume (vph) & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Satd. Flow (prot) & 0 & 1451 & 0 & 0 & 1421 & 0 & 0 & 1593 & 0 & 0 & 1579 & 0 \\
\hline Flt Permitted & & 0.990 & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1451 & 0 & 0 & 1421 & 0 & 0 & 1593 & 0 & 0 & 1579 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 2\% & 2\% & 0\% & 25\% & 3\% & 0\% & 2\% & 4\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 10 & 0 & 0 & 21 & 0 & 0 & 1163 & 0 & 0 & 1314 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 85.0\% ICU Level of Service E
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|l|}{0.5} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \& & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Future Vol, veh/h & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 2 & 2 & 0 & 25 & 3 & 0 & 2 & 4 & 0 \\
\hline Mvmt Flow & 2 & 0 & 8 & 0 & 0 & 21 & 8 & 1155 & 0 & 0 & 1309 & 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 & 4 & \(\dagger\) & & & 1 \\
\hline Lane Group WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) 1 & 1 & 790 & 340 & 10 & 1270 \\
\hline Future Volume (vph) 1 & 1 & 790 & 340 & 10 & 1270 \\
\hline Satd. Flow (prot) 1480 & 0 & 1523 & 0 & 0 & 1580 \\
\hline Flt Permitted 0.976 & & & & & \\
\hline Satd. Flow (perm) 1480 & 0 & 1523 & 0 & 0 & 1580 \\
\hline Confl. Peds. (\#/hr) & & & 1 & 1 & \\
\hline Peak Hour Factor 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) 0\% & 2\% & 5\% & 0\% & 2\% & 4\% \\
\hline \multicolumn{6}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) 2 & 0 & 1165 & 0 & 0 & 1319 \\
\hline Sign Control Stop & & Free & & & Free \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline \multicolumn{6}{|l|}{Control Type: Unsignalized} \\
\hline Intersection Capacity Utilization 93.6\% & & & \multicolumn{3}{|r|}{ICU Level of Service F} \\
\hline Analysis Period (min) 15 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 1 & 1 & 790 & 340 & 10 & 1270 \\
Future Vol, veh/h & 1 & 1 & 790 & 340 & 10 & 1270 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 1 & 1 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 \\
Heavy Vehicles, \% & 0 & 2 & 5 & 0 & 2 & 4 \\
Mvmt Flow & 1 & 1 & 814 & 351 & 10 & 1309
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor M & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 2321 & 991 & 0 & 0 & 1166 & 0 \\
\hline Stage 1 & 991 & - & - & - & - & - \\
\hline Stage 2 & 1330 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.22 & - & - & 4.12 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.318 & - & - & 2.218 & - \\
\hline Pot Cap-1 Maneuver & 42 & 299 & - & - & 599 & - \\
\hline Stage 1 & 362 & - & - & - & - & - \\
\hline Stage 2 & 249 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 39 & 299 & - & - & 599 & - \\
\hline Mov Cap-2 Maneuver & 39 & - & - & - & - & - \\
\hline Stage 1 & 362 & - & - & - & - & - \\
\hline Stage 2 & 234 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 58.8 & & 0 & & 0.1 & \\
\hline HCM LOS & F & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & 69 & 599 & - \\
\hline HCM Lane V/C Ratio & & - & - & 0.03 & 0.017 & - \\
\hline HCM Control Delay (s) & & - & - & 58.8 & 11.1 & 0 \\
\hline HCM Lane LOS & & - & - & F & B & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & 0.1 & 0.1 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & \(\uparrow\) & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \(\uparrow\) & 个 & \\
\hline Traffic Volume (vph) & 0 & 35 & 1 & 790 & 1260 & 3 \\
\hline Future Volume (vph) & 0 & 35 & 1 & 790 & 1260 & 3 \\
\hline Satd. Flow (prot) & 1421 & 0 & 0 & 1580 & 1579 & 0 \\
\hline Flt Permitted & & & & & & \\
\hline Satd. Flow (perm) & 1421 & 0 & 0 & 1580 & 1579 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.39 & 0.25 & 0.96 & 0.97 & 0.38 \\
\hline Heavy Vehicles (\%) & 2\% & 0\% & 0\% & 4\% & 4\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 90 & 0 & 0 & 827 & 1307 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 84.3\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service E}} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.5 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & \(\uparrow\) & \\
Traffic Vol, veh/h & 0 & 35 & 1 & 790 & 1260 & 3 \\
Future Vol, veh/h & 0 & 35 & 1 & 790 & 1260 & 3 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 92 & 39 & 25 & 96 & 97 & 38 \\
Heavy Vehicles, \(\%\) & 2 & 0 & 0 & 4 & 4 & 0 \\
Mvmt Flow & 0 & 90 & 4 & 823 & 1299 & 8
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & \(\uparrow\) & & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & \({ }^{17}\) & \(\hat{\beta}\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (vph) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Satd. Flow (prot) & 0 & 1413 & 0 & 1546 & 1558 & 0 & 0 & 1580 & 0 & 0 & 1565 & 0 \\
\hline Flt Permitted & & 0.990 & & 0.367 & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1402 & 0 & 597 & 1558 & 0 & 0 & 1580 & 0 & 0 & 1565 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 1\% & 1\% & 3\% & 8\% & 0\% & 4\% & 2\% & 2\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 396 & 0 & 144 & 82 & 0 & 0 & 814 & 0 & 0 & 794 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (\%) & 40.0\% & 40.0\% & & 40.0\% & 40.0\% & & & 60.0\% & & & 60.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 5.0 & & & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 5.0 & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & & Min & & & Min & \\
\hline Act Effct Green (s) & & 23.1 & & 23.1 & 23.1 & & & 39.1 & & & 39.1 & \\
\hline Actuated g/C Ratio & & 0.32 & & 0.32 & 0.32 & & & 0.53 & & & 0.53 & \\
\hline v/c Ratio & & 0.90 & & 0.77 & 0.17 & & & 0.97 & & & 0.95 & \\
\hline Control Delay & & 49.0 & & 50.9 & 18.8 & & & 43.5 & & & 40.8 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 49.0 & & 50.9 & 18.8 & & & 43.5 & & & 40.8 & \\
\hline LOS & & D & & D & B & & & D & & & D & \\
\hline Approach Delay & & 49.0 & & & 39.3 & & & 43.5 & & & 40.8 & \\
\hline Approach LOS & & D & & & D & & & D & & & D & \\
\hline Queue Length 50th (tt) & & 169 & & 58 & 26 & & & 350 & & & 336 & \\
\hline Queue Length 95th (tt) & & \#323 & & \#151 & 57 & & & \#606 & & & \#589 & \\
\hline Internal Link Dist (t) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 479 & & 204 & 532 & & & 843 & & & 834 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.83 & & 0.71 & 0.15 & & & 0.97 & & & 0.95 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 75
Actuated Cycle Length: 73.2
```

Natural Cycle: }8
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.97
Intersection Signal Delay: 43.1 Intersection LOS: D
Intersection Capacity Utilization 95.0% ICU Level of Service F
Analysis Period (min) }1

# 95th percentile volume exceeds capacity, queue may be longer.

    Queue shown is maximum after two cycles.
    ```

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & 4 & 4 & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\pm\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & * & \(\uparrow\) & & & 4 & & & 4 & \\
\hline Traffic Volume (veh/h) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (veh/h) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q, veh & 0 & 20 & 0 & 10 & 10 & 0 & 0 & 10 & 0 & 0 & 40 & 0 \\
\hline Ped-Bike Adj (A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1684 & 1700 & 1683 & 1641 & 1700 & 0 & 1635 & 0 & 0 & 1619 & 0 \\
\hline Adj Flow Rate, veh/h & 15 & 0 & 381 & 144 & 72 & 10 & 0 & 814 & 0 & 0 & 794 & 0 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 3 & 3 & 0 & 4 & 0 & 0 & 5 & 0 \\
\hline Opposing Right Turn Influence & No & & & No & & & No & & & No & & \\
\hline Cap, veh/h & 50 & 11 & 305 & 191 & 529 & 60 & 0 & 850 & 0 & 0 & 842 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Prop Arrive On Green & 0.33 & 0.00 & 0.33 & 0.33 & 0.33 & 0.33 & 0.00 & 0.52 & 0.00 & 0.00 & 0.52 & 0.00 \\
\hline Ln Grp Delay, s/veh & 290.7 & 0.0 & 0.0 & 119.8 & 0.0 & 21.3 & 0.0 & 62.3 & 0.0 & 0.0 & 181.9 & 0.0 \\
\hline Ln Grp LOS & F & & & F & & C & & E & & & F & \\
\hline Approach Vol, veh/h & & 396 & & & 226 & & & 814 & & & 794 & \\
\hline Approach Delay, s/veh & & 290.7 & & & 84.1 & & & 62.3 & & & 181.9 & \\
\hline Approach LOS & & F & & & F & & & E & & & F & \\
\hline Timer: & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & \\
\hline Assigned Phs & & & 2 & & 4 & & 6 & & 8 & & & \\
\hline Case No & & & 8.0 & & 8.0 & & 8.0 & & 6.0 & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & & 44.7 & & 29.6 & & 44.7 & & 29.6 & & & \\
\hline Change Period (Y+Rc), \(s\) & & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & \\
\hline Max Green (Gmax), s & & & 39.0 & & 25.0 & & 39.0 & & 25.0 & & & \\
\hline Max Allow Headway (MAH), s & & & 5.2 & & 5.4 & & 5.2 & & 5.4 & & & \\
\hline Max Q Clear ( \(\left.\mathrm{g}_{2} \mathrm{c}+11\right)\), s & & & 37.4 & & 20.9 & & 36.3 & & 24.8 & & & \\
\hline Green Ext Time (g_e), s & & & 1.4 & & 1.5 & & 2.2 & & 0.1 & & & \\
\hline Prob of Phs Call (p_c) & & & 1.00 & & 1.00 & & 1.00 & & 0.99 & & & \\
\hline Prob of Max Out (p_x) & & & 1.00 & & 1.00 & & 1.00 & & 1.00 & & & \\
\hline \multicolumn{13}{|l|}{Left-Turn Movement Data} \\
\hline Assigned Mvmt & & & 5 & & 7 & & 1 & & 3 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 0 & & 23 & & 0 & & 1008 & & & \\
\hline \multicolumn{13}{|l|}{Through Movement Data} \\
\hline Assigned Mvmt & & & 2 & & 4 & & 6 & & 8 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 1635 & & 32 & & 1619 & & 1410 & & & \\
\hline \multicolumn{13}{|l|}{Right-Turn Movement Data} \\
\hline Assigned Mvmt & & & 12 & & 14 & & 16 & & 18 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 0 & & 1380 & & 0 & & 196 & & & \\
\hline \multicolumn{13}{|l|}{Left Lane Group Data} \\
\hline Assigned Mvmt & & 0 & 5 & 0 & 7 & 0 & 1 & 0 & 3 & & & \\
\hline Lane Assignment & & & & & +T+R & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Lanes in Grp & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
Grp Vol (v), veh/h & 0 & 0 & 0 & 396 & 0 & 0 & 0 & 144 \\
Grp Sat Flow (s), veh/h/ln & 0 & 0 & 0 & 1434 & 0 & 0 & 0 & 1008 \\
Q Serve Time (g_s), s & 0.0 & 0.0 & 0.0 & 4.6 & 0.0 & 0.0 & 0.0 & 3.8 \\
Cycle Q Clear Time (g_c), s & 0.0 & 0.0 & 0.0 & 18.9 & 0.0 & 0.0 & 0.0 & 22.8 \\
\hline Perm LT Sat Flow (s_l), veh/h/ln & 0 & 0 & 0 & 1337 & 0 & 0 & 0 & 1008 \\
Shared LT Sat Flow (s_sh), veh/h/ln & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 347 \\
Perm LT Eff Green (g_p), s & 0.0 & 0.0 & 0.0 & 24.6 & 0.0 & 0.0 & 0.0 & 24.6 \\
\hline Perm LT Serve Time (g_u), s & 0.0 & 0.0 & 0.0 & 22.0 & 0.0 & 0.0 & 0.0 & 5.7 \\
Perm LT Q Serve Time (g_ps), s & 0.0 & 0.0 & 0.0 & 4.6 & 0.0 & 0.0 & 0.0 & 3.8 \\
Time to First Blk (g_f), s & 0.0 & 38.7 & 0.0 & 14.3 & 0.0 & 38.7 & 0.0 & 0.0 \\
Serve Time pre Blk (g_fs), s & 0.0 & 0.0 & 0.0 & 14.3 & 0.0 & 0.0 & 0.0 & 0.0 \\
Prop LT Inside Lane (P_L) & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 329 & 0 & 0 & 0 & 191 \\
V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 1.20 & 0.00 & 0.00 & 0.00 & 0.76 \\
Avail Cap (c_a), veh/h & 0 & 0 & 0 & 532 & 0 & 0 & 0 & 267 \\
Upstream Filter (l) & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 22.5 & 0.0 & 0.0 & 0.0 & 31.2 \\
Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 108.6 & 0.0 & 0.0 & 0.0 & 7.6 \\
Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 159.7 & 0.0 & 0.0 & 0.0 & 81.1 \\
\hline Control Delay (d), s/veh & 0.0 & 0.0 & 0.0 & 290.7 & 0.0 & 0.0 & 0.0 & 119.8 \\
1st-Term Q (Q1), veh/ln & 0.0 & 0.0 & 0.0 & 6.8 & 0.0 & 0.0 & 0.0 & 3.8 \\
2nd-Term Q (Q2), veh/ln & 0.0 & 0.0 & 0.0 & 9.9 & 0.0 & 0.0 & 0.0 & 0.4 \\
3rd-Term Q (Q3), veh/ln & 0.0 & 0.0 & 0.0 & 20.0 & 0.0 & 0.0 & 0.0 & 4.3 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\%ile Back of Q (50\%), veh/ln & 0.0 & 0.0 & 0.0 & 36.7 & 0.0 & 0.0 & 0.0 & 8.5 \\
\%ile Storage Ratio (RQ\%) & 0.00 & 0.00 & 0.00 & 0.98 & 0.00 & 0.00 & 0.00 & 1.20 \\
Initial Q (Qb), veh & 0.0 & 0.0 & 0.0 & 20.0 & 0.0 & 0.0 & 0.0 & 10.0 \\
Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 36.8 & 0.0 & 0.0 & 0.0 & 0.0 \\
Sat Delay (ds), s/veh & 0.0 & 0.0 & 0.0 & 22.5 & 0.0 & 0.0 & 0.0 & 31.4 \\
Sat Q (Qs), veh & 0.0 & 0.0 & 0.0 & 6.8 & 0.0 & 0.0 & 0.0 & 3.8 \\
Sat Cap (cs), veh/h & 0 & 0 & 0 & 329 & 0 & 0 & 0 & 186 \\
Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 0.2 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Middle Lane Group Data & 0 & 2 & 0 & 4 & 0 & 6 & 0 & 8 \\
\hline Assigned Mvmt & 0 & \(T\) & 1 & 0 & 0 & 0 & 1 & 0 \\
Lane Assignment & 0 & 814 & 0 & 0 & 0 & 794 & 0 & 0 \\
Lanes in Grp & 0 & 1635 & 0 & 0 & 0 & 1619 & 0 & 0 \\
Grp Vol (v), veh/h & 0.0 & 35.4 & 0.0 & 0.0 & 0.0 & 34.3 & 0.0 & 0.0 \\
Grp Sat Flow (s), veh/h/ln & 0.0 & 35.4 & 0.0 & 0.0 & 0.0 & 34.3 & 0.0 & 0.0 \\
Q Serve Time (g_s), s & 0 & 850 & 0 & 0 & 0 & 842 & 0 & 0 \\
Cycle Q Clear Time (g_c), s & 0.00 & 0.96 & 0.00 & 0.00 & 0.00 & 0.94 & 0.00 & 0.00 \\
Lane Grp Cap (c), veh/h & 0 & 857 & 0 & 0 & 0 & 849 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0.0 & 18.0 & 0.0 & 0.0 & 0.0 & 18.0 & 0.0 & 0.0 \\
Upstream Filter (I) & 0.0 & 21.0 & 0.0 & 0.0 & 0.0 & 18.5 & 0.0 & 0.0 \\
Uniform Delay (d1), s/veh & 0.0 & 23.3 & 0.0 & 0.0 & 0.0 & 145.4 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 62.3 & 0.0 & 0.0 & 0.0 & 181.9 & 0.0 & 0.0 \\
Initial Q Delay (d3), s/veh & 0.0 & 17.2 & 0.0 & 0.0 & 0.0 & 17.1 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & & & & & & \\
1st-Term Q (Q1), veh/ln & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \({ }^{*}\) & 4 & & 「 \\
\hline Traffic Volume (vph) & 0 & 0 & 90 & 270 & 0 & 140 \\
\hline Future Volume (vph) & 0 & 0 & 90 & 270 & 0 & 140 \\
\hline Satd. Flow (prot) & 0 & 0 & 1546 & 1627 & 0 & 1394 \\
\hline Flt Permitted & & & 0.950 & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1546 & 1627 & 0 & 1394 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.96 & 0.93 & 0.92 & 0.82 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 1\% & 1\% & 2\% & 2\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 94 & 290 & 0 & 171 \\
\hline Sign Control & Free & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 21.9\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & 7 & 4 & 4 & \(\downarrow\) & \(\pm\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \(\uparrow\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 7 & 230 & 310 & 490 & 530 & 3 \\
\hline Future Volume (vph) & 7 & 230 & 310 & 490 & 530 & 3 \\
\hline Satd. Flow (prot) & 1343 & 0 & 0 & 1548 & 1564 & 0 \\
\hline Flt Permitted & 0.999 & & & 0.981 & & \\
\hline Satd. Flow (perm) & 1343 & 0 & 0 & 1548 & 1564 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 14\% & 6\% & 6\% & 3\% & 5\% & 0\% \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 244 & 0 & 0 & 825 & 549 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 105.7\% ICU Level of Service G

Analysis Period (min) 15

HCM 2010 TWSC
16: Route 138 \& Neponset Valley Pkwy.



\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton 2018 Existing Conditions - PM Peak Hour
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & \(\rightarrow\) & & \(\checkmark\) & & & 4 & \(\dagger\) & 1 & & & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \$ & & & \(\ddagger\) & & & \& & \\
\hline Traffic Volume (vph) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Future Volume (vph) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Satd. Flow (prot) & 0 & 1574 & 0 & 0 & 1526 & 0 & 0 & 1587 & 0 & 0 & 1556 & 0 \\
\hline Flt Permitted & & 0.927 & & & 0.974 & & & 0.978 & & & 0.992 & \\
\hline Satd. Flow (perm) & 0 & 1472 & 0 & 0 & 1492 & 0 & 0 & 1555 & 0 & 0 & 1545 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & & & 1 & & & & & & \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 7\% & 1\% & 0\% & 9\% & 5\% & 0\% & 0\% & 3\% & 10\% & 0\% & 5\% & 4\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 174 & 0 & 0 & 153 & 0 & 0 & 522 & 0 & 0 & 571 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (\%) & 35.7\% & 35.7\% & & 35.7\% & 35.7\% & & 64.3\% & 64.3\% & & 64.3\% & 64.3\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 11.8 & & & 11.8 & & & 34.5 & & & 34.5 & \\
\hline Actuated g/C Ratio & & 0.22 & & & 0.22 & & & 0.65 & & & 0.65 & \\
\hline v/c Ratio & & 0.53 & & & 0.47 & & & 0.52 & & & 0.57 & \\
\hline Control Delay & & 26.2 & & & 24.4 & & & 10.7 & & & 11.7 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 26.2 & & & 24.4 & & & 10.7 & & & 11.7 & \\
\hline LOS & & C & & & C & & & B & & & B & \\
\hline Approach Delay & & 26.2 & & & 24.4 & & & 10.7 & & & 11.7 & \\
\hline Approach LOS & & C & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 49 & & & 43 & & & 95 & & & 110 & \\
\hline Queue Length 95th (ft) & & 114 & & & 101 & & & 227 & & & 262 & \\
\hline Internal Link Dist (ft) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 575 & & & 582 & & & 1145 & & & 1138 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.30 & & & 0.26 & & & 0.46 & & & 0.50 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 70 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 53.3
Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.57
Intersection Signal Delay: 14.4 Intersection LOS: B
Intersection Capacity Utilization 66.6\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{*}{*}\) & \(\rightarrow\) & 7 & & & 4 & 4 & \(\dagger\) & \% & * & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \& & & & \& & & & \& & \\
\hline Traffic Volume (veh/h) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Future Volume (veh/h) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q, veh & 0 & 25 & 0 & 0 & 15 & 0 & 0 & 15 & 0 & 0 & 40 & 0 \\
\hline Ped-Bike Adj (A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1666 & 1700 & 1700 & 1628 & 1700 & 1700 & 1650 & 1700 & 1700 & 1621 & 1700 \\
\hline Adj Flow Rate, veh/h & 32 & 126 & 16 & 11 & 116 & 26 & 16 & 495 & 11 & 8 & 537 & 26 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 1 & 1 & 1 & 5 & 5 & 5 & 3 & 3 & 3 & 5 & 5 & 5 \\
\hline Opposing Right Turn Influence & Yes & & & Yes & & & Yes & & & Yes & & \\
\hline Cap, veh/h & 99 & 276 & 19 & 80 & 274 & 35 & 80 & 921 & 16 & 65 & 895 & 35 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Prop Arrive On Green & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.59 & 0.59 & 0.59 & 0.59 & 0.59 & 0.59 \\
\hline Ln Grp Delay, s/veh & 71.8 & 0.0 & 0.0 & 41.7 & 0.0 & 0.0 & 11.2 & 0.0 & 0.0 & 40.3 & 0.0 & 0.0 \\
\hline Ln Grp LOS & E & & & D & & & B & & & D & & \\
\hline Approach Vol, veh/h & & 174 & & & 153 & & & 522 & & & 571 & \\
\hline Approach Delay, s/veh & & 71.8 & & & 41.7 & & & 11.2 & & & 40.3 & \\
\hline Approach LOS & & E & & & D & & & B & & & D & \\
\hline Timer: & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & \\
\hline Assigned Phs & & & 2 & & 4 & & 6 & & 8 & & & \\
\hline Case No & & & 8.0 & & 8.0 & & 8.0 & & 8.0 & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & & 37.0 & & 13.5 & & 37.0 & & 13.5 & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & \\
\hline Max Green (Gmax), s & & & 38.0 & & 20.0 & & 38.0 & & 20.0 & & & \\
\hline Max Allow Headway (MAH), s & & & 5.2 & & 5.3 & & 5.2 & & 5.3 & & & \\
\hline Max Q Clear ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & & 11.5 & & 7.0 & & 13.3 & & 6.5 & & & \\
\hline Green Ext Time (g_e), s & & & 8.0 & & 1.5 & & 7.9 & & 1.6 & & & \\
\hline Prob of Phs Call (p_c) & & & 1.00 & & 0.99 & & 1.00 & & 0.99 & & & \\
\hline Prob of Max Out (p_x) & & & 0.13 & & 0.07 & & 0.15 & & 0.06 & & & \\
\hline \multicolumn{13}{|l|}{Left-Turn Movement Data} \\
\hline Assigned Mvmt & & & 5 & & 7 & & 1 & & 3 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 17 & & 186 & & 6 & & 52 & & & \\
\hline \multicolumn{13}{|l|}{Through Movement Data} \\
\hline Assigned Mvmt & & & 2 & & 4 & & 6 & & 8 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 1575 & & 1264 & & 1524 & & 1248 & & & \\
\hline \multicolumn{13}{|l|}{Right-Turn Movement Data} \\
\hline Assigned Mvmt & & & 12 & & 14 & & 16 & & 18 & & & \\
\hline Mvmt Sat Flow, veh/h & & & 34 & & 147 & & 73 & & 266 & & & \\
\hline \multicolumn{13}{|l|}{Left Lane Group Data} \\
\hline Assigned Mvmt & & 0 & 5 & 0 & 7 & 0 & 1 & 0 & 3 & & & \\
\hline Lane Assignment & & & L+T+R & & L+T+R & & \(L+T+R\) & & L+T+R & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Lanes in Grp & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
Grp Vol (v), veh/h & 0 & 522 & 0 & 174 & 0 & 571 & 0 & 153 \\
Grp Sat Flow (s), veh/h/ln & 0 & 1627 & 0 & 1596 & 0 & 1603 & 0 & 1567 \\
Q Serve Time (g_s), s & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\
Cycle Q Clear Time (g_c), s & 0.0 & 9.5 & 0.0 & 5.0 & 0.0 & 11.3 & 0.0 & 4.5 \\
\hline Perm LT Sat Flow (s_I), veh/h/ln & 0 & 861 & 0 & 1264 & 0 & 907 & 0 & 1264 \\
Shared LT Sat Flow (s_sh), veh/h/ln & 0 & 1647 & 0 & 1651 & 0 & 1620 & 0 & 1622 \\
Perm LT Eff Green (g_p), s & 0.0 & 30.0 & 0.0 & 8.5 & 0.0 & 30.0 & 0.0 & 8.5 \\
\hline Perm LT Serve Time (g_u), s & 0.0 & 18.7 & 0.0 & 3.9 & 0.0 & 20.5 & 0.0 & 3.4 \\
Perm LT Q Serve Time (g_ps), s & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\
Time to First Blk (g_f), s & 0.0 & 19.4 & 0.0 & 3.0 & 0.0 & 22.1 & 0.0 & 4.5 \\
Serve Time pre Blk (g_fs), s & 0.0 & 9.5 & 0.0 & 3.0 & 0.0 & 11.3 & 0.0 & 4.5 \\
Prop LT Inside Lane (P_L) & 0.00 & 0.03 & 0.00 & 0.18 & 0.00 & 0.01 & 0.00 & 0.07 \\
\hline Lane Grp Cap (c), veh/h & 0 & 1026 & 0 & 400 & 0 & 982 & 0 & 368 \\
V/C Ratio (X) & 0.00 & 0.51 & 0.00 & 0.43 & 0.00 & 0.58 & 0.00 & 0.42 \\
Avail Cap (c_a), veh/h & 0 & 1294 & 0 & 705 & 0 & 1277 & 0 & 692 \\
Upstream Filter (I) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
Uniform Delay (d1), s/veh & 0.0 & 7.6 & 0.0 & 21.4 & 0.0 & 11.2 & 0.0 & 20.5 \\
Incr Delay (d2), s/veh & 0.0 & 0.4 & 0.0 & 0.7 & 0.0 & 0.5 & 0.0 & 0.7 \\
\hline Initial Q Delay (d3), s/veh & 0.0 & 3.1 & 0.0 & 49.7 & 0.0 & 28.6 & 0.0 & 20.4 \\
\hline Control Delay (d), s/veh & 0.0 & 11.2 & 0.0 & 71.8 & 0.0 & 40.3 & 0.0 & 41.7 \\
1st-Term Q (Q1), veh/ln & 0.0 & 6.2 & 0.0 & 4.5 & 0.0 & 10.7 & 0.0 & 3.3 \\
2nd-Term Q (Q2), veh/ln & 0.0 & 0.1 & 0.0 & 0.1 & 0.0 & 0.1 & 0.0 & 0.1 \\
3rd-Term Q (Q3), veh/ln & 0.0 & 0.9 & 0.0 & 5.5 & 0.0 & 7.8 & 0.0 & 2.1 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\%ole Back of Q (50\%), veh/ln & 0.0 & 7.2 & 0.0 & 10.1 & 0.0 & 18.6 & 0.0 & 5.4 \\
\%ile Storage Ratio (RQ\%) & 0.00 & 0.16 & 0.00 & 0.24 & 0.00 & 0.40 & 0.00 & 0.17 \\
Initial Q (Qb), veh & 0.0 & 15.0 & 0.0 & 25.0 & 0.0 & 40.0 & 0.0 & 15.0 \\
Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Sat Delay (ds), s/veh & 0.0 & 16.9 & 0.0 & 25.9 & 0.0 & 17.0 & 0.0 & 26.0 \\
Sat Q (Qs), veh & 0.0 & 18.0 & 0.0 & 9.9 & 0.0 & 17.8 & 0.0 & 9.9 \\
Sat Cap (cs), veh/h & 0 & 938 & 0 & 518 & 0 & 928 & 0 & 515 \\
Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.1 & 0.0 & 0.1 & 0.0 & 0.1 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Middle Lane Group Data & 0 & 2 & 0 & 4 & 0 & 6 & 0 & 8 \\
\hline Assigned Mvmt & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lane Assignment & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lanes in Grp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Grp Vol (v), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Grp Sat Flow (s), veh/h/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Q Serve Time (g_s), s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Cycle Q Clear Time (g_c), s & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Upstream Filter (I) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & & & & & & & \\
1st-Term Q (Q1), veh/ln & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - PM Peak Hour
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2nd-Term Q (Q2), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 3rd-Term Q (Q3), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Storage Ratio (RQ\%) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Initial Q (Qb), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Delay (ds), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Q (Qs), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Cap (cs), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Right Lane Group Data & & & & & & & & \\
\hline Assigned Mvmt & 0 & 12 & 0 & 14 & 0 & 16 & 0 & 18 \\
\hline Lane Assignment & & & & & & & & \\
\hline Lanes in Grp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Grp Vol (v), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Grp Sat Flow (s), veh/h/ln & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Q Serve Time (g_s), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear Time (g_c), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prot RT Sat Flow (s_R), veh/h/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prot RT Eff Green (g_R), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prop RT Outside Lane (P_R) & 0.00 & 0.02 & 0.00 & 0.09 & 0.00 & 0.05 & 0.00 & 0.17 \\
\hline Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Avail Cap (c_a), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Upstream Filter (I) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1st-Term Q (Q1), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2nd-Term Q (Q2), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 3rd-Term Q (Q3), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Storage Ratio (RQ\%) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Initial Q (Qb), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Delay (ds), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Q (Qs), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Cap (cs), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & 33.6 & & & & & & \\
\hline HCM 2010 LOS & & C & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 6.6 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & 个 & \\
Traffic Vol, veh/h & 50 & 100 & 80 & 460 & 440 & 25 \\
Future Vol, veh/h & 50 & 100 & 80 & 460 & 440 & 25 \\
Conflicting Peds, \#/hr & 0 & 0 & 1 & 0 & 0 & 1 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 1 & 3 & 6 & 0 \\
Mvmt Flow & 54 & 108 & 86 & 495 & 473 & 27
\end{tabular}


HCMLOS E


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - PM Peak Hour
}

Synchro 9 Report
Page 25
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
4
\] & T & 4 & & & \(0^{4}\) & & \(\frac{1}{7}\) & W & & + & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL2 & NBL & NBT & NBR & SBL & SBT & SBR2 & SEL & SET & SER \\
\hline Lane Configurations & * & & & & \& & & & \& & & & \$ & \\
\hline Traffic Volume (vph) & 2 & 2 & 2 & 35 & 440 & 35 & 7 & 410 & 6 & 6 & 30 & 15 \\
\hline Future Volume (vph) & 2 & 2 & 2 & 35 & 440 & 35 & 7 & 410 & 6 & 6 & 30 & 15 \\
\hline Satd. Flow (prot) & 1495 & 0 & 0 & 0 & 1578 & 0 & 0 & 1544 & 0 & 0 & 1514 & 0 \\
\hline Flt Permitted & 0.976 & & & & 0.947 & & & 0.990 & & & 0.955 & \\
\hline Satd. Flow (perm) & 1495 & 0 & 0 & 0 & 1500 & 0 & 0 & 1530 & 0 & 0 & 1455 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & & 1 & & & & & 1 & & & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 0\% & 3\% & 3\% & 14\% & 6\% & 0\% & 0\% & 6\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 4 & 0 & 0 & 0 & 551 & 0 & 0 & 455 & 0 & 0 & 54 & 0 \\
\hline Turn Type & Prot & & Perm & Perm & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 10 & & & & 2 & & & 6 & & & 4 & \\
\hline Permitted Phases & & & 2 & 2 & & & 6 & & & 4 & & \\
\hline Detector Phase & 10 & & 2 & 2 & 2 & & 6 & 6 & & 4 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 9.0 & & 28.0 & 28.0 & 28.0 & & 28.0 & 28.0 & & 15.0 & 15.0 & \\
\hline Total Split (s) & 10.0 & & 40.0 & 40.0 & 40.0 & & 40.0 & 40.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 14.3\% & & 57.1\% & 57.1\% & 57.1\% & & 57.1\% & 57.1\% & & 28.6\% & 28.6\% & \\
\hline Yellow Time (s) & 4.0 & & 5.0 & 5.0 & 5.0 & & 5.0 & 5.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 1.0 & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 5.0 & & & & 6.0 & & & 6.0 & & & 5.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & & Min & Min & Min & & Min & Min & & None & None & \\
\hline Act Effct Green (s) & 5.2 & & & & 34.0 & & & 34.0 & & & 10.9 & \\
\hline Actuated g/C Ratio & 0.11 & & & & 0.71 & & & 0.71 & & & 0.23 & \\
\hline v/c Ratio & 0.02 & & & & 0.52 & & & 0.42 & & & 0.16 & \\
\hline Control Delay & 25.2 & & & & 10.8 & & & 8.9 & & & 19.5 & \\
\hline Queue Delay & 0.0 & & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & 25.2 & & & & 10.8 & & & 8.9 & & & 19.5 & \\
\hline LOS & C & & & & B & & & A & & & B & \\
\hline Approach Delay & 25.3 & & & & 10.8 & & & 8.9 & & & 19.5 & \\
\hline Approach LOS & C & & & & B & & & A & & & B & \\
\hline Queue Length 50th (ft) & 1 & & & & 91 & & & 67 & & & 11 & \\
\hline Queue Length 95th (ft) & 10 & & & & \#299 & & & 217 & & & 48 & \\
\hline Internal Link Dist (ft) & 1290 & & & & 1586 & & & 2667 & & & 689 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & 163 & & & & 1179 & & & 1203 & & & 477 & \\
\hline Starvation Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & 0.02 & & & & 0.47 & & & 0.38 & & & 0.11 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 70 & & & & & & & & & & & & \\
\hline
\end{tabular}


Actuated Cycle Length: 47.7
Natural Cycle: 60
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 11.3 Intersection LOS: B
Intersection Capacity Utilization 79.3\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
y
\] & \(\rightarrow\) & & & & \[
4
\] & 4 & 4 & 7 & & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 4 & & & \(\uparrow\) & & & \$ & & & 4 & \\
\hline Traffic Volume (vph) & 5 & 35 & 3 & 7 & 35 & 5 & 1 & 450 & 20 & 5 & 410 & 9 \\
\hline Future Volume (vph) & 5 & 35 & 3 & 7 & 35 & 5 & 1 & 450 & 20 & 5 & 410 & 9 \\
\hline Satd. Flow (prot) & 0 & 1581 & 0 & 0 & 1574 & 0 & 0 & 1587 & 0 & 0 & 1561 & 0 \\
\hline Flt Permitted & & 0.953 & & & 0.935 & & & 0.999 & & & 0.995 & \\
\hline Satd. Flow (perm) & 0 & 1514 & 0 & 0 & 1483 & 0 & 0 & 1585 & 0 & 0 & 1554 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & & & & & 2 & & 1 & 1 & & 2 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 3\% & 0\% & 0\% & 3\% & 0\% & 0\% & 3\% & 0\% & 0\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 46 & 0 & 0 & 51 & 0 & 0 & 507 & 0 & 0 & 456 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (\%) & 23.5\% & 23.5\% & & 23.5\% & 23.5\% & & 52.9\% & 52.9\% & & 52.9\% & 52.9\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 8.5 & & & 8.5 & & & 37.0 & & & 37.0 & \\
\hline Actuated g/C Ratio & & 0.18 & & & 0.18 & & & 0.80 & & & 0.80 & \\
\hline v/c Ratio & & 0.17 & & & 0.19 & & & 0.40 & & & 0.37 & \\
\hline Control Delay & & 21.8 & & & 22.1 & & & 8.4 & & & 8.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 21.8 & & & 22.1 & & & 8.4 & & & 8.0 & \\
\hline LOS & & C & & & C & & & A & & & A & \\
\hline Approach Delay & & 21.8 & & & 22.1 & & & 8.4 & & & 8.0 & \\
\hline Approach LOS & & C & & & C & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 5 & & & 6 & & & 0 & & & 0 & \\
\hline Queue Length 95th (ft) & & 52 & & & 56 & & & 298 & & & 259 & \\
\hline Internal Link Dist (ft) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 549 & & & 538 & & & 1389 & & & 1362 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.08 & & & 0.09 & & & 0.37 & & & 0.33 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 85 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Lane Group \\
\hline Lane Configurations \\
\hline Traffic Volume (vph) \\
Future Volume (vph) \\
Satd. Flow (prot) \\
Flt Permitted \\
Satd. Flow (perm) \\
Satd. Flow (RTOR) \\
Confl. Peds. (\#/hr) \\
Peak Hour Factor \\
Heavy Vehicles (\%) \\
Shared Lane Traffic (\%) \\
Lane Group Flow (vph) \\
Turn Type \\
Protected Phases \\
Permitted Phases \\
Detector Phase \\
Switch Phase \\
Minimum Initial (s) \\
Minimum Split (s) \\
Total Split (s) \\
Total Split (\%) \\
Yellow Time (s) \\
All-Red Time (s) \\
Lost Time Adjust (s) \\
Total Lost Time (s) \\
\hline Lead/Lag \\
Lead-Lag Optimize? \\
Recall Mode \\
Act Effct Green (s) \\
Actuated g/C Ratio \\
v/c Ratio \\
Control Delay \\
Queue Delay \\
Total Delay \\
LOS \\
Approach Delay \\
Approach LOS \\
Queue Length 50th (ft) \\
Queue Length 95th (ft) \\
Internal Link Dist (ft) \\
Turn Bay Length (ft) \\
Base Capacity (vph) \\
Starvation Cap Reductn \\
\hline
\end{tabular}

Actuated Cycle Length: 46.3
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.40
Intersection Signal Delay: 9.5 Intersection LOS: A
Intersection Capacity Utilization 43.9\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 20: Route 138 \& Robbins St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & & 4 & \(\dagger\) & & & & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & & & \$ & & & \$ & \\
\hline Traffic Volume (vph) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Future Volume (vph) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Satd. Flow (prot) & 0 & 1440 & 0 & 0 & 1426 & 0 & 0 & 1375 & 0 & 0 & 1354 & 0 \\
\hline Flt Permitted & & 0.988 & & & 0.971 & & & 0.997 & & & 0.975 & \\
\hline Satd. Flow (perm) & 0 & 1431 & 0 & 0 & 1422 & 0 & 0 & 1371 & 0 & 0 & 1323 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 6 & & 1 & 1 & & 6 & 3 & & 5 & 5 & & 3 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 33\% & 9\% & 0\% & 6\% & 0\% & 3\% & 4\% & 0\% & 6\% & 0\% \\
\hline Parking (\#/hr) & & & & & & & & 5 & & & 5 & \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 12 & 0 & 0 & 63 & 0 & 0 & 530 & 0 & 0 & 470 & 0 \\
\hline Turn Type & Split & NA & & Split & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Minimum Split (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 23.0 & 23.0 & & 23.0 & 23.0 & \\
\hline Total Split (\%) & 25.5\% & 25.5\% & & 25.5\% & 25.5\% & & 48.9\% & 48.9\% & & 48.9\% & 48.9\% & \\
\hline Yellow Time (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 5.1 & & & 5.1 & & & 29.2 & & & 29.2 & \\
\hline Actuated g/C Ratio & & 0.12 & & & 0.12 & & & 0.69 & & & 0.69 & \\
\hline v/c Ratio & & 0.07 & & & 0.37 & & & 0.56 & & & 0.51 & \\
\hline Control Delay & & 18.8 & & & 25.1 & & & 15.8 & & & 15.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 18.8 & & & 25.1 & & & 15.8 & & & 15.0 & \\
\hline LOS & & B & & & C & & & B & & & B & \\
\hline Approach Delay & & 18.8 & & & 25.1 & & & 15.8 & & & 15.0 & \\
\hline Approach LOS & & B & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 3 & & & 18 & & & 78 & & & 66 & \\
\hline Queue Length 95th (ft) & & 15 & & & \#47 & & & \#324 & & & \#286 & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 173 & & & 171 & & & 949 & & & 916 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.07 & & & 0.37 & & & 0.56 & & & 0.51 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 47
Actuated Cycle Length: 42.2
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.56
Intersection Signal Delay: \(16.1 \quad\) Intersection LOS: B
Intersection Capacity Utilization 56.4\% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & & & & & 4 & \(\dagger\) & \% & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & 4 & & & * & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Future Volume (veh/h) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q, veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 5 & 0 \\
\hline Ped-Bike Adj (A_pbT) & 1.00 & & 0.97 & 1.00 & & 0.97 & 1.00 & & 0.99 & 1.00 & & 0.99 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1570 & 1700 & 1700 & 1592 & 1700 & 1700 & 1649 & 1700 & 1700 & 1608 & 1700 \\
\hline Adj Flow Rate, veh/h & 3 & 6 & 3 & 37 & 10 & 16 & 3 & 479 & 48 & 16 & 447 & 7 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 & 6 & 6 & 6 \\
\hline Opposing Right Turn Influence & Yes & & & Yes & & & Yes & & & Yes & & \\
\hline Cap, veh/h & 5 & 9 & 5 & 44 & 12 & 19 & 95 & 578 & 54 & 104 & 606 & 9 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Prop Arrive On Green & 0.01 & 0.01 & 0.01 & 0.05 & 0.05 & 0.05 & 0.39 & 0.39 & 0.39 & 0.39 & 0.39 & 0.39 \\
\hline Ln Grp Delay, s/veh & 51.4 & 0.0 & 0.0 & 39.3 & 0.0 & 0.0 & 15.4 & 0.0 & 0.0 & 13.2 & 0.0 & 0.0 \\
\hline Ln Grp LOS & D & & & D & & & B & & & B & & \\
\hline Approach Vol, veh/h & & 12 & & & 63 & & & 530 & & & 470 & \\
\hline Approach Delay, s/veh & & 51.4 & & & 39.3 & & & 15.4 & & & 13.2 & \\
\hline Approach LOS & & D & & & D & & & B & & & B & \\
\hline Timer: & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & \\
\hline Assigned Phs & & & 2 & 8 & 4 & & 6 & & & & & \\
\hline Case No & & & 8.0 & 12.0 & 12.0 & & 8.0 & & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & & 21.9 & 9.0 & 7.5 & & 21.9 & & & & & \\
\hline Change Period (Y+Rc), s & & & 7.0 & 7.0 & 7.0 & & 7.0 & & & & & \\
\hline Max Green (Gmax), s & & & 16.0 & 5.0 & 5.0 & & 16.0 & & & & & \\
\hline Max Allow Headway (MAH), s & & & 5.2 & 5.4 & 5.4 & & 5.2 & & & & & \\
\hline Max Q Clear ( \(\mathrm{g}_{\text {c }} \mathrm{c}+11\) ), s & & & 13.4 & 3.6 & 2.3 & & 11.7 & & & & & \\
\hline Green Ext Time (g_e), s & & & 1.5 & 0.0 & 0.0 & & 2.4 & & & & & \\
\hline Prob of Phs Call (p_c) & & & 1.00 & 0.51 & 0.15 & & 1.00 & & & & & \\
\hline Prob of Max Out (p_x) & & & 1.00 & 1.00 & 1.00 & & 1.00 & & & & & \\
\hline \multicolumn{13}{|l|}{Left-Turn Movement Data} \\
\hline Assigned Mvmt & & & 5 & 3 & 7 & & 1 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 2 & 863 & 369 & & 20 & & & & & \\
\hline \multicolumn{13}{|l|}{Through Movement Data} \\
\hline Assigned Mvmt & & & 2 & 8 & 4 & & 6 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 1472 & 233 & 737 & & 1549 & & & & & \\
\hline \multicolumn{13}{|l|}{Right-Turn Movement Data} \\
\hline Assigned Mvmt & & & 12 & 18 & 14 & & 16 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 147 & 373 & 369 & & 24 & & & & & \\
\hline \multicolumn{13}{|l|}{Left Lane Group Data} \\
\hline Assigned Mvmt & & 0 & 5 & 3 & 7 & 0 & 1 & 0 & 0 & & & \\
\hline Lane Assignment & & & L+T+R & L+T+R & L+T+R & & + + + \({ }^{\text {R }}\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Lanes in Grp & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
Grp Vol (v), veh/h & 0 & 530 & 63 & 12 & 0 & 470 & 0 & 0 \\
Grp Sat Flow (s), veh/h/ln & 0 & 1621 & 1470 & 1474 & 0 & 1593 & 0 & 0 \\
Q Serve Time (g_s), s & 0.0 & 0.0 & 1.6 & 0.3 & 0.0 & 0.0 & 0.0 & 0.0 \\
Cycle Q Clear Time (g_c), s & 0.0 & 11.4 & 1.6 & 0.3 & 0.0 & 9.7 & 0.0 & 0.0 \\
\hline Perm LT Sat Flow (s_l), veh/h/ln & 0 & 950 & 0 & 0 & 0 & 888 & 0 & 0 \\
Shared LT Sat Flow (s_sh), veh/h/ln & 0 & 1649 & 0 & 0 & 0 & 1605 & 0 & 0 \\
Perm LT Eff Green (g_p), s & 0.0 & 14.9 & 0.0 & 0.0 & 0.0 & 14.9 & 0.0 & 0.0 \\
\hline Perm LT Serve Time (g_u), s & 0.0 & 5.2 & 0.0 & 0.0 & 0.0 & 3.5 & 0.0 & 0.0 \\
Perm LT Q Serve Time (g_ps), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Time to First Blk (g_f), s & 0.0 & 11.5 & 0.0 & 0.0 & 0.0 & 9.2 & 0.0 & 0.0 \\
Serve Time pre Blk (g_fs), s & 0.0 & 11.4 & 0.0 & 0.0 & 0.0 & 9.2 & 0.0 & 0.0 \\
Prop LT Inside Lane (P_L) & 0.00 & 0.01 & 0.59 & 0.25 & 0.00 & 0.03 & 0.00 & 0.00 \\
\hline Lane Grp Cap (c), veh/h & 0 & 727 & 75 & 18 & 0 & 718 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 0.73 & 0.84 & 0.65 & 0.00 & 0.65 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0 & 771 & 192 & 192 & 0 & 761 & 0 & 0 \\
Upstream Filter (l) & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
Uniform Delay (d1), s/veh & 0.0 & 10.8 & 18.1 & 18.9 & 0.0 & 10.3 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 3.3 & 21.2 & 32.5 & 0.0 & 1.9 & 0.0 & 0.0 \\
\hline Initial Q Delay (d3), s/veh & 0.0 & 1.3 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & 0.0 & 15.4 & 39.3 & 51.4 & 0.0 & 13.2 & 0.0 & 0.0 \\
1st-Term Q (Q1), veh/ln & 0.0 & 5.3 & 0.6 & 0.1 & 0.0 & 4.4 & 0.0 & 0.0 \\
2nd-Term Q (Q2), veh/ln & 0.0 & 0.7 & 0.4 & 0.2 & 0.0 & 0.4 & 0.0 & 0.0 \\
3rd-Term Q (Q3), veh/ln & 0.0 & 0.3 & 0.0 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\%ile Back of Q (50\%), veh/ln & 0.0 & 6.2 & 1.1 & 0.3 & 0.0 & 5.0 & 0.0 & 0.0 \\
\%ile Storage Ratio (RQ\%) & 0.00 & 0.05 & 0.04 & 0.01 & 0.00 & 0.36 & 0.00 & 0.00 \\
Initial Q (Qb), veh & 0.0 & 5.0 & 0.0 & 0.0 & 0.0 & 5.0 & 0.0 & 0.0 \\
Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Sat Delay (ds), s/veh & 0.0 & 12.7 & 18.6 & 19.4 & 0.0 & 12.7 & 0.0 & 0.0 \\
Sat Q (Qs), veh & 0.0 & 8.0 & 0.7 & 0.1 & 0.0 & 7.8 & 0.0 & 0.0 \\
Sat Cap (cs), veh/h & 0 & 757 & 74 & 18 & 0 & 742 & 0 & 0 \\
Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Middle Lane Group Data & 0 & 2 & 8 & 4 & 0 & 6 & 0 & 0 \\
\hline Assigned Mvmt & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lane Assignment & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lanes in Grp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Grp Vol (v), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Grp Sat Flow (s), veh/h/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Q Serve Time (g_s), s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Cycle Q Clear Time (g_c), s & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Upstream Filter (I) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & & & & & & & \\
1st-Term Q (Q1), veh/ln & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & 4 & \(\dagger\) & / \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \({ }_{*}{ }^{1}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 9 & 3 & 4 & 460 & 450 & 15 \\
\hline Future Volume (vph) & 9 & 3 & 4 & 460 & 450 & 15 \\
\hline Satd. Flow (prot) & 1414 & 0 & 0 & 1581 & 1576 & 0 \\
\hline Flt Permitted & 0.963 & & & & & \\
\hline Satd. Flow (perm) & 1414 & 0 & 0 & 1581 & 1576 & 0 \\
\hline Confl. Peds. (\#/hr) & 3 & 11 & 5 & & & 5 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 11\% & 0\% & 0\% & 4\% & 4\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 13 & 0 & 0 & 504 & 505 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization 43.7\%} & & \multicolumn{3}{|r|}{ICU Level of Service A} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Major/Minor & Minor2 & Major1 & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 1014 & 513 & 510 & 0 & - & 0 \\
\(\quad\) Stage 1 & 502 & - & - & - & - & - \\
Stage 2 & 512 & - & - & - & - & - \\
Critical Hdwy & 6.51 & 6.2 & 4.1 & - & - & - \\
Critical Hdwy Stg 1 & 5.51 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.51 & - & - & - & - & - \\
Follow-up Hdwy & 3.599 & 3.3 & 2.2 & - & - & - \\
Pot Cap-1 Maneuver & 254 & \(* 109\) & \(* 163\) & - & - & - \\
\(\quad\) Stage 1 & 590 & - & - & - & - & - \\
\(\quad\) Stage 2 & 584 & - & - & - & - & - \\
Platoon blocked, \% & & 1 & 1 & - & - & - \\
Mov Cap-1 Maneuver & 243 & \(* 107\) & \(* 162\) & - & - & - \\
Mov Cap-2 Maneuver & 243 & - & - & - & - & - \\
\(\quad\) Stage 1 & 587 & - & - & - & - & - \\
Stage 2 & 562 & - & - & - & - & - \\
& & & & & &
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, \(s\) & 26.1 & 0.2 & 0
\end{tabular}

HCM LOS D
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & *162 & -184 & - & - \\
HCM Lane V/C Ratio & 0.027 & -0.071 & - & - \\
HCM Control Delay (s) & 27.8 & 0 & 26.1 & - & - \\
HCM Lane LOS & D & A & D & - & - \\
HCM 95th \%tile Q(veh) & 0.1 & - & 0.2 & - & -
\end{tabular}

\section*{Notes}
\(\sim\) : Volume exceeds capacity \(\$\) : Delay exceeds \(300 s \quad+\) : Computation Not Defined \(\quad\) : All major volume in platoon

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - PM Peak Hour
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(>\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \$ & & & \({ }_{\$}\) & \\
\hline Traffic Volume (vph) & 3 & 3 & 10 & 3 & 1 & 5 & 10 & 460 & 9 & 7 & 440 & 1 \\
\hline Future Volume (vph) & 3 & 3 & 10 & 3 & 1 & 5 & 10 & 460 & 9 & 7 & 440 & 1 \\
\hline Satd. Flow (prot) & 0 & 1412 & 0 & 0 & 1496 & 0 & 0 & 1592 & 0 & 0 & 1565 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.984 & & & 0.999 & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1412 & 0 & 0 & 1496 & 0 & 0 & 1592 & 0 & 0 & 1565 & 0 \\
\hline Confl. Peds. (\#hr) & 66 & & & & & 66 & 23 & & 66 & 66 & & 23 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 9\% & 0\% & 0\% & 0\% & 0\% & 3\% & 0\% & 0\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 16 & 0 & 0 & 9 & 0 & 0 & 493 & 0 & 0 & 462 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 52.9\%
ICU Level of Service A
Analysis Period (min) 15
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor \(\quad\) N & Minor2 & \multicolumn{4}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{3}{|c|}{Major2} & \\
\hline Conflicting Flow All & 1061 & 1062 & 477 & 1040 & 1057 & 611 & 478 & 0 & 0 & 550 & 0 & 0 \\
\hline Stage 1 & 492 & 492 & - & 565 & 565 & & - & - & - & - & - & - \\
\hline Stage 2 & 569 & 570 & & 475 & 492 & & - & - & - & - & - & - \\
\hline Critical Hdwy & 7.1 & 6.5 & 6.29 & 7.1 & 6.5 & 6.2 & 4.1 & - & - & 4.1 & - & - \\
\hline Critical Hdwy Stg 1 & 6.1 & 5.5 & - & 6.1 & 5.5 & - & - & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 6.1 & 5.5 & - & 6.1 & 5.5 & - & - & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 4 & 3.381 & 3.5 & 4 & 3.3 & 2.2 & - & - & 2.2 & - & - \\
\hline Pot Cap-1 Maneuver & 203 & 225 & *128 & 210 & 227 & *131 & *245 & - & & *245 & - & - \\
\hline Stage 1 & 562 & 551 & - & 513 & 511 & - & - & - & - & - & - & - \\
\hline Stage 2 & 511 & 509 & - & 574 & 551 & - & - & - & - & - & - & - \\
\hline Platoon blocked, \% & & & 1 & & & 1 & 1 & - & - & 1 & - & - \\
\hline Mov Cap-1 Maneuver & 165 & 188 & *125 & 166 & 190 & *116 & *245 & - & & *231 & - & - \\
\hline Mov Cap-2 Maneuver & 165 & 188 & - & 166 & 190 & - & - & - & - & - & - & - \\
\hline Stage 1 & 520 & 518 & - & 456 & 455 & & - & - & - & - & - & - \\
\hline Stage 2 & 433 & 453 & - & 502 & 518 & & - & - & - & - & - & - \\
\hline Approach & EB & & & WB & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 34.1 & & & 33.6 & & & 0.4 & & & 0.3 & & \\
\hline HCM LOS & D & & & D & & & & & & & & \\
\hline Minor Lane/Major Mvmt & & NBL & NBT & NBR & EBLn1V & NBLn1 & SBL & SBT & SBR & & & \\
\hline Capacity (veh/h) & & * 245 & - & - & 140 & 135 & * 231 & - & - & & & \\
\hline HCM Lane V/C Ratio & & 0.042 & - & & 0.118 & 0.069 & 0.031 & - & - & & & \\
\hline HCM Control Delay (s) & & 20.3 & 0 & - & 34.1 & 33.6 & 21.1 & 0 & - & & & \\
\hline HCM Lane LOS & & C & A & - & D & D & C & A & - & & & \\
\hline HCM 95th \%tile Q(veh) & & 0.1 & - & & 0.4 & 0.2 & 0.1 & - & - & & & \\
\hline Notes & & & & & & & & & & & & \\
\hline \(\sim\) - Volume exceeds cap & apacity & \$: D & lay exc & eeds & 00s & +: Com & putation & Not D & fined & *: All & or v & me in platoon \\
\hline
\end{tabular}

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton 2018 Existing Conditions - PM Peak Hour
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
y
\] & \(\rightarrow\) & & & & & \[
4
\] & 9 & 7 & & \(\pm\) & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & & & & \(\uparrow\) & & & \({ }_{*}+\) & \\
\hline Traffic Volume (vph) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Future Volume (vph) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Satd. Flow (prot) & 0 & 1562 & 0 & 0 & 0 & 0 & 0 & 1578 & 0 & 0 & 1549 & 0 \\
\hline Flt Permitted & & 0.999 & & & & & & 0.998 & & & 0.990 & \\
\hline Satd. Flow (perm) & 0 & 1562 & 0 & 0 & 0 & 0 & 0 & 1574 & 0 & 0 & 1535 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 4 & & 4 & 2 & & 2 & 2 & & 2 & 1 & & 6 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 0\% & 4\% & 11\% & 2\% & 2\% & 2\% & 0\% & 3\% & 0\% & 17\% & 5\% & 5\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 181 & 0 & 0 & 0 & 0 & 0 & 471 & 0 & 0 & 500 & 0 \\
\hline Turn Type & Perm & NA & & & & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & & & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & & & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & & & & 35.0 & 35.0 & & 35.0 & 35.0 & \\
\hline Total Split (\%) & 41.7\% & 41.7\% & & & & & 58.3\% & 58.3\% & & 58.3\% & 58.3\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 10.8 & & & & & & 29.5 & & & 29.5 & \\
\hline Actuated g/C Ratio & & 0.23 & & & & & & 0.62 & & & 0.62 & \\
\hline v/c Ratio & & 0.51 & & & & & & 0.48 & & & 0.53 & \\
\hline Control Delay & & 21.4 & & & & & & 9.9 & & & 10.6 & \\
\hline Queue Delay & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 21.4 & & & & & & 9.9 & & & 10.6 & \\
\hline LOS & & C & & & & & & A & & & B & \\
\hline Approach Delay & & 21.4 & & & & & & 9.9 & & & 10.6 & \\
\hline Approach LOS & & C & & & & & & A & & & B & \\
\hline Queue Length 50th (ft) & & 41 & & & & & & 72 & & & 79 & \\
\hline Queue Length 95th (ft) & & 96 & & & & & & 177 & & & 197 & \\
\hline Internal Link Dist (ft) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 661 & & & & & & 1078 & & & 1052 & \\
\hline Starvation Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.27 & & & & & & 0.44 & & & 0.48 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 60 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 47.6
Natural Cycle: 45
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.53
Intersection Signal Delay: \(12.0 \quad\) Intersection LOS: B
Intersection Capacity Utilization 59.6\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 24: Route 138 \& Brook Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & &  & \(\dagger\) & \(p\) & & 1 & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & & & & \& & & & * & \\
\hline Traffic Volume (veh/h) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Future Volume (veh/h) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Number & 7 & 4 & 14 & & & & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q, veh & 0 & 10 & 0 & & & & 0 & 15 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj (A_pbT) & 1.00 & & 0.99 & & & & 1.00 & & 1.00 & 1.00 & & 0.99 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1631 & 1700 & & & & 1700 & 1655 & 1700 & 1700 & 1615 & 1700 \\
\hline Adj Flow Rate, veh/h & 5 & 167 & 9 & & & & 2 & 427 & 42 & 10 & 469 & 21 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & & & & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & & & & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 0 & 4 & 0 & & & & 3 & 3 & 3 & 5 & 5 & 5 \\
\hline Opposing Right Turn Influence & Yes & & & & & & Yes & & & Yes & & \\
\hline Cap, veh/h & 6 & 273 & 11 & & & & 84 & 849 & 75 & 88 & 867 & 35 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Prop Arrive On Green & 0.15 & 0.15 & 0.15 & & & & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 \\
\hline Ln Grp Delay, s/veh & 46.2 & 0.0 & 0.0 & & & & 10.2 & 0.0 & 0.0 & 11.1 & 0.0 & 0.0 \\
\hline Ln Grp LOS & D & & & & & & B & & & B & & \\
\hline Approach Vol, veh/h & & 181 & & & & & & 471 & & & 500 & \\
\hline Approach Delay, s/veh & & 46.2 & & & & & & 10.2 & & & 11.1 & \\
\hline Approach LOS & & D & & & & & & B & & & B & \\
\hline Timer: & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & \\
\hline Assigned Phs & & & 2 & & 4 & & 6 & & & & & \\
\hline Case No & & & 8.0 & & 12.0 & & 8.0 & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & & 30.0 & & 11.3 & & 30.0 & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & & 6.0 & & 5.0 & & 6.0 & & & & & \\
\hline Max Green (Gmax), s & & & 29.0 & & 20.0 & & 29.0 & & & & & \\
\hline Max Allow Headway (MAH), s & & & 5.2 & & 5.3 & & 5.2 & & & & & \\
\hline Max Q Clear ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & & 9.0 & & 6.4 & & 9.8 & & & & & \\
\hline Green Ext Time (g_e), s & & & 6.2 & & 0.8 & & 6.1 & & & & & \\
\hline Prob of Phs Call (p_c) & & & 1.00 & & 0.88 & & 1.00 & & & & & \\
\hline Prob of Max Out (p_x) & & & 0.17 & & 0.01 & & 0.19 & & & & & \\
\hline \multicolumn{13}{|l|}{Left-Turn Movement Data} \\
\hline Assigned Mvmt & & & 5 & & 7 & & 1 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 1 & & 45 & & 9 & & & & & \\
\hline \multicolumn{13}{|l|}{Through Movement Data} \\
\hline Assigned Mvmt & & & 2 & & 4 & & 6 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 1482 & & 1489 & & 1520 & & & & & \\
\hline \multicolumn{13}{|l|}{Right-Turn Movement Data} \\
\hline Assigned Mvmt & & & 12 & & 14 & & 16 & & & & & \\
\hline Mvmt Sat Flow, veh/h & & & 145 & & 80 & & 67 & & & & & \\
\hline \multicolumn{13}{|l|}{Left Lane Group Data} \\
\hline Assigned Mvmt & & 0 & 5 & 0 & 7 & 0 & 1 & 0 & 0 & & & \\
\hline Lane Assignment & & & L+T+R & & L+T+R & & L+T+R & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Lanes in Grp & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
Grp Vol (v), veh/h & 0 & 471 & 0 & 181 & 0 & 500 & 0 & 0 \\
Grp Sat Flow (s), veh/h/ln & 0 & 1628 & 0 & 1613 & 0 & 1596 & 0 & 0 \\
Q Serve Time (g_s), s & 0.0 & 0.0 & 0.0 & 4.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
Cycle Q Clear Time (g_c), s & 0.0 & 7.0 & 0.0 & 4.4 & 0.0 & 7.8 & 0.0 & 0.0 \\
\hline Perm LT Sat Flow (s_l), veh/h/ln & 0 & 919 & 0 & 0 & 0 & 938 & 0 & 0 \\
Shared LT Sat Flow (s_sh), veh/h/ln & 0 & 1655 & 0 & 0 & 0 & 1614 & 0 & 0 \\
Perm LT Eff Green (g_p), s & 0.0 & 24.0 & 0.0 & 0.0 & 0.0 & 24.0 & 0.0 & 0.0 \\
\hline Perm LT Serve Time (g_u), s & 0.0 & 16.2 & 0.0 & 0.0 & 0.0 & 17.0 & 0.0 & 0.0 \\
Perm LT Q Serve Time (g_ps), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Time to First Blk (g_f), s & 0.0 & 20.2 & 0.0 & 0.0 & 0.0 & 17.3 & 0.0 & 0.0 \\
Serve Time pre Blk (g_fs), s & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 & 7.8 & 0.0 & 0.0 \\
Prop LT Inside Lane (P_L) & 0.00 & 0.00 & 0.00 & 0.03 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline Lane Grp Cap (c), veh/h & 0 & 1007 & 0 & 278 & 0 & 985 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 0.47 & 0.00 & 0.65 & 0.00 & 0.51 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0 & 1231 & 0 & 782 & 0 & 1208 & 0 & 0 \\
Upstream Filter (l) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
Uniform Delay (d1), s/veh & 0.0 & 6.9 & 0.0 & 17.1 & 0.0 & 7.3 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 0.3 & 0.0 & 2.6 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline Initial Q Delay (d3), s/veh & 0.0 & 3.0 & 0.0 & 26.6 & 0.0 & 3.4 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & 0.0 & 10.2 & 0.0 & 46.2 & 0.0 & 11.1 & 0.0 & 0.0 \\
1st-Term Q (Q1), veh/ln & 0.0 & 4.7 & 0.0 & 2.7 & 0.0 & 5.2 & 0.0 & 0.0 \\
2nd-Term Q (Q2), veh/ln & 0.0 & 0.1 & 0.0 & 0.2 & 0.0 & 0.1 & 0.0 & 0.0 \\
3rd-Term Q (Q3), veh/ln & 0.0 & 0.8 & 0.0 & 2.1 & 0.0 & 0.9 & 0.0 & 0.0 \\
\%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\%ile Back of Q (50\%), veh/ln & 0.0 & 5.7 & 0.0 & 5.0 & 0.0 & 6.2 & 0.0 & 0.0 \\
\%ile Storage Ratio (RQ\%) & 0.00 & 0.30 & 0.00 & 0.13 & 0.00 & 0.15 & 0.00 & 0.00 \\
Initial Q (Qb), veh & 0.0 & 15.0 & 0.0 & 10.0 & 0.0 & 15.0 & 0.0 & 0.0 \\
Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Sat Delay (ds), s/veh & 0.0 & 16.5 & 0.0 & 20.0 & 0.0 & 16.5 & 0.0 & 0.0 \\
Sat Q (Qs), veh & 0.0 & 14.0 & 0.0 & 8.9 & 0.0 & 13.7 & 0.0 & 0.0 \\
Sat Cap (cs), veh/h & 0 & 857 & 0 & 543 & 0 & 838 & 0 & 0 \\
Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.1 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
\hline Middle Lane Group Data & 0 & 2 & 0 & 4 & 0 & 6 & 0 & 0 \\
\hline Assigned Mvmt & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lane Assignment & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Lanes in Grp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Grp Vol (v), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Grp Sat Flow (s), veh/h/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Q Serve Time (g_s), s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Cycle Q Clear Time (g_c), s & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
Avail Cap (c_a), veh/h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Upstream Filter (I) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & & & & & & & \\
1st-Term Q (Q1), veh/ln & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2nd-Term Q (Q2), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 3rd-Term Q (Q3), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Storage Ratio (RQ\%) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Initial Q (Qb), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Delay (ds), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Q (Qs), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Cap (cs), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Right Lane Group Data & & & & & & & & \\
\hline Assigned Mvmt & 0 & 12 & 0 & 14 & 0 & 16 & 0 & 0 \\
\hline Lane Assignment & & & & & & & & \\
\hline Lanes in Grp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Grp Vol (v), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Grp Sat Flow (s), veh/h/ln & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Q Serve Time (g_s), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear Time ( \(\mathrm{g}_{\mathbf{c}} \mathrm{c}\) ), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prot RT Sat Flow (s_R), veh/h/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prot RT Eff Green (g_R), s & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Prop RT Outside Lane (P_R) & 0.00 & 0.09 & 0.00 & 0.05 & 0.00 & 0.04 & 0.00 & 0.00 \\
\hline Lane Grp Cap (c), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline V/C Ratio (X) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Avail Cap (c_a), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Upstream Filter (I) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d1), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Initial Q Delay (d3), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Control Delay (d), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1st-Term Q (Q1), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2nd-Term Q (Q2), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 3rd-Term Q (Q3), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q Factor (f_B\%) & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Storage Ratio (RQ\%) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Initial Q (Qb), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Final (Residual) Q (Qe), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Delay (ds), s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Q (Qs), veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Sat Cap (cs), veh/h & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Initial Q Clear Time (tc), h & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & 16.2 & & & & & & \\
\hline HCM 2010 LOS & & B & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
\\
Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & 1 & 1 & 460 & 1 & 5 & 450 \\
Traffic Volume (vph) & 1 & 1 & & & \\
Future Volume (vph) & 1 & 1 & 460 & 1 & 5 & 450 \\
Satd. Flow (prot) & 1495 & 0 & 1642 & 0 & 0 & 1642 \\
Flt Permitted & 0.976 & & & & & 0.999 \\
Satd. Flow (perm) & 1495 & 0 & 1642 & 0 & 0 & 1642 \\
Confl. Peds. (\#/hr) & 3 & & & 11 & 11 & \\
Peak Hour Factor & 0.25 & 0.25 & 0.92 & 0.25 & 0.63 & 0.88 \\
Heavy Vehicles (\%) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Shared Lane Traffic (\%) & & & & & & \\
Lane Group Flow (vph) & 8 & 0 & 504 & 0 & 0 & 519 \\
Sign Control & Stop & & Free & & & Free
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 40.9\%
ICU Level of Service A
Analysis Period (min) 15
}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.2 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & \(\uparrow\) & & & -1 \\
Traffic Vol, veh/h & 1 & 1 & 460 & 1 & 5 & 450 \\
Future Vol, veh/h & 1 & 1 & 460 & 1 & 5 & 450 \\
Conflicting Peds, \#/hr & 3 & 0 & 0 & 11 & 11 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 25 & 25 & 92 & 25 & 63 & 88 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 0 & 0 & 0 \\
Mvmt Flow & 4 & 4 & 500 & 4 & 8 & 511
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 1043 & 513 & 0 & 0 & 515 & 0 \\
\hline Stage 1 & 513 & - & - & - & - & - \\
\hline Stage 2 & 530 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.1 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.2 & - \\
\hline Pot Cap-1 Maneuver & 256 & 565 & - & - & 1061 & - \\
\hline Stage 1 & 605 & - & - & - & - & - \\
\hline Stage 2 & 594 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 250 & 560 & - & - & 1061 & - \\
\hline Mov Cap-2 Maneuver & 250 & - & - & - & - & - \\
\hline Stage 1 & 599 & - & - & - & - & - \\
\hline Stage 2 & 586 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 15.7 & & 0 & & 0.1 & \\
\hline HCM LOS & C & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & \\
\hline Capacity (veh/h) & & - & - & 346 & 1061 & - \\
\hline HCM Lane V/C Ratio & & - & - & 0.023 & 0.007 & - \\
\hline HCM Control Delay (s) & & - & - & 15.7 & 8.4 & 0 \\
\hline HCM Lane LOS & & - & - & C & A & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & 0.1 & 0 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & & \(\dagger\) & & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & & \(\hat{}\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 1210 & 50 & 8 & 1260 \\
\hline Future Volume (vph) & 0 & 0 & 1210 & 50 & 8 & 1260 \\
\hline Satd. Flow (prot) & 0 & 0 & 1791 & 0 & 0 & 1819 \\
\hline Flt Permitted & & & & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1791 & 0 & 0 & 1819 \\
\hline Confl. Peds. (\#/hr) & & & & 6 & 6 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.91 & 0.78 & 0.67 & 0.97 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 1394 & 0 & 0 & 1311 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 76.0\%
Analysis Period (min) 15} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 3.4 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & 4 \\
Traffic Vol, veh/h & 10 & 70 & 1200 & 0 & 0 & 1260 \\
Future Vol, veh/h & 10 & 70 & 1200 & 0 & 0 & 1260 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 1 & 2 & 2 & 1 \\
Mvmt Flow & 11 & 75 & 1290 & 0 & 0 & 1355
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & \(\dagger\) & & & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & & 个 & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 1230 & 25 & 25 & 1250 \\
\hline Future Volume (vph) & 0 & 0 & 1230 & 25 & 25 & 1250 \\
\hline Satd. Flow (prot) & 0 & 0 & 1810 & 0 & 0 & 1817 \\
\hline Flt Permitted & & & & & & 0.999 \\
\hline Satd. Flow (perm) & 0 & 0 & 1810 & 0 & 0 & 1817 \\
\hline Confl. Peds. (\#/hr) & & & & 1 & 1 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.89 & 0.50 & 0.72 & 0.96 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 1\% & 0\% & 0\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 1432 & 0 & 0 & 1337 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 89.2\%} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service}} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & \(\dagger\) & \(\leftarrow\) & & 4 & \(\uparrow\) & 7 & \(\downarrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \(\uparrow\) & & & \(\hat{\dagger}\) & \\
\hline Traffic Volume (vph) & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Future Volume (vph) & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Satd. Flow (prot) & 0 & 1645 & 0 & 0 & 1601 & 0 & 0 & 1819 & 0 & 0 & 1817 & 0 \\
\hline Flt Permitted & & 0.984 & & & 0.996 & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1645 & 0 & 0 & 1601 & 0 & 0 & 1819 & 0 & 0 & 1817 & 0 \\
\hline Confl. Peds. (\#/hr) & 5 & & & & & 5 & & & & & & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 0\% & 2\% & 0\% & 0\% & 1\% & 0\% & 2\% & 1\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 15 & 0 & 0 & 78 & 0 & 0 & 1262 & 0 & 0 & 1306 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 80.6\%
ICU Level of Service D
Analysis Period (min) 15
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|l|}{2.7} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \& & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Future Vol, veh/h & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Conflicting Peds, \#/hr & 5 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
\hline Mvmt Flow & 5 & 0 & 10 & 6 & 0 & 72 & 4 & 1258 & 0 & 0 & 1299 & 7 \\
\hline
\end{tabular}


12: Route 138 \& Summit Rd. \& Canton Ave.




\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Yr & & & -1 & \(\uparrow\) & \\
Traffic Vol, veh/h & 0 & 6 & 6 & 850 & 1270 & 0 \\
Future Vol, veh/h & 0 & 6 & 6 & 850 & 1270 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 96 & 96 & 96 & 96 & 96 & 96 \\
Heavy Vehicles, \(\%\) & 2 & 0 & 0 & 2 & 1 & 0 \\
Mvmt Flow & 0 & 6 & 6 & 885 & 1323 & 0
\end{tabular}


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - Weekend Peak Hour
}

Synchro 9 Report
Page 10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & 7 & & & & 4 & & \(\downarrow\) & \(\frac{1}{7}\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \% & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 5 & 0 & 330 & 170 & 120 & 0 & 1 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (vph) & 5 & 0 & 330 & 170 & 120 & 0 & 1 & 850 & 0 & 0 & 770 & 5 \\
\hline Satd. Flow (prot) & 0 & 1591 & 0 & 1728 & 1837 & 0 & 0 & 1801 & 0 & 0 & 1799 & 0 \\
\hline Flt Permitted & & 0.997 & & 0.393 & & & & 0.999 & & & & \\
\hline Satd. Flow (perm) & 0 & 1588 & 0 & 715 & 1837 & 0 & 0 & 1799 & 0 & 0 & 1799 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 1\% & 0\% & 13\% & 0\% & 2\% & 2\% & 2\% & 2\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 352 & 0 & 179 & 126 & 0 & 0 & 896 & 0 & 0 & 816 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & Perm & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 45.0 & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & 45.0 & 45.0 & & & 45.0 & \\
\hline Total Split (\%) & 40.0\% & 40.0\% & & 40.0\% & 40.0\% & & 60.0\% & 60.0\% & & & 60.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 5.0 & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & None & None & & & None & \\
\hline Act Effct Green (s) & & 20.1 & & 20.1 & 20.1 & & & 37.1 & & & 37.1 & \\
\hline Actuated g/C Ratio & & 0.29 & & 0.29 & 0.29 & & & 0.54 & & & 0.54 & \\
\hline v/c Ratio & & 0.75 & & 0.85 & 0.23 & & & 0.92 & & & 0.84 & \\
\hline Control Delay & & 33.4 & & 59.3 & 19.7 & & & 32.6 & & & 24.3 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 33.4 & & 59.3 & 19.7 & & & 32.6 & & & 24.3 & \\
\hline LOS & & C & & E & B & & & C & & & C & \\
\hline Approach Delay & & 33.4 & & & 42.9 & & & 32.6 & & & 24.3 & \\
\hline Approach LOS & & C & & & D & & & C & & & C & \\
\hline Queue Length 50th (tt) & & 138 & & 73 & 41 & & & 346 & & & 290 & \\
\hline Queue Length 95th (tt) & & 229 & & \#176 & 80 & & & \#637 & & & \#553 & \\
\hline Internal Link Dist (t) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 592 & & 266 & 685 & & & 1046 & & & 1046 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.59 & & 0.67 & 0.18 & & & 0.86 & & & 0.78 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Cycle Length: 75
Actuated Cycle Length: 68.4
```

Natural Cycle: 70
Control Type: Actuated-Uncoordinated

```
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 31.2 Intersection LOS: C
Intersection Capacity Utilization 89.0\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \({ }^{7}\) & \(\hat{\beta}\) & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 5 & 0 & 330 & 170 & 120 & 0 & 1 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (veh/h) & 5 & 0 & 330 & 170 & 120 & 0 & 1 & 850 & 0 & 0 & 770 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 15 & 0 & 5 & 5 & 0 & 0 & 5 & 0 & 0 & 20 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1900 & 1900 & 1881 & 1900 & 1900 & 1900 & 1863 & 0 & 0 & 1863 & 1900 \\
\hline Adj Flow Rate, veh/h & 5 & 0 & 347 & 179 & 126 & 0 & 1 & 895 & 0 & 0 & 811 & 5 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & 50 & 5 & 427 & 190 & 590 & 0 & 48 & 901 & 0 & 0 & 973 & 4 \\
\hline Arrive On Green & 0.31 & 0.00 & 0.31 & 0.31 & 0.31 & 0.00 & 0.53 & 0.53 & 0.00 & 0.00 & 0.53 & 0.53 \\
\hline Sat Flow, veh/h & 6 & 17 & 1593 & 1098 & 1900 & 0 & 0 & 1862 & 0 & 0 & 1850 & 11 \\
\hline Grp Volume(v), veh/h & 352 & 0 & 0 & 179 & 126 & 0 & 896 & 0 & 0 & 0 & 0 & 816 \\
\hline Grp Sat Flow(s),veh/h/ln & 1616 & 0 & 0 & 1098 & 1900 & 0 & 1862 & 0 & 0 & 0 & 0 & 1861 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 4.6 & 3.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 25.6 \\
\hline Cycle Q Clear(g_c), s & 13.5 & 0.0 & 0.0 & 18.1 & 3.5 & 0.0 & 30.4 & 0.0 & 0.0 & 0.0 & 0.0 & 25.6 \\
\hline Prop In Lane & 0.01 & & 0.99 & 1.00 & & 0.00 & 0.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 482 & 0 & 0 & 190 & 590 & 0 & 897 & 0 & 0 & 0 & 0 & 980 \\
\hline VIC Ratio( X ) & 0.73 & 0.00 & 0.00 & 0.94 & 0.21 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.83 \\
\hline Avail Cap(c_a), veh/h & 625 & 0 & 0 & 379 & 674 & 0 & 1082 & 0 & 0 & 0 & 0 & 1030 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 21.5 & 0.0 & 0.0 & 31.3 & 18.2 & 0.0 & 17.6 & 0.0 & 0.0 & 0.0 & 0.0 & 15.9 \\
\hline Incr Delay (d2), s/veh & 3.1 & 0.0 & 0.0 & 19.0 & 0.2 & 0.0 & 25.5 & 0.0 & 0.0 & 0.0 & 0.0 & 5.7 \\
\hline Initial Q Delay(d3),s/veh & 25.9 & 0.0 & 0.0 & 68.2 & 0.7 & 0.0 & 19.7 & 0.0 & 0.0 & 0.0 & 0.0 & 17.9 \\
\hline \%ile BackOfQ(50\%),veh/ln & 10.0 & 0.0 & 0.0 & 8.5 & 2.4 & 0.0 & 28.4 & 0.0 & 0.0 & 0.0 & 0.0 & 22.9 \\
\hline LnGrp Delay(d),s/veh & 50.6 & 0.0 & 0.0 & 118.5 & 19.1 & 0.0 & 62.8 & 0.0 & 0.0 & 0.0 & 0.0 & 39.5 \\
\hline LnGrp LOS & D & & & F & B & & E & & & & & D \\
\hline Approach Vol, veh/h & & 352 & & & 305 & & & 896 & & & 816 & \\
\hline Approach Delay, s/veh & & 50.6 & & & 77.4 & & & 62.8 & & & 39.5 & \\
\hline Approach LOS & & D & & & E & & & E & & & D & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 43.6 & & 26.8 & & 43.6 & & 26.8 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 39.0 & & 25.0 & & 39.0 & & 25.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 32.4 & & 15.5 & & 27.6 & & 20.1 & & & & \\
\hline Green Ext Time (p_c), s & & 5.2 & & 2.7 & & 8.2 & & 1.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 54.8 & & & & & & & & & \\
\hline HCM 2010 LOS & & & D & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & 4 & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \({ }^{*}\) & 4 & & 「 \\
\hline Traffic Volume (vph) & 0 & 0 & 170 & 280 & 0 & 140 \\
\hline Future Volume (vph) & 0 & 0 & 170 & 280 & 0 & 140 \\
\hline Satd. Flow (prot) & 0 & 0 & 1745 & 1818 & 0 & 1573 \\
\hline Flt Permitted & & & 0.950 & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1745 & 1818 & 0 & 1573 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.86 & 0.79 & 0.92 & 0.94 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 0\% & 1\% & 2\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 198 & 354 & 0 & 149 \\
\hline Sign Control & Free & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 24.8\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}

16: Route 138 \& Neponset Valley Pkwy.

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 5.6 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & & \(\uparrow\) & F & \\
Traffic Vol, veh/h & 4 & 200 & 390 & 490 & 570 & 1 \\
Future Vol, veh/h & 4 & 200 & 390 & 490 & 570 & 1 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 \\
Heavy Vehicles, \% & 0 & 2 & 4 & 1 & 2 & 0 \\
Mvmt Flow & 4 & 206 & 402 & 505 & 588 & 1
\end{tabular}


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - Weekend Peak Hour
}

Synchro 9 Report
Page 16
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & \(\rightarrow\) & & 7 & & & 4 & \(\dagger\) & & & & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \& & & & \& & & & \$ & \\
\hline Traffic Volume (vph) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Future Volume (vph) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Satd. Flow (prot) & 0 & 1751 & 0 & 0 & 1776 & 0 & 0 & 1812 & 0 & 0 & 1808 & 0 \\
\hline Flt Permitted & & 0.919 & & & 0.950 & & & 0.977 & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1627 & 0 & 0 & 1699 & 0 & 0 & 1774 & 0 & 0 & 1807 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & 1 & 1 & & & & & & & & \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 4\% & 0\% & 0\% & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 1\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 145 & 0 & 0 & 111 & 0 & 0 & 509 & 0 & 0 & 595 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (\%) & 35.7\% & 35.7\% & & 35.7\% & 35.7\% & & 64.3\% & 64.3\% & & 64.3\% & 64.3\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 10.2 & & & 10.2 & & & 35.0 & & & 35.0 & \\
\hline Actuated g/C Ratio & & 0.19 & & & 0.19 & & & 0.66 & & & 0.66 & \\
\hline v/c Ratio & & 0.47 & & & 0.34 & & & 0.44 & & & 0.50 & \\
\hline Control Delay & & 24.1 & & & 21.4 & & & 8.2 & & & 9.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 24.1 & & & 21.4 & & & 8.2 & & & 9.0 & \\
\hline LOS & & C & & & C & & & A & & & A & \\
\hline Approach Delay & & 24.1 & & & 21.4 & & & 8.2 & & & 9.0 & \\
\hline Approach LOS & & C & & & C & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 40 & & & 30 & & & 78 & & & 98 & \\
\hline Queue Length 95th (ft) & & 86 & & & 67 & & & 175 & & & 216 & \\
\hline Internal Link Dist (ft) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 612 & & & 639 & & & 1364 & & & 1389 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.24 & & & 0.17 & & & 0.37 & & & 0.43 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 70 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 53.3
Natural Cycle: 50
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.50
Intersection Signal Delay: 11.3 Intersection LOS: B
Intersection Capacity Utilization 57.9\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & & & & 4 & 4 & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \$ & & & ¢ & & & \$ & \\
\hline Traffic Volume (veh/h) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Future Volume (veh/h) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 20 & 0 & 0 & 10 & 0 & 0 & 10 & 0 & 0 & 20 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/n & 1900 & 1847 & 1900 & 1900 & 1900 & 1900 & 1900 & 1882 & 1900 & 1900 & 1882 & 1900 \\
\hline Adj Flow Rate, veh/h & 32 & 105 & 8 & 16 & 74 & 21 & 16 & 484 & 9 & 1 & 568 & 26 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 4 & 4 & 4 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Cap, veh/h & 113 & 234 & 12 & 101 & 227 & 42 & 86 & 1094 & 18 & 70 & 1086 & 46 \\
\hline Arrive On Green & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 \\
\hline Sat Flow, veh/h & 262 & 1388 & 96 & 147 & 1313 & 341 & 20 & 1801 & 33 & 0 & 1785 & 82 \\
\hline Grp Volume(v), veh/h & 145 & 0 & 0 & 111 & 0 & 0 & 509 & 0 & 0 & 595 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1747 & 0 & 0 & 1800 & 0 & 0 & 1854 & 0 & 0 & 1867 & 0 & 0 \\
\hline Q Serve(g_s), s & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 3.7 & 0.0 & 0.0 & 2.7 & 0.0 & 0.0 & 7.0 & 0.0 & 0.0 & 8.8 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.22 & & 0.06 & 0.14 & & 0.19 & 0.03 & & 0.02 & 0.00 & & 0.04 \\
\hline Lane Grp Cap(c), veh/h & 377 & 0 & 0 & 356 & 0 & 0 & 1205 & 0 & 0 & 1197 & 0 & 0 \\
\hline VIC Ratio( X ) & 0.38 & 0.00 & 0.00 & 0.31 & 0.00 & 0.00 & 0.42 & 0.00 & 0.00 & 0.50 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 792 & 0 & 0 & 807 & 0 & 0 & 1513 & 0 & 0 & 1528 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 20.8 & 0.0 & 0.0 & 19.8 & 0.0 & 0.0 & 5.8 & 0.0 & 0.0 & 7.3 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.6 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 32.8 & 0.0 & 0.0 & 8.3 & 0.0 & 0.0 & 0.9 & 0.0 & 0.0 & 4.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 7.0 & 0.0 & 0.0 & 3.1 & 0.0 & 0.0 & 5.1 & 0.0 & 0.0 & 8.6 & 0.0 & 0.0 \\
\hline LnGrp Delay (d),s/veh & 54.3 & 0.0 & 0.0 & 28.5 & 0.0 & 0.0 & 6.9 & 0.0 & 0.0 & 11.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & C & & & A & & & B & & \\
\hline Approach Vol, veh/h & & 145 & & & 111 & & & 509 & & & 595 & \\
\hline Approach Delay, s/veh & & 54.3 & & & 28.5 & & & 6.9 & & & 11.6 & \\
\hline Approach LOS & & D & & & C & & & A & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 37.0 & & 11.8 & & 37.0 & & 11.8 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 38.0 & & 20.0 & & 38.0 & & 20.0 & & & & \\
\hline Max Q Clear Time ( \(g_{-}\)c+11), \(s\) & & 9.0 & & 5.7 & & 10.8 & & 4.7 & & & & \\
\hline Green Ext Time (p_c), s & & 8.3 & & 1.2 & & 8.2 & & 1.2 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.8 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

18: Route 138 \& Blue Jay Way (Curry College)

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & 个 & \\
Traffic Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 0 \\
Future Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 92 & 92 & 92 & 92 & 92 & 92 \\
Heavy Vehicles, \(\%\) & 0 & 7 & 1 & 8 & 6 & 0 \\
Mvmt Flow & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & Major1 & & & \\
\hline Conflicting Flow All & 1 & 1 & 1 & 0 & - & 0 \\
\hline Stage 1 & 1 & - & - & - & - & - \\
\hline Stage 2 & 0 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.27 & 4.11 & - & - & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.363 & 2.209 & - & - & - \\
\hline Pot Cap-1 Maneuver & 1027 & 1069 & 1628 & - & - & - \\
\hline Stage 1 & 1028 & - & - & - & - & - \\
\hline Stage 2 & - & - & - & - & - & - \\
\hline Platoon blocked, \% & & & & - & - & - \\
\hline Mov Cap-1 Maneuver & 1027 & 1069 & 1628 & - & - & - \\
\hline Mov Cap-2 Maneuver & 1027 & - & - & - & - & - \\
\hline Stage 1 & 1028 & - & - & - & - & - \\
\hline Stage 2 & - & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & EB & & NB & & B & \\
\hline HCM Control Delay, s & 0 & & 0 & & 0 & \\
\hline HCM LOS & A & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBL & \multicolumn{2}{|l|}{NBT EBLn1} & & \\
\hline Capacity (veh/h) & & 1628 & - & - & - & - \\
\hline \multicolumn{2}{|l|}{HCM Lane V/C Ratio} & - & - & - & - & - \\
\hline \multicolumn{2}{|l|}{HCM Control Delay (s)} & 0 & - & 0 & - & - \\
\hline \multicolumn{2}{|l|}{HCM Lane LOS} & A & - & A & - & - \\
\hline \multicolumn{2}{|l|}{HCM 95th \%tile Q(veh)} & 0 & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \[
4
\] & \[
\uparrow
\] & & \(\rightarrow\) & \\
\hline Lane Group & EBT & WBT & NBT & SBT & SEL & \\
\hline Lane Configurations & 4 & \& & * & 4 & * & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & \\
\hline Satd. Flow (prot) & 1837 & 1837 & 1701 & 1733 & 1749 & \\
\hline \multicolumn{7}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 1837 & 1837 & 1701 & 1733 & 1749 & \\
\hline \multicolumn{7}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 8\% & 6\% & 5\% & \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & \\
\hline Turn Type & & & & & Prot & \\
\hline Protected Phases & 4 & & 2 & 6 & 5 & \\
\hline Permitted Phases & & 8 & & & & \\
\hline Detector Phase & 4 & 8 & 2 & 6 & 5 & \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & 20.0 & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & 20.0 & 20.0 & 20.0 & \\
\hline Total Split (\%) & 20.0\% & 20.0\% & 20.0\% & 20.0\% & 20.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & 3.5 & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 4.5 & 4.5 & 4.5 & 4.5 & 4.5 & \\
\hline Lead/Lag & & & & Lag & Lead & \\
\hline Lead-Lag Optimize? & & & & Yes & Yes & \\
\hline Recall Mode & None & None & Min & Min & None & \\
\hline \multicolumn{7}{|l|}{Act Effct Green (s)} \\
\hline \multicolumn{7}{|l|}{Actuated g/C Ratio} \\
\hline \multicolumn{7}{|l|}{v/c Ratio} \\
\hline \multicolumn{7}{|l|}{Control Delay} \\
\hline \multicolumn{7}{|l|}{Queue Delay} \\
\hline \multicolumn{7}{|l|}{Total Delay} \\
\hline \multicolumn{7}{|l|}{LOS} \\
\hline \multicolumn{7}{|l|}{Approach Delay} \\
\hline \multicolumn{7}{|l|}{Approach LOS} \\
\hline \multicolumn{7}{|l|}{Queue Length 50th (ft)} \\
\hline \multicolumn{7}{|l|}{Queue Length 95th (ft)} \\
\hline Internal Link Dist (ft) & 1290 & 1410 & 1586 & 2667 & 689 & \\
\hline \multicolumn{7}{|l|}{Turn Bay Length (ft)} \\
\hline \multicolumn{7}{|l|}{Base Capacity (vph)} \\
\hline \multicolumn{7}{|l|}{Starvation Cap Reductn} \\
\hline \multicolumn{7}{|l|}{Spillback Cap Reductn} \\
\hline \multicolumn{7}{|l|}{Storage Cap Reductn} \\
\hline \multicolumn{7}{|l|}{Reduced v/c Ratio} \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 100} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 20} \\
\hline Addressing Priority Corrid 2018 Existing Conditions & from the eekend & RTP Ne ak Hour & ds Ass & ssment: & oute 138 in Milton & Synchro 9 Report Page 22 \\
\hline
\end{tabular}

Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: \(0.0 \quad\) Intersection LOS: A
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & 4 & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \(\uparrow\) & & & ¢ & & & \$ & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 3\% & 0\% & 13\% & 0\% & 8\% & 8\% & 0\% & 7\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Turn Type} \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & 4.5 & & & 4.5 & & & 4.5 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline \multicolumn{13}{|l|}{Act Effct Green (s)} \\
\hline \multicolumn{13}{|l|}{Actuated g/C Ratio} \\
\hline \multicolumn{13}{|l|}{v/c Ratio} \\
\hline \multicolumn{13}{|l|}{Control Delay} \\
\hline \multicolumn{13}{|l|}{Queue Delay} \\
\hline \multicolumn{13}{|l|}{Total Delay} \\
\hline \multicolumn{13}{|l|}{LOS} \\
\hline \multicolumn{13}{|l|}{Approach Delay} \\
\hline \multicolumn{13}{|l|}{Approach LOS} \\
\hline \multicolumn{13}{|l|}{Queue Length 50th (tt)} \\
\hline \multicolumn{13}{|l|}{Queue Length 95th ( ft )} \\
\hline Internal Link Dist (tt) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline \multicolumn{13}{|l|}{Base Capacity (vph)} \\
\hline \multicolumn{13}{|l|}{Starvation Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Spillback Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Storage Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Reduced v/c Ratio} \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 25

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - Weekend Peak Hour
}

Synchro 9 Report
Page 25
```

Natural Cycle: }4
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: 0.0 Intersection LOS: A
Intersection Capacity Utilization 0.0% ICU Level of Service A
Analysis Period (min) }1

```

Splits and Phases: 20: Route 138 \& Robbins St.



21: Route 138 \& Cheever St./Blue Hill Terrace St.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & & & 4 & & & \[
4
\] & 9 & \(p\) & \[
t
\] & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\leftrightarrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1701 & 0 \\
\hline Flt Permitted & & & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1701 & 0 \\
\hline Satd. Flow (RTOR) & & & & & & & & & & & & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 0\% & 8\% & 0\% & 13\% & 8\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Turn Type & & & & & & & & & & & & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & 4.5 & & & 4.5 & & & 4.5 & \\
\hline Lead/Lag & & & & & & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Act Effct Green (s) & & & & & & & & & & & & \\
\hline Actuated g/C Ratio & & & & & & & & & & & & \\
\hline v/c Ratio & & & & & & & & & & & & \\
\hline Control Delay & & & & & & & & & & & & \\
\hline Queue Delay & & & & & & & & & & & & \\
\hline Total Delay & & & & & & & & & & & & \\
\hline LOS & & & & & & & & & & & & \\
\hline Approach Delay & & & & & & & & & & & & \\
\hline Approach LOS & & & & & & & & & & & & \\
\hline Queue Length 50th (ft) & & & & & & & & & & & & \\
\hline Queue Length 95th (ft) & & & & & & & & & & & & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline Turn Bay Length (ft) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & & & & & & & & & & & & \\
\hline Starvation Cap Reductn & & & & & & & & & & & & \\
\hline Spillback Cap Reductn & & & & & & & & & & & & \\
\hline Storage Cap Reductn & & & & & & & & & & & & \\
\hline Reduced v/c Ratio & & & & & & & & & & & & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 40
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 40
Control Type: Pretimed
Maximum v/c Ratio: 0.00
\begin{tabular}{ll} 
Intersection Signal Delay: 0.0 & Intersection LOS: A \\
Intersection Capacity Utilization 0.0\% & ICU Level of Service A
\end{tabular}

Analysis Period (min) 15
Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & 4 & \(\downarrow\) & 1 \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \({ }_{*}{ }^{+}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 1 & 2 & 2 & 270 & 350 & 15 \\
\hline Future Volume (vph) & 1 & 2 & 2 & 270 & 350 & 15 \\
\hline Satd. Flow (prot) & 1645 & 0 & 0 & 1801 & 1808 & 0 \\
\hline Flt Permitted & 0.984 & & & & & \\
\hline Satd. Flow (perm) & 1645 & 0 & 0 & 1801 & 1808 & 0 \\
\hline Confl. Peds. (\#/hr) & 8 & & 5 & & & 5 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 2\% & 1\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 3 & 0 & 0 & 292 & 392 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 29.4\%} & \multicolumn{3}{|r|}{ICU Level of Service} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & \(\uparrow\) & \\
Traffic Vol, veh/h & 1 & 2 & 2 & 270 & 350 & 15 \\
Future Vol, veh/h & 1 & 2 & 2 & 270 & 350 & 15 \\
Conflicting Peds, \#/hr & 8 & 0 & 5 & 0 & 0 & 5 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 2 & 1 & 0 \\
Mvmt Flow & 1 & 2 & 2 & 290 & 376 & 16
\end{tabular}


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - Weekend Peak Hour
}

Synchro 9 Report
Page 32
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\downarrow\) & \(\rightarrow\) & & \(\dagger\) & 4 & 4 & 4 & \(\uparrow\) & 7 & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \$ & & & \(\uparrow\) & & & ¢ & \\
\hline Traffic Volume (vph) & 0 & O & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 25\% & 0\% & 0\% & 0\% & 7\% & 0\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\uparrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & & & & ¢ & & & \$ & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1818 & 0 & 0 & 0 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1818 & 0 & 0 & 0 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 13\% & 1\% & 0\% & 2\% & 2\% & 2\% & 20\% & 7\% & 9\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Turn Type} \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & & & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & & & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & & & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & & & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & & & & 4.5 & & & 4.5 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & Min & Min & & Min & Min & \\
\hline \multicolumn{13}{|l|}{Act Effct Green (s)} \\
\hline \multicolumn{13}{|l|}{Actuated g/C Ratio} \\
\hline \multicolumn{13}{|l|}{v/c Ratio} \\
\hline \multicolumn{13}{|l|}{Control Delay} \\
\hline \multicolumn{13}{|l|}{Queue Delay} \\
\hline \multicolumn{13}{|l|}{Total Delay} \\
\hline \multicolumn{13}{|l|}{LOS} \\
\hline \multicolumn{13}{|l|}{Approach Delay} \\
\hline \multicolumn{13}{|l|}{Approach LOS} \\
\hline \multicolumn{13}{|l|}{Queue Length 50th (tt)} \\
\hline \multicolumn{13}{|l|}{Queue Length 95th (tt)} \\
\hline Internal Link Dist (tt) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline \multicolumn{13}{|l|}{Base Capacity (vph)} \\
\hline \multicolumn{13}{|l|}{Starvation Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Spillback Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Storage Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Reduced v/c Ratio} \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 25

\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
}

Natural Cycle: 40
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: \(0.0 \quad\) Intersection LOS: A
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 24: Route 138 \& Brook Rd.



\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2018 Existing Conditions - Weekend Peak Hour
}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.3 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 0 & 270 & 30 & 100 & 250 \\
Future Vol, veh/h & 0 & 0 & 270 & 30 & 100 & 250 \\
Conflicting Peds, \#/hr & 19 & 0 & 0 & 53 & 53 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 0 & 1 & 0 \\
Mvmt Flow & 0 & 0 & 290 & 32 & 108 & 269
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor M & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 862 & 359 & 0 & 0 & 376 & 0 \\
\hline Stage 1 & 359 & - & - & - & - & - \\
\hline Stage 2 & 503 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.11 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.209 & - \\
\hline Pot Cap-1 Maneuver & 328 & 690 & - & - & 1188 & - \\
\hline Stage 1 & 711 & - & - & - & - & - \\
\hline Stage 2 & 612 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 275 & 658 & - & - & 1188 & - \\
\hline Mov Cap-2 Maneuver & 275 & - & - & - & - & - \\
\hline Stage 1 & 678 & - & - & - & - & - \\
\hline Stage 2 & 537 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 0 & & 0 & & 2.4 & \\
\hline HCM LOS & A & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & \\
\hline Capacity (veh/h) & & - & - & - & 1188 & - \\
\hline HCM Lane V/C Ratio & & - & - & - & 0.091 & - \\
\hline HCM Control Delay (s) & & - & - & 0 & 8.3 & 0 \\
\hline HCM Lane LOS & & - & - & A & A & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & - & 0.3 & - \\
\hline
\end{tabular}

\section*{Part 3: Future Intersection Levels of Service}


\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & 4 \\
Traffic Vol, veh/h & 0 & 1 & 1490 & 0 & 0 & 1080 \\
Future Vol, veh/h & 0 & 1 & 1490 & 0 & 0 & 1080 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 5 & 2 & 2 & 6 \\
Mvmt Flow & 0 & 1 & 1568 & 0 & 0 & 1137
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 1 & \(\leftarrow\) & & 4 & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Future Volume (vph) & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Satd. Flow (prot) & 0 & 1671 & 0 & 0 & 1444 & 0 & 0 & 1766 & 0 & 0 & 1732 & 0 \\
\hline Flt Permitted & & 0.976 & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1671 & 0 & 0 & 1444 & 0 & 0 & 1766 & 0 & 0 & 1732 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 2\% & 2\% & 10\% & 0\% & 4\% & 0\% & 2\% & 6\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 14 & 0 & 0 & 11 & 0 & 0 & 1559 & 0 & 0 & 1154 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 92.5\% ICU Level of Service F
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 1.6 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & & & 4 & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Future Vol, veh/h & 7 & 0 & 7 & 0 & 0 & 10 & 1 & 1480 & 0 & 0 & 1090 & 7 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 2 & 2 & 10 & 0 & 4 & 0 & 2 & 6 & 0 \\
\hline Mvmt Flow & 7 & 0 & 7 & 0 & 0 & 11 & 1 & 1558 & 0 & 0 & 1147 & 7 \\
\hline
\end{tabular}


\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 1 & 970 & 550 & 7 & 1090 \\
Future Vol, veh/h & 0 & 1 & 970 & 550 & 7 & 1090 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \(\%\) & 0 & 2 & 7 & 0 & 2 & 7 \\
Mvmt Flow & 0 & 1 & 1021 & 579 & 7 & 1147
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 2473 & 1311 & 0 & 0 & 1600 & 0 \\
\hline Stage 1 & 1311 & - & - & - & - & - \\
\hline Stage 2 & 1162 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.22 & - & - & 4.12 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.318 & - & - & 2.218 & - \\
\hline Pot Cap-1 Maneuver & 33 & 194 & - & & 409 & - \\
\hline Stage 1 & 255 & - & - & - & - & - \\
\hline Stage 2 & 300 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 31 & 194 & - & - & 409 & - \\
\hline Mov Cap-2 Maneuver & 31 & - & - & - & - & - \\
\hline Stage 1 & 255 & - & - & - & - & - \\
\hline Stage 2 & 286 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 23.7 & & 0 & & 0.1 & \\
\hline HCM LOS & C & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & 194 & 409 & - \\
\hline HCM Lane V/C Ratio & & - & - & 0.005 & 0.018 & - \\
\hline HCM Control Delay (s) & & - & - & 23.7 & 14 & 0 \\
\hline HCM Lane LOS & & - & - & C & B & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & 0 & 0.1 & - \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}


\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
2040 Build Conditions - AM Peak Hour
}

Synchro 9 Report
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & 7 & & & & 4 & & & \(\frac{1}{7}\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \% & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (vph) & & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Satd. Flow (prot) & 0 & 1545 & 0 & 1728 & 1760 & 0 & 0 & 1733 & 0 & 0 & 1683 & 0 \\
\hline Flt Permitted & & 0.995 & & 0.377 & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1539 & 0 & 686 & 1760 & 0 & 0 & 1733 & 0 & 0 & 1683 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 3\% & 1\% & 1\% & 13\% & 0\% & 6\% & 2\% & 2\% & 9\% & 14\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 329 & 0 & 167 & 131 & 0 & 0 & 1010 & 0 & 0 & 695 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 10.0 & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 24.0 & 24.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & & 50.0 & & & 50.0 & \\
\hline Total Split (\%) & 37.5\% & 37.5\% & & 37.5\% & 37.5\% & & & 62.5\% & & & 62.5\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 5.0 & 5.0 & & & 4.0 & & & 4.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 6.0 & 6.0 & & & 5.0 & & & 5.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & & None & & & None & \\
\hline Act Effct Green (s) & & 21.3 & & 20.3 & 20.3 & & & 45.2 & & & 45.2 & \\
\hline Actuated g/C Ratio & & 0.28 & & 0.27 & 0.27 & & & 0.59 & & & 0.59 & \\
\hline v/c Ratio & & 0.77 & & 0.92 & 0.28 & & & 0.99 & & & 0.70 & \\
\hline Control Delay & & 38.2 & & 79.1 & 23.5 & & & 44.4 & & & 16.8 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 38.2 & & 79.1 & 23.5 & & & 44.4 & & & 16.8 & \\
\hline LOS & & D & & E & C & & & D & & & B & \\
\hline Approach Delay & & 38.2 & & & 54.6 & & & 44.4 & & & 16.8 & \\
\hline Approach LOS & & D & & & D & & & D & & & B & \\
\hline Queue Length 50th (tt) & & 142 & & 77 & 49 & & & -552 & & & 239 & \\
\hline Queue Length 95th (tt) & & 235 & & \#186 & 92 & & & \#779 & & & 378 & \\
\hline Internal Link Dist (t) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 504 & & 215 & 554 & & & 1023 & & & 994 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.65 & & 0.78 & 0.24 & & & 0.99 & & & 0.70 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 80
Actuated Cycle Length: 76.5
```

Natural Cycle: }9
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.99
Intersection Signal Delay: 36.6 Intersection LOS: D
Intersection Capacity Utilization 92.8% ICU Level of Service F
Analysis Period (min) }1

```
~ Volume exceeds capacity, queue is theoretically infinite.
    Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & 4 & 4 & 4 & 7 & & \(\dagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & \({ }^{7}\) & \(\uparrow\) & & & 4 & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (veh/h) & 6 & 0 & 310 & 160 & 110 & 15 & 0 & 970 & 0 & 0 & 660 & 7 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & 5 & 10 & 0 & 0 & 20 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1846 & 1900 & 1881 & 1854 & 1900 & 0 & 1792 & 0 & 0 & 1742 & 1900 \\
\hline Adj Flow Rate, veh/h & 6 & 0 & 323 & 167 & 115 & 16 & 0 & 1010 & 0 & 0 & 688 & 7 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 1 & 1 & 0 & 6 & 0 & 0 & 9 & 9 \\
\hline Cap, veh/h & 46 & 6 & 380 & 177 & 525 & 59 & 0 & 996 & 0 & 0 & 971 & 9 \\
\hline Arrive On Green & 0.29 & 0.00 & 0.29 & 0.29 & 0.29 & 0.29 & 0.00 & 0.57 & 0.00 & 0.00 & 0.57 & 0.57 \\
\hline Sat Flow, veh/h & 9 & 20 & 1541 & 1063 & 1593 & 222 & 0 & 1792 & 0 & 0 & 1722 & 18 \\
\hline Grp Volume(v), veh/h & 329 & 0 & 0 & 167 & 0 & 131 & 0 & 1010 & 0 & 0 & 0 & 695 \\
\hline Grp Sat Flow(s), veh/h/ln & 1570 & 0 & 0 & 1063 & 0 & 1815 & 0 & 1792 & 0 & 0 & 0 & 1739 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 5.4 & 0.0 & 4.4 & 0.0 & 43.7 & 0.0 & 0.0 & 0.0 & 22.6 \\
\hline Cycle Q Clear(g_c), s & 14.8 & 0.0 & 0.0 & 20.2 & 0.0 & 4.4 & 0.0 & 43.7 & 0.0 & 0.0 & 0.0 & 22.6 \\
\hline Prop In Lane & 0.02 & & 0.98 & 1.00 & & 0.12 & 0.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 422 & 0 & 0 & 177 & 0 & 531 & 0 & 996 & 0 & 0 & 0 & 987 \\
\hline V/C Ratio(X) & 0.78 & 0.00 & 0.00 & 0.94 & 0.00 & 0.25 & 0.00 & 1.01 & 0.00 & 0.00 & 0.00 & 0.70 \\
\hline Avail Cap(c_a), veh/h & 544 & 0 & 0 & 303 & 0 & 552 & 0 & 1022 & 0 & 0 & 0 & 992 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 24.9 & 0.0 & 0.0 & 34.3 & 0.0 & 22.0 & 0.0 & 18.0 & 0.0 & 0.0 & 0.0 & 13.4 \\
\hline Incr Delay (d2), s/veh & 5.4 & 0.0 & 0.0 & 25.0 & 0.0 & 0.2 & 0.0 & 31.8 & 0.0 & 0.0 & 0.0 & 2.3 \\
\hline Initial Q Delay(d3),s/veh & 18.3 & 0.0 & 0.0 & 75.9 & 0.0 & 3.4 & 0.0 & 68.4 & 0.0 & 0.0 & 0.0 & 5.6 \\
\hline \%ile BackOfQ(50\%),veh/ln & 9.2 & 0.0 & 0.0 & 8.9 & 0.0 & 3.7 & 0.0 & 50.7 & 0.0 & 0.0 & 0.0 & 15.1 \\
\hline LnGrp Delay(d),s/veh & 48.6 & 0.0 & 0.0 & 135.2 & 0.0 & 25.7 & 0.0 & 118.3 & 0.0 & 0.0 & 0.0 & 21.3 \\
\hline LnGrp LOS & D & & & F & & C & & F & & & & C \\
\hline Approach Vol, veh/h & & 329 & & & 298 & & & 1010 & & & 695 & \\
\hline Approach Delay, s/veh & & 48.6 & & & 87.0 & & & 118.3 & & & 21.3 & \\
\hline Approach LOS & & D & & & F & & & F & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 50.0 & & 28.9 & & 50.0 & & 28.9 & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 5.0 & & * 6 & & 5.0 & & 6.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 45.0 & & * 25 & & 45.0 & & 24.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 45.7 & & 16.8 & & 24.6 & & 22.2 & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & 2.4 & & 13.4 & & 0.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 75.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & E & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Notes} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \({ }_{1}\) & 4 & & 「 \\
\hline Traffic Volume (vph) & 0 & 0 & 160 & 390 & 0 & 130 \\
\hline Future Volume (vph) & 0 & 0 & 160 & 390 & 0 & 130 \\
\hline Satd. Flow (prot) & 0 & 0 & 1711 & 1801 & 0 & 1573 \\
\hline Flt Permitted & & & 0.950 & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1711 & 1801 & 0 & 1573 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.84 & 0.86 & 0.92 & 0.85 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 190 & 453 & 0 & 153 \\
\hline Sign Control & Free & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 23.9\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}


Cycle Length: 80
Actuated Cycle Length: 71.2
```

Natural Cycle: }7
Control Type: Actuated-Uncoordinated

```
Maximum v/c Ratio: 0.87
Intersection Signal Delay: \(26.0 \quad\) Intersection LOS: C
Intersection Capacity Utilization 73.2\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 16: Route 138 \& Neponset Valley Pkwy.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & 4 & & \(\dagger\) & \(\downarrow\) & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR & & \\
\hline Lane Configurations & * & & \({ }^{*}\) & 4 & \(\hat{\beta}\) & & & \\
\hline Traffic Volume (veh/h) & 4 & 170 & 440 & 550 & 490 & 3 & & \\
\hline Future Volume (veh/h) & 4 & 170 & 440 & 550 & 490 & 3 & & \\
\hline Number & 7 & 14 & 5 & 2 & 6 & 16 & & \\
\hline Initial Q (Qb), veh & 5 & 0 & 5 & 10 & 10 & 0 & & \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & 1.00 & 1.00 & & & 1.00 & & \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Adj Sat Flow, veh/h/ln & 1608 & 1900 & 1810 & 1776 & 1807 & 1900 & & \\
\hline Adj Flow Rate, veh/h & 4 & 173 & 449 & 561 & 500 & 3 & & \\
\hline Adj No. of Lanes & 0 & 0 & 1 & 1 & 1 & 0 & & \\
\hline Peak Hour Factor & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & & \\
\hline Percent Heavy Veh, \% & 0 & 0 & 5 & 7 & 5 & 5 & & \\
\hline Cap, veh/h & 12 & 208 & 579 & 1172 & 682 & 3 & & \\
\hline Arrive On Green & 0.16 & 0.16 & 0.19 & 0.66 & 0.38 & 0.38 & & \\
\hline Sat Flow, veh/h & 31 & 1333 & 1723 & 1776 & 1794 & 11 & & \\
\hline Grp Volume(v), veh/h & 178 & 0 & 449 & 561 & 0 & 503 & & \\
\hline Grp Sat Flow(s), veh/h/ln & 1371 & 0 & 1723 & 1776 & 0 & 1805 & & \\
\hline Q Serve(g_s), s & 6.8 & 0.0 & 7.4 & 8.6 & 0.0 & 13.0 & & \\
\hline Cycle Q Clear(g_c), s & 6.8 & 0.0 & 7.4 & 8.6 & 0.0 & 13.0 & & \\
\hline Prop In Lane & 0.02 & 0.97 & 1.00 & & & 0.01 & & \\
\hline Lane Grp Cap(c), veh/h & 222 & 0 & 579 & 1172 & 0 & 685 & & \\
\hline V/C Ratio(X) & 0.80 & 0.00 & 0.77 & 0.48 & 0.00 & 0.73 & & \\
\hline Avail Cap(c_a), veh/h & 455 & 0 & 875 & 1700 & 0 & 931 & & \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & & \\
\hline Uniform Delay (d), s/veh & 23.5 & 0.0 & 11.9 & 5.1 & 0.0 & 16.6 & & \\
\hline Incr Delay (d2), s/veh & 6.7 & 0.0 & 2.5 & 0.3 & 0.0 & 2.0 & & \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 2.4 & 1.0 & 0.0 & 5.8 & & \\
\hline \%ile BackOfQ(50\%),veh/ln & 3.3 & 0.0 & 5.8 & 5.7 & 0.0 & 9.7 & & \\
\hline LnGrp Delay(d),s/veh & 30.2 & 0.0 & 16.8 & 6.4 & 0.0 & 24.4 & & \\
\hline LnGrp LOS & C & & B & A & & C & & \\
\hline Approach Vol, veh/h & 178 & & & 1010 & 503 & & & \\
\hline Approach Delay, s/veh & 30.2 & & & 11.0 & 24.4 & & & \\
\hline Approach LOS & C & & & B & C & & & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & \\
\hline Phs Duration ( \(G+Y+R c\) ), \(s\) & & 40.7 & & 13.6 & 15.0 & 25.7 & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 5.0 & & 5.0 & 4.5 & 5.0 & & \\
\hline Max Green Setting (Gmax), s & & 52.0 & & 18.0 & 19.5 & 28.0 & & \\
\hline Max Q Clear Time (g_c+l1), s & & 10.6 & & 8.8 & 9.4 & 15.0 & & \\
\hline Green Ext Time (p_c), s & & 8.9 & & 0.4 & 1.1 & 5.8 & & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 17.0 & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & \\
\hline Notes & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & \(\uparrow\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & \% & \(\hat{\beta}\) & & & \$ & \\
\hline Traffic Volume (vph) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Future Volume (vph) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Satd. Flow (prot) & 0 & 1731 & 0 & 0 & 1758 & 0 & 1745 & 1716 & 0 & 0 & 1719 & 0 \\
\hline Flt Permitted & & 0.906 & & & 0.948 & & 0.480 & & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1586 & 0 & 0 & 1676 & 0 & 882 & 1716 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 3\% & 4\% & 0\% & 0\% & 2\% & 3\% & 0\% & 7\% & 0\% & 0\% & 6\% & 3\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 139 & 0 & 0 & 253 & 0 & 9 & 562 & 0 & 0 & 511 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (\%) & 38.3\% & 38.3\% & & 38.3\% & 38.3\% & & 61.7\% & 61.7\% & & 61.7\% & 61.7\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Efftt Green (s) & & 14.3 & & & 14.7 & & 30.1 & 30.1 & & & 30.1 & \\
\hline Actuated g/C Ratio & & 0.25 & & & 0.26 & & 0.53 & 0.53 & & & 0.53 & \\
\hline v/c Ratio & & 0.35 & & & 0.58 & & 0.02 & 0.62 & & & 0.56 & \\
\hline Control Delay & & 19.5 & & & 24.2 & & 7.7 & 13.9 & & & 12.7 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Delay & & 19.5 & & & 24.2 & & 7.7 & 13.9 & & & 12.7 & \\
\hline LOS & & B & & & C & & A & B & & & B & \\
\hline Approach Delay & & 19.5 & & & 24.2 & & & 13.8 & & & 12.7 & \\
\hline Approach LOS & & B & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 38 & & & 75 & & 1 & 124 & & & 108 & \\
\hline Queue Length 95th (tt) & & 78 & & & 136 & & 7 & 237 & & & 207 & \\
\hline Internal Link Dist (t) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline Turn Bay Length (t) & & & & & & & 200 & & & & & \\
\hline Base Capacity (vph) & & 503 & & & 532 & & 466 & 908 & & & 908 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.28 & & & 0.48 & & 0.02 & 0.62 & & & 0.56 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 60
Actuated Cycle Length: 56.8

Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.62
Intersection Signal Delay: \(15.7 \quad\) Intersection LOS: B
Intersection Capacity Utilization 54.1\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & 7 & & & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & \({ }^{*}\) & \(\hat{i}\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Future Volume (veh/h) & 30 & 90 & 15 & 30 & 180 & 35 & 9 & 540 & 5 & 1 & 460 & 35 \\
\hline Number & 7 & , & 14 & & 8 & 18 & 5 & 2 & 12 & 1 & - & 16 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & 0 & 10 & 0 & 0 & 15 & 0 & 0 & 15 & 0 & 0 & 10 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1838 & 1900 & 1900 & 1865 & 1900 & 1900 & 1777 & 1900 & 1900 & 1796 & 1900 \\
\hline Adj Flow Rate, veh/h & 31 & 93 & 15 & 31 & 186 & 36 & 9 & 557 & 5 & 1 & 474 & 36 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Percent Heavy Veh, \% & 4 & 4 & 4 & 2 & 2 & 2 & 0 & 7 & 7 & 6 & 6 & 6 \\
\hline Cap, veh/h & 123 & 314 & 34 & 96 & 327 & 47 & 561 & 976 & 8 & 67 & 906 & 63 \\
\hline Arrive On Green & 0.21 & 0.21 & 0.21 & 0.21 & 0.21 & 0.21 & 0.56 & 0.56 & 0.56 & 0.56 & 0.56 & 0.56 \\
\hline Sat Flow, veh/h & 219 & 1320 & 186 & 124 & 1389 & 251 & 904 & 1758 & 16 & 0 & 1648 & 125 \\
\hline Grp Volume(v), veh/h & 139 & 0 & 0 & 253 & 0 & 0 & 9 & 0 & 562 & 511 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1725 & 0 & 0 & 1764 & 0 & 0 & 904 & 0 & 1774 & 1774 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 2.3 & 0.0 & 0.0 & 0.0 & 0.0 & 10.8 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 3.5 & 0.0 & 0.0 & 6.9 & 0.0 & 0.0 & 0.3 & 0.0 & 10.8 & 9.4 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.22 & & 0.11 & 0.12 & & 0.14 & 1.00 & & 0.01 & 0.00 & & 0.07 \\
\hline Lane Grp Cap(c), veh/h & 460 & 0 & 0 & 476 & 0 & 0 & 561 & 0 & 979 & 1039 & 0 & 0 \\
\hline VIC Ratio(X) & 0.30 & 0.00 & 0.00 & 0.53 & 0.00 & 0.00 & 0.02 & 0.00 & 0.57 & 0.49 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 649 & 0 & 0 & 667 & 0 & 0 & 614 & 0 & 1000 & 1067 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 18.3 & 0.0 & 0.0 & 19.7 & 0.0 & 0.0 & 5.5 & 0.0 & 8.8 & 8.0 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.8 & 0.0 & 0.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.8 & 0.4 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 4.9 & 0.0 & 0.0 & 15.3 & 0.0 & 0.0 & 0.0 & 0.0 & 4.0 & 1.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 3.2 & 0.0 & 0.0 & 6.8 & 0.0 & 0.0 & 0.1 & 0.0 & 8.2 & 6.0 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 23.9 & 0.0 & 0.0 & 37.0 & 0.0 & 0.0 & 5.5 & 0.0 & 13.6 & 9.7 & 0.0 & 0.0 \\
\hline LnGrp LOS & C & & & D & & & A & & B & A & & \\
\hline Approach Vol, veh/h & & 139 & & & 253 & & & 571 & & & 511 & \\
\hline Approach Delay, s/veh & & 23.9 & & & 37.0 & & & 13.4 & & & 9.7 & \\
\hline Approach LOS & & C & & & D & & & B & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 37.0 & & 16.2 & & 37.0 & & 16.2 & & & & \\
\hline Change Period ( \(Y+R \mathrm{Cc}\), s & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 30.0 & & 18.0 & & 30.0 & & 18.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{\text {c }} \mathrm{c}+11\right)\), s & & 12.8 & & 5.5 & & 11.4 & & 8.9 & & & & \\
\hline Green Ext Time (p_c), s & & 6.9 & & 3.2 & & 7.1 & & 2.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 17.2 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 & \(\checkmark\) & 4 & 4 & \(\downarrow\) & 4 \\
\hline Lane Group EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \(\uparrow\) & \(\dagger\) & \\
\hline Traffic Volume (vph) 5 & 15 & 130 & 480 & 480 & 60 \\
\hline Future Volume (vph) 5 & 15 & 130 & 480 & 480 & 60 \\
\hline Satd. Flow (prot) 1596 & 0 & 0 & 1705 & 1717 & 0 \\
\hline Flt Permitted 0.979 & & & 0.989 & & \\
\hline Satd. Flow (perm) 1596 & 0 & 0 & 1705 & 1717 & 0 \\
\hline Confl. Peds. (\#/hr) 1 & & 16 & & & 16 \\
\hline Peak Hour Factor 0.42 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) 0\% & 7\% & 1\% & 8\% & 6\% & 0\% \\
\hline \multicolumn{6}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) 28 & 0 & 0 & 663 & 587 & 0 \\
\hline Sign Control Stop & & & Free & Free & \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline \multicolumn{6}{|l|}{Control Type: Unsignalized} \\
\hline Intersection Capacity Utilization 74.9\% & & \multicolumn{4}{|r|}{ICU Level of Service D} \\
\hline Analysis Period (min) 15 & & & & & \\
\hline
\end{tabular}



\footnotetext{
Addressing Priority Corridors from the LRTP Needs Assessment: Route 138 in Milton
}

19: Route 138 \& Atherton St. \& Bradlee Rd.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & T & & 4 & \(\cdots\) & & P & & \(\frac{1}{7}\) & & ل & \(\cdots\) \\
\hline Lane Group & EBL & EBR & EBR2 & NBL2 & NBL & NBT & NBR & SBL & SBT & SBR & SBR2 & SEL \\
\hline Lane Configurations & * & & & & & \& & & & \& & & & \\
\hline Traffic Volume (vph) & 2 & 2 & 3 & 2 & 25 & 450 & 9 & 2 & 460 & 1 & 1 & 5 \\
\hline Future Volume (vph) & 2 & 2 & 3 & 2 & 25 & 450 & 9 & 2 & 460 & 1 & 1 & 5 \\
\hline Satd. Flow (prot) & 1432 & 0 & 0 & 0 & 0 & 1689 & 0 & 0 & 1732 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.986 & & & & & 0.959 & & & 0.998 & & & \\
\hline Satd. Flow (perm) & 1432 & 0 & 0 & 0 & 0 & 1625 & 0 & 0 & 1728 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 50\% & 0\% & 0\% & 50\% & 7\% & 8\% & 11\% & 0\% & 6\% & 0\% & 0\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 7 & 0 & 0 & 0 & 0 & 506 & 0 & 0 & 483 & 0 & 0 & 0 \\
\hline Turn Type & Prot & & & Perm & Perm & NA & & Perm & NA & & & Perm \\
\hline Protected Phases & 10 & & & & & 2 & & & 6 & & & \\
\hline Permitted Phases & & & & 2 & 2 & & & 6 & & & & 4 \\
\hline Detector Phase & 10 & & & 2 & 2 & 2 & & 6 & 6 & & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & & & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & & & 10.0 \\
\hline Minimum Split (s) & 9.0 & & & 28.0 & 28.0 & 28.0 & & 28.0 & 28.0 & & & 24.0 \\
\hline Total Split (s) & 10.0 & & & 40.0 & 40.0 & 40.0 & & 40.0 & 40.0 & & & 24.0 \\
\hline Total Split (\%) & 10.6\% & & & 42.6\% & 42.6\% & 42.6\% & & 42.6\% & 42.6\% & & & 25.5\% \\
\hline Yellow Time (s) & 4.0 & & & 5.0 & 5.0 & 5.0 & & 5.0 & 5.0 & & & 4.0 \\
\hline All-Red Time (s) & 1.0 & & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 \\
\hline Lost Time Adjust (s) & 0.0 & & & & & 0.0 & & & 0.0 & & & \\
\hline Total Lost Time (s) & 5.0 & & & & & 6.0 & & & 6.0 & & & \\
\hline Lead/Lag & Lag & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & & & None & None & None & & None & None & & & None \\
\hline Act Effct Green (s) & 5.8 & & & & & 29.6 & & & 29.6 & & & \\
\hline Actuated g/C Ratio & 0.11 & & & & & 0.58 & & & 0.58 & & & \\
\hline v/c Ratio & 0.04 & & & & & 0.54 & & & 0.48 & & & \\
\hline Control Delay & 31.4 & & & & & 16.5 & & & 15.0 & & & \\
\hline Queue Delay & 0.0 & & & & & 0.0 & & & 0.0 & & & \\
\hline Total Delay & 31.4 & & & & & 16.5 & & & 15.0 & & & \\
\hline LOS & C & & & & & B & & & B & & & \\
\hline Approach Delay & 31.4 & & & & & 16.5 & & & 15.0 & & & \\
\hline Approach LOS & C & & & & & B & & & B & & & \\
\hline Queue Length 50th (ft) & 2 & & & & & 76 & & & 70 & & & \\
\hline Queue Length 95th (ft) & 18 & & & & & \#456 & & & \#382 & & & \\
\hline Internal Link Dist (ft) & 1228 & & & & & 1586 & & & 2667 & & & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & 163 & & & & & 1193 & & & 1269 & & & \\
\hline Starvation Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Storage Cap Reductn & 0 & & & & & 0 & & & 0 & & & \\
\hline Reduced v/c Ratio & 0.04 & & & & & 0.42 & & & 0.38 & & & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 94
Actuated Cycle Length: 50.9


Natural Cycle: 85
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.54
Intersection Signal Delay: \(17.1 \quad\) Intersection LOS: B
Intersection Capacity Utilization 74.3\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & & & 4 & 4 & & ( & \(\dagger\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & \$ & & & \& & & & \(\ddagger\) & \\
\hline Traffic Volume (vph) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Future Volume (vph) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Satd. Flow (prot) & 0 & 1778 & 0 & 0 & 1690 & 0 & 0 & 1696 & 0 & 0 & 1715 & 0 \\
\hline Flt Permitted & & 0.845 & & & 0.855 & & & 0.996 & & & & \\
\hline Satd. Flow (perm) & 0 & 1530 & 0 & 0 & 1474 & 0 & 0 & 1690 & 0 & 0 & 1715 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 3\% & 0\% & 13\% & 0\% & 8\% & 8\% & 0\% & 7\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 30 & 0 & 0 & 82 & 0 & 0 & 548 & 0 & 0 & 519 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & Perm & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & & 24.0 & 24.0 & & 56.0 & 56.0 & & 56.0 & 56.0 & \\
\hline Total Split (\%) & 30.0\% & 30.0\% & & 30.0\% & 30.0\% & & 70.0\% & 70.0\% & & 70.0\% & 70.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 10.5 & & & 10.5 & & & 24.4 & & & 24.4 & \\
\hline Actuated g/C Ratio & & 0.30 & & & 0.30 & & & 0.71 & & & 0.71 & \\
\hline v/c Ratio & & 0.06 & & & 0.18 & & & 0.46 & & & 0.43 & \\
\hline Control Delay & & 14.4 & & & 14.9 & & & 8.3 & & & 7.9 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 14.4 & & & 14.9 & & & 8.3 & & & 7.9 & \\
\hline LOS & & B & & & B & & & A & & & A & \\
\hline Approach Delay & & 14.4 & & & 14.9 & & & 8.3 & & & 7.9 & \\
\hline Approach LOS & & B & & & B & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 5 & & & 13 & & & 71 & & & 65 & \\
\hline Queue Length 95th (ft) & & 25 & & & 52 & & & 221 & & & 201 & \\
\hline Internal Link Dist (ft) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 1005 & & & 968 & & & 1627 & & & 1651 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.03 & & & 0.08 & & & 0.34 & & & 0.31 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 80
Actuated Cycle Length: 34.6
```

Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.46
Intersection Signal Delay: 8.8 Intersection LOS: A
Intersection Capacity Utilization 44.6% ICU Level of Service A
Analysis Period (min) }1

```

Splits and Phases: 20: Route 138 \& Robbins St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Future Volume (veh/h) & 10 & 15 & 3 & 30 & 30 & 15 & 4 & 490 & 10 & 0 & 470 & 7 \\
\hline Number & 7 & 4 & 14 & , & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 10 & 0 & 0 & 10 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1900 & 1900 & 1900 & 1831 & 1900 & 1900 & 1760 & 1900 & 1900 & 1777 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 16 & 3 & 33 & 33 & 16 & 4 & 533 & 11 & 0 & 511 & 8 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 7 & 7 & 7 \\
\hline Cap, veh/h & 198 & 175 & 22 & 216 & 126 & 41 & 104 & 907 & 18 & 0 & 936 & 14 \\
\hline Arrive On Green & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.14 & 0.53 & 0.53 & 0.53 & 0.00 & 0.53 & 0.53 \\
\hline Sat Flow, veh/h & 379 & 1175 & 173 & 489 & 805 & 314 & 3 & 1713 & 35 & 0 & 1745 & 27 \\
\hline Grp Volume(v), veh/h & 30 & 0 & 0 & 82 & 0 & 0 & 548 & 0 & 0 & 0 & 0 & 519 \\
\hline Grp Sat Flow(s),veh/h/ln & 1726 & 0 & 0 & 1609 & 0 & 0 & 1751 & 0 & 0 & 0 & 0 & 1773 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.4 \\
\hline Cycle Q Clear(g_c), s & 0.5 & 0.0 & 0.0 & 1.4 & 0.0 & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.4 \\
\hline Prop In Lane & 0.37 & & 0.10 & 0.40 & & 0.20 & 0.01 & & 0.02 & 0.00 & & 0.02 \\
\hline Lane Grp Cap(c), veh/h & 386 & 0 & 0 & 374 & 0 & 0 & 1025 & 0 & 0 & 0 & 0 & 953 \\
\hline VIC Ratio( X ) & 0.08 & 0.00 & 0.00 & 0.22 & 0.00 & 0.00 & 0.53 & 0.00 & 0.00 & 0.00 & 0.00 & 0.54 \\
\hline Avail Cap(c_a), veh/h & 1105 & 0 & 0 & 1058 & 0 & 0 & 2749 & 0 & 0 & 0 & 0 & 2683 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 12.9 & 0.0 & 0.0 & 13.3 & 0.0 & 0.0 & 6.7 & 0.0 & 0.0 & 0.0 & 0.0 & 5.8 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\
\hline Initial Q Delay(d3),s/veh & 0.2 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 & 1.5 & 0.0 & 0.0 & 0.0 & 0.0 & 1.7 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.5 & 0.0 & 0.0 & 0.9 & 0.0 & 0.0 & 5.6 & 0.0 & 0.0 & 0.0 & 0.0 & 5.0 \\
\hline LnGrp Delay(d),s/veh & 13.1 & 0.0 & 0.0 & 13.9 & 0.0 & 0.0 & 8.6 & 0.0 & 0.0 & 0.0 & 0.0 & 8.0 \\
\hline LnGrp LOS & B & & & B & & & A & & & & & A \\
\hline Approach Vol, veh/h & & 30 & & & 82 & & & 548 & & & 519 & \\
\hline Approach Delay, s/veh & & 13.1 & & & 13.9 & & & 8.6 & & & 8.0 & \\
\hline Approach LOS & & B & & & B & & & A & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 23.5 & & 9.5 & & 23.5 & & 9.5 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 50.0 & & 19.0 & & 50.0 & & 19.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 9.0 & & 2.5 & & 8.4 & & 3.4 & & & & \\
\hline Green Ext Time (p_c), s & & 8.5 & & 0.5 & & 8.5 & & 0.4 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 8.8 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & & 4 & \(\dagger\) & & & & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & * & & & \$ & & & \$ & \\
\hline Traffic Volume (vph) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Future Volume (vph) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Satd. Flow (prot) & 0 & 1778 & 0 & 0 & 1735 & 0 & 0 & 1519 & 0 & 0 & 1525 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.967 & & & & & & 0.985 & \\
\hline Satd. Flow (perm) & 0 & 1777 & 0 & 0 & 1732 & 0 & 0 & 1519 & 0 & 0 & 1504 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & 1 & & 1 & & & 2 & 2 & & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 0\% & 8\% & 0\% & 13\% & 8\% & 0\% \\
\hline Parking (\#/hr) & & & & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 27 & 0 & 0 & 177 & 0 & 0 & 708 & 0 & 0 & 520 & 0 \\
\hline Turn Type & Split & NA & & Split & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Minimum Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 25.0 & 25.0 & & 25.0 & 25.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 50.0 & 50.0 & & 50.0 & 50.0 & \\
\hline Total Split (\%) & 25.0\% & 25.0\% & & 25.0\% & 25.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 8.4 & & & 13.1 & & & 44.1 & & & 44.1 & \\
\hline Actuated g/C Ratio & & 0.10 & & & 0.16 & & & 0.55 & & & 0.55 & \\
\hline v/c Ratio & & 0.15 & & & 0.63 & & & 0.86 & & & 0.63 & \\
\hline Control Delay & & 37.4 & & & 44.4 & & & 32.4 & & & 21.3 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 37.4 & & & 44.4 & & & 32.4 & & & 21.3 & \\
\hline LOS & & D & & & D & & & C & & & C & \\
\hline Approach Delay & & 37.4 & & & 44.4 & & & 32.4 & & & 21.3 & \\
\hline Approach LOS & & D & & & D & & & C & & & C & \\
\hline Queue Length 50th (ft) & & 14 & & & 89 & & & 327 & & & 196 & \\
\hline Queue Length 95th (ft) & & 35 & & & 156 & & & \#626 & & & 365 & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 406 & & & 396 & & & 828 & & & 820 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.07 & & & 0.45 & & & 0.86 & & & 0.63 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 100
Actuated Cycle Length: 80.9
Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.86
\begin{tabular}{ll} 
Intersection Signal Delay: 29.9 & Intersection LOS: C \\
Intersection Capacity Utilization 57.8\% & ICU Level of Service B
\end{tabular}

\section*{Analysis Period (min) 15}
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\gamma\) & & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Future Volume (veh/h) & 4 & 15 & 3 & 100 & 30 & 15 & 1 & 530 & 50 & 8 & 410 & 8 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 0.99 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.90 & 1.00 & 1.00 & 0.90 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1900 & 1900 & 1900 & 1887 & 1900 & 1900 & 1771 & 1900 & 1900 & 1760 & 1900 \\
\hline Adj Flow Rate, veh/h & 5 & 18 & 4 & 122 & 37 & 18 & 1 & 646 & 61 & 10 & 500 & 10 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 & 0.82 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline Cap, veh/h & 9 & 32 & 7 & 157 & 77 & 22 & 53 & 759 & 67 & 59 & 803 & 16 \\
\hline Arrive On Green & 0.03 & 0.03 & 0.03 & 0.13 & 0.13 & 0.13 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 \\
\hline Sat Flow, veh/h & 339 & 1222 & 271 & 1235 & 375 & 182 & 0 & 1434 & 135 & 9 & 1528 & 30 \\
\hline Grp Volume(v), veh/h & 27 & 0 & 0 & 177 & 0 & 0 & 708 & 0 & 0 & 520 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1832 & 0 & 0 & 1792 & 0 & 0 & 1569 & 0 & 0 & 1567 & 0 & 0 \\
\hline Q Serve(g_s), s & 1.0 & 0.0 & 0.0 & 6.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 1.0 & 0.0 & 0.0 & 6.3 & 0.0 & 0.0 & 25.8 & 0.0 & 0.0 & 15.4 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.19 & & 0.15 & 0.69 & & 0.10 & 0.00 & & 0.09 & 0.02 & & 0.02 \\
\hline Lane Grp Cap(c), veh/h & 47 & 0 & 0 & 240 & 0 & 0 & 878 & 0 & 0 & 878 & 0 & 0 \\
\hline VIC Ratio( X ) & 0.57 & 0.00 & 0.00 & 0.74 & 0.00 & 0.00 & 0.81 & 0.00 & 0.00 & 0.59 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 496 & 0 & 0 & 485 & 0 & 0 & 1068 & 0 & 0 & 1064 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 32.8 & 0.0 & 0.0 & 28.1 & 0.0 & 0.0 & 14.6 & 0.0 & 0.0 & 11.4 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 10.4 & 0.0 & 0.0 & 4.4 & 0.0 & 0.0 & 3.8 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 1.9 & 0.0 & 0.0 & 1.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.6 & 0.0 & 0.0 & 3.8 & 0.0 & 0.0 & 13.4 & 0.0 & 0.0 & 7.0 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 43.2 & 0.0 & 0.0 & 34.4 & 0.0 & 0.0 & 19.7 & 0.0 & 0.0 & 12.0 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & C & & & B & & & B & & \\
\hline Approach Vol, veh/h & & 27 & & & 177 & & & 708 & & & 520 & \\
\hline Approach Delay, s/veh & & 43.2 & & & 34.4 & & & 19.7 & & & 12.0 & \\
\hline Approach LOS & & D & & & C & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 42.1 & & 8.7 & & 42.1 & & 15.7 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 7.0 & & 7.0 & & 7.0 & & 7.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 43.0 & & 18.0 & & 43.0 & & 18.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 27.8 & & 3.0 & & 17.4 & & 8.3 & & & & \\
\hline Green Ext Time (p_c), s & & 7.3 & & 0.1 & & 9.4 & & 0.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 19.2 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}

HCMLOS C

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\geqslant\) & 7 & \(\checkmark\) & & 4 & \(\uparrow\) & 7 & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \({ }_{*}\) & & & ¢ & & & * & \\
\hline Traffic Volume (vph) & 2 & 6 & 2 & 4 & 6 & 7 & 3 & 540 & 35 & 10 & 400 & 1 \\
\hline Future Volume (vph) & 2 & 6 & 2 & 4 & 6 & 7 & 3 & 540 & 35 & 10 & 400 & 1 \\
\hline Satd. Flow (prot) & 0 & 1775 & 0 & 0 & 1616 & 0 & 0 & 1710 & 0 & 0 & 1702 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.988 & & & & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1775 & 0 & 0 & 1616 & 0 & 0 & 1710 & 0 & 0 & 1702 & 0 \\
\hline Confl. Peds. (\#hr) & 7 & & & & & 7 & 1 & & 16 & 16 & & 1 \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 & 0.87 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 25\% & 0\% & 0\% & 0\% & 7\% & 0\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 11 & 0 & 0 & 20 & 0 & 0 & 664 & 0 & 0 & 472 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 44.1\%
ICU Level of Service A
Analysis Period (min) 15
}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
y
\] & \(\rightarrow\) & & & & & \[
4
\] & 9 & \(p\) & & \(\pm\) & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & & & & \(\uparrow\) & & & \& & \\
\hline Traffic Volume (vph) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Future Volume (vph) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Satd. Flow (prot) & 0 & 1802 & 0 & 0 & 0 & 0 & 0 & 1688 & 0 & 0 & 1695 & 0 \\
\hline Flt Permitted & & 0.998 & & & & & & 0.996 & & & 0.987 & \\
\hline Satd. Flow (perm) & 0 & 1802 & 0 & 0 & 0 & 0 & 0 & 1681 & 0 & 0 & 1675 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & & & & 1 & & 7 & 7 & & 1 \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 13\% & 1\% & 0\% & 2\% & 2\% & 2\% & 20\% & 7\% & 9\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 224 & 0 & 0 & 0 & 0 & 0 & 612 & 0 & 0 & 476 & 0 \\
\hline Turn Type & Perm & NA & & & & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & & & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & & & & 36.0 & 36.0 & & 36.0 & 36.0 & \\
\hline Total Split (s) & 29.0 & 29.0 & & & & & 71.0 & 71.0 & & 71.0 & 71.0 & \\
\hline Total Split (\%) & 29.0\% & 29.0\% & & & & & 71.0\% & 71.0\% & & 71.0\% & 71.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & Min & Min & & Min & Min & \\
\hline Act Effct Green (s) & & 14.3 & & & & & & 32.7 & & & 32.7 & \\
\hline Actuated g/C Ratio & & 0.25 & & & & & & 0.56 & & & 0.56 & \\
\hline v/c Ratio & & 0.51 & & & & & & 0.65 & & & 0.51 & \\
\hline Control Delay & & 23.9 & & & & & & 13.2 & & & 10.6 & \\
\hline Queue Delay & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 23.9 & & & & & & 13.2 & & & 10.6 & \\
\hline LOS & & C & & & & & & B & & & B & \\
\hline Approach Delay & & 23.9 & & & & & & 13.2 & & & 10.6 & \\
\hline Approach LOS & & C & & & & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 62 & & & & & & 124 & & & 86 & \\
\hline Queue Length 95th (ft) & & 144 & & & & & & 272 & & & 189 & \\
\hline Internal Link Dist (ft) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 756 & & & & & & 1644 & & & 1639 & \\
\hline Starvation Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.30 & & & & & & 0.37 & & & 0.29 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 100 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 58.1
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 14.1 Intersection LOS: B
Intersection Capacity Utilization 51.6\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 24: Route 138 \& Brook Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & \(\rightarrow\) & \(\checkmark\) & 7 & & 4 & \[
4
\] & \(\dagger\) & \(p\) & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & & & & \& & & & \& & \\
\hline Traffic Volume (veh/h) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Future Volume (veh/h) & 8 & 190 & 4 & 0 & 0 & 0 & 5 & 500 & 45 & 9 & 400 & 20 \\
\hline Number & 7 & 4 & 14 & & & & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & & & & 0 & 15 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 0.99 & 1.00 & & 0.99 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1873 & 1900 & & & & 1900 & 1771 & 1900 & 1900 & 1768 & 1900 \\
\hline Adj Flow Rate, veh/h & 9 & 211 & 4 & & & & 6 & 556 & 50 & 10 & 444 & 22 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & & & & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & & & & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Percent Heavy Veh, \% & 0 & 1 & 0 & & & & 7 & 7 & 7 & 8 & 8 & 8 \\
\hline Cap, veh/h & 12 & 337 & 5 & & & & 71 & 972 & 78 & 76 & 1002 & 44 \\
\hline Arrive On Green & 0.18 & 0.18 & 0.18 & & & & 0.60 & 0.60 & 0.60 & 0.60 & 0.60 & 0.60 \\
\hline Sat Flow, veh/h & 75 & 1755 & 33 & & & & 4 & 1595 & 142 & 10 & 1649 & 80 \\
\hline Grp Volume(v), veh/h & 224 & 0 & 0 & & & & 612 & 0 & 0 & 476 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1863 & 0 & 0 & & & & 1741 & 0 & 0 & 1740 & 0 & 0 \\
\hline Q Serve(g_s), s & 5.6 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 5.6 & 0.0 & 0.0 & & & & 10.9 & 0.0 & 0.0 & 7.5 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.04 & & 0.02 & & & & 0.01 & & 0.08 & 0.02 & & 0.05 \\
\hline Lane Grp Cap(c), veh/h & 361 & 0 & 0 & & & & 1119 & 0 & 0 & 1118 & 0 & 0 \\
\hline V/C Ratio(X) & 0.62 & 0.00 & 0.00 & & & & 0.55 & 0.00 & 0.00 & 0.43 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 890 & 0 & 0 & & & & 2316 & 0 & 0 & 2302 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & & & & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 22.4 & 0.0 & 0.0 & & & & 7.6 & 0.0 & 0.0 & 6.7 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 3.7 & 0.0 & 0.0 & & & & 0.4 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 14.5 & 0.0 & 0.0 & & & & 2.9 & 0.0 & 0.0 & 2.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 6.4 & 0.0 & 0.0 & & & & 9.0 & 0.0 & 0.0 & 6.8 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 40.6 & 0.0 & 0.0 & & & & 10.8 & 0.0 & 0.0 & 9.2 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & & & & B & & & A & & \\
\hline Approach Vol, veh/h & & 224 & & & & & & 612 & & & 476 & \\
\hline Approach Delay, s/veh & & 40.6 & & & & & & 10.8 & & & 9.2 & \\
\hline Approach LOS & & D & & & & & & B & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 36.0 & & 14.2 & & 36.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 6.0 & & 5.0 & & 6.0 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 65.0 & & 24.0 & & 65.0 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 12.9 & & 7.6 & & 9.5 & & & & & & \\
\hline Green Ext Time (p_c), s & & 9.2 & & 2.0 & & 9.3 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.3 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 4 & \(\dagger\) & & & \(\dagger\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & *T & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 550 & 3 & 3 & 410 \\
\hline Future Volume (vph) & 0 & 0 & 550 & 3 & 3 & 410 \\
\hline Satd. Flow (prot) & 1837 & 0 & 1831 & 0 & 0 & 1835 \\
\hline Flt Permitted & & & & & & 0.999 \\
\hline Satd. Flow (perm) & 1837 & 0 & 1831 & 0 & 0 & 1835 \\
\hline Confl. Peds. (\#/hr) & & & & 4 & 4 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.86 & 0.75 & 0.38 & 0.89 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 33\% & 0\% & 0\% \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 644 & 0 & 0 & 469 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 32.5\%
ICU Level of Service A
Analysis Period (min) 15
}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 0 & 550 & 3 & 3 & 410 \\
Future Vol, veh/h & 0 & 0 & 550 & 3 & 3 & 410 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 4 & 4 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 92 & 92 & 86 & 75 & 38 & 89 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 33 & 0 & 0 \\
Mvmt Flow & 0 & 0 & 640 & 4 & 8 & 461 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor1 & & Major1 & & ajor2 & \\
\hline Conflicting Flow All & 1122 & 646 & 0 & 0 & 648 & 0 \\
\hline Stage 1 & 646 & - & - & - & - & - \\
\hline Stage 2 & 476 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.1 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.2 & - \\
\hline Pot Cap-1 Maneuver & 230 & 475 & - & - & 947 & - \\
\hline Stage 1 & 526 & - & - & - & - & - \\
\hline Stage 2 & 629 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 227 & 473 & - & - & 947 & - \\
\hline Mov Cap-2 Maneuver & 227 & - & - & - & - & - \\
\hline Stage 1 & 524 & - & - & - & - & - \\
\hline Stage 2 & 622 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 0 & & 0 & & 0.1 & \\
\hline HCM LOS & A & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & - & 947 & - \\
\hline HCM Lane V/C Ratio & & - & - & - & 0.008 & - \\
\hline HCM Control Delay (s) & & - & - & 0 & 8.8 & 0 \\
\hline HCM Lane LOS & & - & - & A & A & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & - & 0 & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & \(\dagger\) & & & \(\dagger\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & 4 & & & 4 \\
\hline Traffic Volume (vph) & 3 & 10 & 1130 & 0 & 0 & 1270 \\
\hline Future Volume (vph) & 3 & 10 & 1130 & 0 & 0 & 1270 \\
\hline Satd. Flow (prot) & 1453 & 0 & 1580 & 0 & 0 & 1595 \\
\hline Flt Permitted & 0.989 & & & & & \\
\hline Satd. Flow (perm) & 1453 & 0 & 1580 & 0 & 0 & 1595 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 4\% & 2\% & 2\% & 3\% \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 14 & 0 & 1215 & 0 & 0 & 1366 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 84.7\% ICU Level of Service E
Analysis Period (min) 15
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.3 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Yr & & 个 & & & 4 \\
Traffic Vol, veh/h & 3 & 10 & 1130 & 0 & 0 & 1270 \\
Future Vol, veh/h & 3 & 10 & 1130 & 0 & 0 & 1270 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 4 & 2 & 2 & 3 \\
Mvmt Flow & 3 & 11 & 1215 & 0 & 0 & 1366
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\geqslant\) & 7 & 4 & & 4 & \(\uparrow\) & 7 & , & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Future Volume (vph) & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Satd. Flow (prot) & 0 & 1451 & 0 & 0 & 1421 & 0 & 0 & 1593 & 0 & 0 & 1579 & 0 \\
\hline Flt Permitted & & 0.990 & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1451 & 0 & 0 & 1421 & 0 & 0 & 1593 & 0 & 0 & 1579 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 2\% & 2\% & 0\% & 25\% & 3\% & 0\% & 2\% & 4\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 10 & 0 & 0 & 21 & 0 & 0 & 1163 & 0 & 0 & 1314 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 85.0\% ICU Level of Service E
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|l|}{0.5} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \& & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Future Vol, veh/h & 2 & 0 & 8 & 0 & 0 & 20 & 8 & 1120 & 0 & 0 & 1270 & 5 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 2 & 2 & 0 & 25 & 3 & 0 & 2 & 4 & 0 \\
\hline Mvmt Flow & 2 & 0 & 8 & 0 & 0 & 21 & 8 & 1155 & 0 & 0 & 1309 & 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 & 4 & \(\dagger\) & & & 1 \\
\hline Lane Group WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) 1 & 1 & 790 & 340 & 10 & 1270 \\
\hline Future Volume (vph) 1 & 1 & 790 & 340 & 10 & 1270 \\
\hline Satd. Flow (prot) 1480 & 0 & 1523 & 0 & 0 & 1580 \\
\hline Flt Permitted 0.976 & & & & & \\
\hline Satd. Flow (perm) 1480 & 0 & 1523 & 0 & 0 & 1580 \\
\hline Confl. Peds. (\#/hr) & & & 1 & 1 & \\
\hline Peak Hour Factor 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) 0\% & 2\% & 5\% & 0\% & 2\% & 4\% \\
\hline \multicolumn{6}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) 2 & 0 & 1165 & 0 & 0 & 1319 \\
\hline Sign Control Stop & & Free & & & Free \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline \multicolumn{6}{|l|}{Control Type: Unsignalized} \\
\hline Intersection Capacity Utilization 93.6\% & & & \multicolumn{3}{|r|}{ICU Level of Service F} \\
\hline Analysis Period (min) 15 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 1 & 1 & 790 & 340 & 10 & 1270 \\
Future Vol, veh/h & 1 & 1 & 790 & 340 & 10 & 1270 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 1 & 1 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 \\
Heavy Vehicles, \% & 0 & 2 & 5 & 0 & 2 & 4 \\
Mvmt Flow & 1 & 1 & 814 & 351 & 10 & 1309
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor M & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 2321 & 991 & 0 & 0 & 1166 & 0 \\
\hline Stage 1 & 991 & - & - & - & - & - \\
\hline Stage 2 & 1330 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.22 & - & - & 4.12 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.318 & - & - & 2.218 & - \\
\hline Pot Cap-1 Maneuver & 42 & 299 & - & - & 599 & - \\
\hline Stage 1 & 362 & - & - & - & - & - \\
\hline Stage 2 & 249 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 39 & 299 & - & - & 599 & - \\
\hline Mov Cap-2 Maneuver & 39 & - & - & - & - & - \\
\hline Stage 1 & 362 & - & - & - & - & - \\
\hline Stage 2 & 234 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 58.8 & & 0 & & 0.1 & \\
\hline HCM LOS & F & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & SBT \\
\hline Capacity (veh/h) & & - & - & 69 & 599 & - \\
\hline HCM Lane V/C Ratio & & - & - & 0.03 & 0.017 & - \\
\hline HCM Control Delay (s) & & - & - & 58.8 & 11.1 & 0 \\
\hline HCM Lane LOS & & - & - & F & B & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & 0.1 & 0.1 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & \(\uparrow\) & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \(\uparrow\) & 个 & \\
\hline Traffic Volume (vph) & 0 & 35 & 1 & 790 & 1260 & 3 \\
\hline Future Volume (vph) & 0 & 35 & 1 & 790 & 1260 & 3 \\
\hline Satd. Flow (prot) & 1421 & 0 & 0 & 1580 & 1579 & 0 \\
\hline Flt Permitted & & & & & & \\
\hline Satd. Flow (perm) & 1421 & 0 & 0 & 1580 & 1579 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.39 & 0.25 & 0.96 & 0.97 & 0.38 \\
\hline Heavy Vehicles (\%) & 2\% & 0\% & 0\% & 4\% & 4\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 90 & 0 & 0 & 827 & 1307 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 84.3\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service E}} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.5 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & \(\uparrow\) & \\
Traffic Vol, veh/h & 0 & 35 & 1 & 790 & 1260 & 3 \\
Future Vol, veh/h & 0 & 35 & 1 & 790 & 1260 & 3 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 92 & 39 & 25 & 96 & 97 & 38 \\
Heavy Vehicles, \(\%\) & 2 & 0 & 0 & 4 & 4 & 0 \\
Mvmt Flow & 0 & 90 & 4 & 823 & 1299 & 8
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & \(\uparrow\) & & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & \({ }^{17}\) & \(\hat{\beta}\) & & & \(\uparrow\) & & & ¢ & \\
\hline Traffic Volume (vph) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (vph) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Satd. Flow (prot) & 0 & 1413 & 0 & 1546 & 1558 & 0 & 0 & 1580 & 0 & 0 & 1565 & 0 \\
\hline Flt Permitted & & 0.990 & & 0.367 & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1402 & 0 & 597 & 1558 & 0 & 0 & 1580 & 0 & 0 & 1565 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 1\% & 1\% & 3\% & 8\% & 0\% & 4\% & 2\% & 2\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 396 & 0 & 144 & 82 & 0 & 0 & 814 & 0 & 0 & 794 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (\%) & 40.0\% & 40.0\% & & 40.0\% & 40.0\% & & & 60.0\% & & & 60.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 5.0 & & & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 5.0 & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & & None & & & None & \\
\hline Act Effct Green (s) & & 23.1 & & 23.1 & 23.1 & & & 39.1 & & & 39.1 & \\
\hline Actuated g/C Ratio & & 0.32 & & 0.32 & 0.32 & & & 0.53 & & & 0.53 & \\
\hline v/c Ratio & & 0.90 & & 0.77 & 0.17 & & & 0.97 & & & 0.95 & \\
\hline Control Delay & & 49.0 & & 50.9 & 18.8 & & & 43.5 & & & 40.8 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 49.0 & & 50.9 & 18.8 & & & 43.5 & & & 40.8 & \\
\hline LOS & & D & & D & B & & & D & & & D & \\
\hline Approach Delay & & 49.0 & & & 39.3 & & & 43.5 & & & 40.8 & \\
\hline Approach LOS & & D & & & D & & & D & & & D & \\
\hline Queue Length 50th (tt) & & 169 & & 58 & 26 & & & 350 & & & 336 & \\
\hline Queue Length 95th (tt) & & \#323 & & \#151 & 57 & & & \#606 & & & \#589 & \\
\hline Internal Link Dist (t) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline Base Capacity (vph) & & 479 & & 204 & 532 & & & 843 & & & 834 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.83 & & 0.71 & 0.15 & & & 0.97 & & & 0.95 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 75
Actuated Cycle Length: 73.2
```

Natural Cycle: }8
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.97
Intersection Signal Delay: 43.1 Intersection LOS: D
Intersection Capacity Utilization 95.0% ICU Level of Service F
Analysis Period (min) }1

# 95th percentile volume exceeds capacity, queue may be longer.

    Queue shown is maximum after two cycles.
    ```

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & & & 4 & 4 & 9 & \% & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\leqslant\) & & \({ }^{7}\) & \(\hat{\dagger}\) & & & 4 & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (veh/h) & 15 & 0 & 370 & 140 & 70 & 10 & 0 & 790 & 0 & 0 & 770 & 0 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 20 & 0 & 10 & 10 & 0 & 0 & 10 & 0 & 0 & 40 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1684 & 1700 & 1683 & 1641 & 1700 & 0 & 1635 & 0 & 0 & 1619 & 1700 \\
\hline Adj Flow Rate, veh/h & 15 & 0 & 381 & 144 & 72 & 10 & 0 & 814 & 0 & 0 & 794 & 0 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 3 & 3 & 0 & 4 & 0 & 0 & 5 & 5 \\
\hline Cap, veh/h & 50 & 11 & 306 & 190 & 529 & 60 & 0 & 850 & 0 & 0 & 842 & 0 \\
\hline Arrive On Green & 0.33 & 0.00 & 0.33 & 0.33 & 0.33 & 0.33 & 0.00 & 0.52 & 0.00 & 0.00 & 0.52 & 0.00 \\
\hline Sat Flow, veh/h & 23 & 32 & 1377 & 902 & 1410 & 196 & 0 & 1635 & 0 & 0 & 1619 & 0 \\
\hline Grp Volume(v), veh/h & 396 & 0 & 0 & 144 & 0 & 82 & 0 & 814 & 0 & 0 & 794 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1431 & 0 & 0 & 902 & 0 & 1606 & 0 & 1635 & 0 & 0 & 1619 & 0 \\
\hline Q Serve(g_s), s & 4.4 & 0.0 & 0.0 & 4.4 & 0.0 & 2.7 & 0.0 & 35.7 & 0.0 & 0.0 & 34.6 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 19.0 & 0.0 & 0.0 & 23.4 & 0.0 & 2.7 & 0.0 & 35.7 & 0.0 & 0.0 & 34.6 & 0.0 \\
\hline Prop In Lane & 0.04 & & 0.96 & 1.00 & & 0.12 & 0.00 & & 0.00 & 0.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 329 & 0 & 0 & 190 & 0 & 538 & 0 & 850 & 0 & 0 & 842 & 0 \\
\hline V/C Ratio(X) & 1.20 & 0.00 & 0.00 & 0.76 & 0.00 & 0.15 & 0.00 & 0.96 & 0.00 & 0.00 & 0.94 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 528 & 0 & 0 & 257 & 0 & 537 & 0 & 852 & 0 & 0 & 844 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 22.5 & 0.0 & 0.0 & 31.2 & 0.0 & 18.1 & 0.0 & 18.0 & 0.0 & 0.0 & 18.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 108.8 & 0.0 & 0.0 & 8.5 & 0.0 & 0.1 & 0.0 & 21.1 & 0.0 & 0.0 & 18.6 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 159.7 & 0.0 & 0.0 & 81.8 & 0.0 & 2.9 & 0.0 & 23.3 & 0.0 & 0.0 & 145.4 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 36.7 & 0.0 & 0.0 & 8.6 & 0.0 & 2.5 & 0.0 & 27.7 & 0.0 & 0.0 & 55.4 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 290.9 & 0.0 & 0.0 & 121.5 & 0.0 & 21.2 & 0.0 & 62.4 & 0.0 & 0.0 & 182.0 & 0.0 \\
\hline LnGrp LOS & F & & & F & & C & & E & & & F & \\
\hline Approach Vol, veh/h & & 396 & & & 226 & & & 814 & & & 794 & \\
\hline Approach Delay, s/veh & & 290.9 & & & 85.1 & & & 62.4 & & & 182.0 & \\
\hline Approach LOS & & F & & & F & & & E & & & F & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R c\) ), \(s\) & & 44.8 & & 30.0 & & 44.8 & & 30.0 & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 39.0 & & 25.0 & & 39.0 & & 25.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 37.7 & & 21.0 & & 36.6 & & 25.4 & & & & \\
\hline Green Ext Time (p_c), s & & 1.1 & & 1.5 & & 1.9 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 147.9 & & & & & & & & & \\
\hline HCM 2010 LOS & & & F & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Notes} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & \({ }^{*}\) & 4 & & 「 \\
\hline Traffic Volume (vph) & 0 & 0 & 90 & 270 & 0 & 140 \\
\hline Future Volume (vph) & 0 & 0 & 90 & 270 & 0 & 140 \\
\hline Satd. Flow (prot) & 0 & 0 & 1546 & 1627 & 0 & 1394 \\
\hline Flt Permitted & & & 0.950 & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1546 & 1627 & 0 & 1394 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.96 & 0.93 & 0.92 & 0.82 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 1\% & 1\% & 2\% & 2\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 94 & 290 & 0 & 171 \\
\hline Sign Control & Free & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 21.9\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}


Cycle Length: 80
Actuated Cycle Length: 74.9
```

Natural Cycle: }7
Control Type: Actuated-Uncoordinated

```
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 31.3 Intersection LOS: C
Intersection Capacity Utilization 79.4\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 16: Route 138 \& Neponset Valley Pkwy.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \[
4
\] & 9 & \(\dagger\) & \(\downarrow\) & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR & & \\
\hline Lane Configurations & * & & \({ }^{1}\) & 4 & F & & & \\
\hline Traffic Volume (veh/h) & 7 & 230 & 310 & 490 & 530 & 3 & & \\
\hline Future Volume (veh/h) & 7 & 230 & 310 & 490 & 530 & 3 & & \\
\hline Number & 7 & 14 & 5 & 2 & 6 & 16 & & \\
\hline Initial Q (Qb), veh & 5 & 0 & 10 & 15 & 15 & 0 & & \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & 1.00 & 1.00 & & & 1.00 & & \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Adj Sat Flow, veh/h/ln & 1600 & 1700 & 1604 & 1650 & 1619 & 1700 & & \\
\hline Adj Flow Rate, veh/h & 7 & 237 & 320 & 505 & 546 & 3 & & \\
\hline Adj No. of Lanes & 0 & 0 & 1 & 1 & 1 & 0 & & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & & \\
\hline Percent Heavy Veh, \% & 0 & 0 & 6 & 3 & 5 & 5 & & \\
\hline Cap, veh/h & 31 & 265 & 388 & 1053 & 655 & 2 & & \\
\hline Arrive On Green & 0.21 & 0.21 & 0.15 & 0.64 & 0.41 & 0.41 & & \\
\hline Sat Flow, veh/h & 39 & 1321 & 1527 & 1650 & 1609 & 9 & & \\
\hline Grp Volume(v), veh/h & 245 & 0 & 320 & 505 & 0 & 549 & & \\
\hline Grp Sat Flow(s),veh/h/ln & 1365 & 0 & 1527 & 1650 & 0 & 1618 & & \\
\hline Q Serve(g_s), s & 11.1 & 0.0 & 7.0 & 10.3 & 0.0 & 19.4 & & \\
\hline Cycle Q Clear(g_c), s & 11.1 & 0.0 & 7.0 & 10.3 & 0.0 & 19.4 & & \\
\hline Prop In Lane & 0.03 & 0.97 & 1.00 & & & 0.01 & & \\
\hline Lane Grp Cap(c), veh/h & 297 & 0 & 388 & 1053 & 0 & 655 & & \\
\hline V/C Ratio(X) & 0.83 & 0.00 & 0.82 & 0.48 & 0.00 & 0.84 & & \\
\hline Avail Cap(c_a), veh/h & 383 & 0 & 549 & 1337 & 0 & 807 & & \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & & \\
\hline Uniform Delay (d), s/veh & 27.3 & 0.0 & 20.1 & 6.9 & 0.0 & 21.2 & & \\
\hline Incr Delay (d2), s/veh & 10.9 & 0.0 & 6.9 & 0.3 & 0.0 & 6.5 & & \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 27.1 & 2.8 & 0.0 & 23.4 & & \\
\hline \%ile BackOfQ(50\%),veh/ln & 6.1 & 0.0 & 10.4 & 7.5 & 0.0 & 17.4 & & \\
\hline LnGrp Delay(d),s/veh & 38.3 & 0.0 & 54.1 & 10.1 & 0.0 & 51.2 & & \\
\hline LnGrp LOS & D & & D & B & & D & & \\
\hline Approach Vol, veh/h & 245 & & & 825 & 549 & & & \\
\hline Approach Delay, s/veh & 38.3 & & & 27.1 & 51.2 & & & \\
\hline Approach LOS & D & & & C & D & & & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & \\
\hline Phs Duration ( \(G+Y+R c\) ), s & & 45.9 & & 18.3 & 14.5 & 31.4 & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 5.0 & & 5.0 & 5.0 & 5.0 & & \\
\hline Max Green Setting (Gmax), s & & 52.0 & & 18.0 & 15.0 & 32.0 & & \\
\hline Max Q Clear Time ( \(\mathrm{g}_{-} \mathrm{c}+11\) ), s & & 12.3 & & 13.1 & 9.0 & 21.4 & & \\
\hline Green Ext Time (p_c), s & & 8.7 & & 0.4 & 0.5 & 5.0 & & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 37.0 & & & & & \\
\hline HCM 2010 LOS & & & D & & & & & \\
\hline Notes & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 4 & & & \[
4
\] & \(\dagger\) & \% & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & * & & 7 & \(\uparrow\) & & & ¢ & \\
\hline Traffic Volume (vph) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Future Volume (vph) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Satd. Flow (prot) & 0 & 1574 & 0 & 0 & 1525 & 0 & 1561 & 1588 & 0 & 0 & 1556 & 0 \\
\hline Flt Permitted & & 0.926 & & & 0.970 & & 0.462 & & & & 0.992 & \\
\hline Satd. Flow (perm) & 0 & 1470 & 0 & 0 & 1486 & 0 & 759 & 1588 & 0 & 0 & 1545 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 1 & & 1 & & & 1 & & & & & & \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 7\% & 1\% & 0\% & 9\% & 5\% & 0\% & 0\% & 3\% & 10\% & 0\% & 5\% & 4\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 174 & 0 & 0 & 153 & 0 & 16 & 506 & 0 & 0 & 571 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 55.0 & 55.0 & & 55.0 & 55.0 & \\
\hline Total Split (\%) & 31.3\% & 31.3\% & & 31.3\% & 31.3\% & & 68.8\% & 68.8\% & & 68.8\% & 68.8\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 12.0 & & & 12.0 & & 32.5 & 32.5 & & & 32.5 & \\
\hline Actuated g/C Ratio & & 0.21 & & & 0.21 & & 0.57 & 0.57 & & & 0.57 & \\
\hline v/c Ratio & & 0.56 & & & 0.49 & & 0.04 & 0.56 & & & 0.65 & \\
\hline Control Delay & & 28.0 & & & 25.8 & & 6.7 & 11.2 & & & 13.2 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Delay & & 28.0 & & & 25.8 & & 6.7 & 11.2 & & & 13.2 & \\
\hline LOS & & C & & & C & & A & B & & & B & \\
\hline Approach Delay & & 28.0 & & & 25.8 & & & 11.0 & & & 13.2 & \\
\hline Approach LOS & & C & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 49 & & & 43 & & 2 & 90 & & & 110 & \\
\hline Queue Length 95th (ft) & & 123 & & & 109 & & 11 & 214 & & & 263 & \\
\hline Internal Link Dist (ft) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline Turn Bay Length (ft) & & & & & & & 200 & & & & & \\
\hline Base Capacity (vph) & & 528 & & & 534 & & 655 & 1370 & & & 1333 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.33 & & & 0.29 & & 0.02 & 0.37 & & & 0.43 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 80 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 56.7
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 15.6 Intersection LOS: B
Intersection Capacity Utilization 67.6\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & \(\checkmark\) & & & 4 & 4 & 7 & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \$ & & \% & \(\hat{\beta}\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Future Volume (veh/h) & 30 & 120 & 15 & 10 & 110 & 25 & 15 & 470 & 10 & 8 & 510 & 25 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 25 & 0 & 0 & 15 & 0 & 0 & 15 & 0 & 0 & 30 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/n & 1700 & 1666 & 1700 & 1700 & 1628 & 1700 & 1700 & 1648 & 1700 & 1700 & 1621 & 1700 \\
\hline Adj Flow Rate, veh/h & 32 & 126 & 16 & 11 & 116 & 26 & 16 & 495 & 11 & 8 & 537 & 26 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 1 & 1 & 1 & 5 & 5 & 5 & 0 & 3 & 3 & 5 & 5 & 5 \\
\hline Cap, veh/h & 92 & 280 & 17 & 77 & 279 & 31 & 412 & 963 & 19 & 53 & 821 & 31 \\
\hline Arrive On Green & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.59 & 0.59 & 0.59 & 0.59 & 0.59 & 0.59 \\
\hline Sat Flow, veh/h & 181 & 1250 & 145 & 51 & 1243 & 265 & 770 & 1606 & 36 & - & 1523 & 73 \\
\hline Grp Volume(v), veh/h & 174 & 0 & 0 & 153 & 0 & 0 & 16 & 0 & 506 & 571 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1576 & 0 & 0 & 1559 & 0 & 0 & 770 & 0 & 1642 & 1602 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 9.2 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 5.0 & 0.0 & 0.0 & 4.5 & 0.0 & 0.0 & 0.6 & 0.0 & 9.2 & 11.3 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.18 & & 0.09 & 0.07 & & 0.17 & 1.00 & & 0.02 & 0.01 & & 0.05 \\
\hline Lane Grp Cap(c), veh/h & 388 & 0 & 0 & 363 & 0 & 0 & 412 & 0 & 975 & 803 & 0 & 0 \\
\hline VIC Ratio( X ) & 0.45 & 0.00 & 0.00 & 0.42 & 0.00 & 0.00 & 0.04 & 0.00 & 0.52 & 0.71 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 691 & 0 & 0 & 685 & 0 & 0 & 823 & 0 & 1557 & 1585 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 23.6 & 0.0 & 0.0 & 21.7 & 0.0 & 0.0 & 5.4 & 0.0 & 7.3 & 16.7 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.8 & 0.0 & 0.0 & 0.8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 1.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 54.1 & 0.0 & 0.0 & 21.2 & 0.0 & 0.0 & 0.0 & 0.0 & 3.5 & 34.9 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 10.9 & 0.0 & 0.0 & 5.8 & 0.0 & 0.0 & 0.1 & 0.0 & 7.3 & 20.6 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 78.5 & 0.0 & 0.0 & 43.6 & 0.0 & 0.0 & 5.4 & 0.0 & 11.3 & 52.7 & 0.0 & 0.0 \\
\hline LnGrp LOS & E & & & D & & & A & & B & D & & \\
\hline Approach Vol, veh/h & & 174 & & & 153 & & & 522 & & & 571 & \\
\hline Approach Delay, s/veh & & 78.5 & & & 43.6 & & & 11.1 & & & 52.7 & \\
\hline Approach LOS & & E & & & D & & & B & & & D & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 37.0 & & 13.6 & & 37.0 & & 13.6 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 48.0 & & 20.0 & & 48.0 & & 20.0 & & & & \\
\hline Max Q Clear Time ( \(g_{-}\)c+11), \(s\) & & 11.2 & & 7.0 & & 13.3 & & 6.5 & & & & \\
\hline Green Ext Time (p_c), s & & 8.6 & & 1.5 & & 8.5 & & 1.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 39.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & D & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 6.6 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & 个 & \\
Traffic Vol, veh/h & 50 & 100 & 80 & 460 & 440 & 25 \\
Future Vol, veh/h & 50 & 100 & 80 & 460 & 440 & 25 \\
Conflicting Peds, \#/hr & 0 & 0 & 1 & 0 & 0 & 1 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 1 & 3 & 6 & 0 \\
Mvmt Flow & 54 & 108 & 86 & 495 & 473 & 27
\end{tabular}


HCMLOS E

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
4
\] & T & 4 & \(\cdots\) & & 14 & & \(\frac{1}{7}\) & W & & + & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL2 & NBL & NBT & NBR & SBL & SBT & SBR2 & SEL & SET & SER \\
\hline Lane Configurations & * & & & & \& & & & \& & & & \$ & \\
\hline Traffic Volume (vph) & 2 & 2 & 2 & 35 & 440 & 35 & 7 & 410 & 6 & 6 & 30 & 15 \\
\hline Future Volume (vph) & 2 & 2 & 2 & 35 & 440 & 35 & 7 & 410 & 6 & 6 & 30 & 15 \\
\hline Satd. Flow (prot) & 1495 & 0 & 0 & 0 & 1578 & 0 & 0 & 1544 & 0 & 0 & 1514 & 0 \\
\hline Flt Permitted & 0.976 & & & & 0.947 & & & 0.990 & & & 0.949 & \\
\hline Satd. Flow (perm) & 1495 & 0 & 0 & 0 & 1500 & 0 & 0 & 1530 & 0 & 0 & 1446 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & & 1 & & & & & 1 & & & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 0\% & 3\% & 3\% & 14\% & 6\% & 0\% & 0\% & 6\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 4 & 0 & 0 & 0 & 551 & 0 & 0 & 455 & 0 & 0 & 54 & 0 \\
\hline Turn Type & Prot & & Perm & Perm & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 10 & & & & 2 & & & 6 & & & 4 & \\
\hline Permitted Phases & & & 2 & 2 & & & 6 & & & 4 & & \\
\hline Detector Phase & 10 & & 2 & 2 & 2 & & 6 & 6 & & 4 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 9.0 & & 28.0 & 28.0 & 28.0 & & 28.0 & 28.0 & & 15.0 & 15.0 & \\
\hline Total Split (s) & 9.0 & & 55.0 & 55.0 & 55.0 & & 55.0 & 55.0 & & 16.0 & 16.0 & \\
\hline Total Split (\%) & 11.3\% & & 68.8\% & 68.8\% & 68.8\% & & 68.8\% & 68.8\% & & 20.0\% & 20.0\% & \\
\hline Yellow Time (s) & 4.0 & & 5.0 & 5.0 & 5.0 & & 5.0 & 5.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 1.0 & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 5.0 & & & & 6.0 & & & 6.0 & & & 5.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & & None & None & None & & None & None & & None & None & \\
\hline Act Effct Green (s) & 4.5 & & & & 31.6 & & & 31.6 & & & 11.4 & \\
\hline Actuated g/C Ratio & 0.10 & & & & 0.73 & & & 0.73 & & & 0.26 & \\
\hline v/c Ratio & 0.03 & & & & 0.51 & & & 0.41 & & & 0.14 & \\
\hline Control Delay & 27.0 & & & & 9.3 & & & 7.9 & & & 20.6 & \\
\hline Queue Delay & 0.0 & & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & 27.0 & & & & 9.3 & & & 7.9 & & & 20.6 & \\
\hline LOS & C & & & & A & & & A & & & C & \\
\hline Approach Delay & 27.0 & & & & 9.3 & & & 7.9 & & & 20.6 & \\
\hline Approach LOS & C & & & & A & & & A & & & C & \\
\hline Queue Length 50th (ft) & 1 & & & & 91 & & & 67 & & & 11 & \\
\hline Queue Length 95th (ft) & 11 & & & & 255 & & & 188 & & & 53 & \\
\hline Internal Link Dist (ft) & 1290 & & & & 1586 & & & 2667 & & & 689 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & 155 & & & & 1403 & & & 1431 & & & 413 & \\
\hline Starvation Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & 0 & & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & 0.03 & & & & 0.39 & & & 0.32 & & & 0.13 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 80 & & & & & & & & & & & & \\
\hline
\end{tabular}


Actuated Cycle Length: 43.5
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.51
Intersection Signal Delay: \(10.3 \quad\) Intersection LOS: B
Intersection Capacity Utilization 79.3\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & & \[
4
\] & \(\dagger\) & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & \(\uparrow\) & & & \& & & & * & \\
\hline Traffic Volume (vph) & 5 & 35 & 3 & 7 & 35 & 5 & 1 & 450 & 20 & 5 & 410 & 9 \\
\hline Future Volume (vph) & 5 & 35 & 3 & 7 & 35 & 5 & 1 & 450 & 20 & 5 & 410 & 9 \\
\hline Satd. Flow (prot) & 0 & 1581 & 0 & 0 & 1574 & 0 & 0 & 1587 & 0 & 0 & 1561 & 0 \\
\hline Flt Permitted & & & & & & & & 0.999 & & & 0.995 & \\
\hline Satd. Flow (perm) & 0 & 1589 & 0 & 0 & 1587 & 0 & 0 & 1585 & 0 & 0 & 1554 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & & & & & 2 & & 1 & 1 & & 2 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 3\% & 0\% & 0\% & 3\% & 0\% & 0\% & 3\% & 0\% & 0\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 46 & 0 & 0 & 51 & 0 & 0 & 507 & 0 & 0 & 456 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Minimum Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 45.0 & 45.0 & & 45.0 & 45.0 & \\
\hline Total Split (s) & 12.0 & 12.0 & & 12.0 & 12.0 & & 48.0 & 48.0 & & 48.0 & 48.0 & \\
\hline Total Split (\%) & 15.0\% & 15.0\% & & 15.0\% & 15.0\% & & 60.0\% & 60.0\% & & 60.0\% & 60.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 8.4 & & & 8.4 & & & 31.2 & & & 31.2 & \\
\hline Actuated g/C Ratio & & 0.22 & & & 0.22 & & & 0.81 & & & 0.81 & \\
\hline v/c Ratio & & 0.13 & & & 0.15 & & & 0.40 & & & 0.36 & \\
\hline Control Delay & & 21.7 & & & 21.7 & & & 7.5 & & & 7.1 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 21.7 & & & 21.7 & & & 7.5 & & & 7.1 & \\
\hline LOS & & C & & & C & & & A & & & A & \\
\hline Approach Delay & & 21.7 & & & 21.7 & & & 7.5 & & & 7.1 & \\
\hline Approach LOS & & C & & & C & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 4 & & & 5 & & & 0 & & & 0 & \\
\hline Queue Length 95th (ft) & & 53 & & & 57 & & & 267 & & & 233 & \\
\hline Internal Link Dist (ft) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 343 & & & 343 & & & 1439 & & & 1411 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.13 & & & 0.15 & & & 0.35 & & & 0.32 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 80 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Lane Group \\
\hline Lane Configurations \\
Traffic Volume (vph) \\
Future Volume (vph) \\
Satd. Flow (prot) \\
Flt Permitted \\
Satd. Flow (perm) \\
Satd. Flow (RTOR) \\
Confl. Peds. (\#/hr) \\
Peak Hour Factor \\
Heavy Vehicles (\%) \\
Shared Lane Traffic (\%) \\
Lane Group Flow (vph) \\
Turn Type \\
Protected Phases \\
Permitted Phases \\
Detector Phase \\
Switch Phase \\
Minimum Initial (s) \\
Minimum Split (s) \\
Total Split (s) \\
\hline Total Split (\%) \\
Yellow Time (s) \\
All-Red Time (s) \\
\hline Lost Time Adjust (s) \\
Total Lost Time (s) \\
Lead/Lag \\
Lead-Lag Optimize? \\
Recall Mode \\
Act Effct Green (s) \\
Actuated g/C Ratio \\
v/c Ratio \\
Control Delay \\
Queue Delay \\
Total Delay \\
LOS \\
Approach Delay \\
Approach LOS \\
Queue Length 50th (ft) \\
Queue Length 95th (ft) \\
Internal Link Dist (ft) \\
Turn Bay Length (ft) \\
Base Capacity (vph) \\
Starvation Cap Reductn \\
\hline
\end{tabular}

Actuated Cycle Length: 38.7
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.40
Intersection Signal Delay: \(8.6 \quad\) Intersection LOS: A
Intersection Capacity Utilization 43.9\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 20: Route 138 \& Robbins St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & \(\dagger\) & & & & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & * & & & \$ & & & \$ & \\
\hline Traffic Volume (vph) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Future Volume (vph) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Satd. Flow (prot) & 0 & 1439 & 0 & 0 & 1426 & 0 & 0 & 1375 & 0 & 0 & 1354 & 0 \\
\hline Flt Permitted & & 0.988 & & & 0.971 & & & 0.997 & & & 0.973 & \\
\hline Satd. Flow (perm) & 0 & 1421 & 0 & 0 & 1423 & 0 & 0 & 1370 & 0 & 0 & 1320 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 6 & & 1 & 1 & & 6 & 3 & & 5 & 5 & & 3 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 33\% & 9\% & 0\% & 6\% & 0\% & 3\% & 4\% & 0\% & 6\% & 0\% \\
\hline Parking (\#/hr) & & & & & & & & 5 & & & 5 & \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 12 & 0 & 0 & 63 & 0 & 0 & 530 & 0 & 0 & 470 & 0 \\
\hline Turn Type & Split & NA & & Split & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Minimum Split (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 25.0 & 25.0 & & 25.0 & 25.0 & \\
\hline Total Split (s) & 11.0 & 11.0 & & 15.0 & 15.0 & & 44.0 & 44.0 & & 44.0 & 44.0 & \\
\hline Total Split (\%) & 15.7\% & 15.7\% & & 21.4\% & 21.4\% & & 62.9\% & 62.9\% & & 62.9\% & 62.9\% & \\
\hline Yellow Time (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 5.6 & & & 8.9 & & & 28.2 & & & 28.2 & \\
\hline Actuated g/C Ratio & & 0.14 & & & 0.23 & & & 0.72 & & & 0.72 & \\
\hline v/c Ratio & & 0.06 & & & 0.20 & & & 0.54 & & & 0.50 & \\
\hline Control Delay & & 26.9 & & & 23.2 & & & 11.2 & & & 10.4 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 26.9 & & & 23.2 & & & 11.2 & & & 10.4 & \\
\hline LOS & & C & & & C & & & B & & & B & \\
\hline Approach Delay & & 26.9 & & & 23.2 & & & 11.2 & & & 10.4 & \\
\hline Approach LOS & & C & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 3 & & & 14 & & & 94 & & & 79 & \\
\hline Queue Length 95th (ft) & & 21 & & & 61 & & & 287 & & & 243 & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 203 & & & 402 & & & 1131 & & & 1090 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.06 & & & 0.16 & & & 0.47 & & & 0.43 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Cycle Length: 70
Actuated Cycle Length: 39.3
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.54
\begin{tabular}{ll} 
Intersection Signal Delay: 11.7 & Intersection LOS: B \\
Intersection Capacity Utilization 56.4\% & ICU Level of Service B
\end{tabular}

Analysis Period (min) 15
Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & & & 4 & 4 & 4 & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \$ & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 3 & - & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Future Volume (veh/h) & 3 & 6 & 3 & 35 & 9 & 15 & 3 & 450 & 45 & 15 & 420 & 7 \\
\hline Number & (1) & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 5 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 0.97 & 1.00 & & 0.97 & 1.00 & & 0.99 & 1.00 & & 0.99 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1570 & 1700 & 1700 & 1592 & 1700 & 1700 & 1649 & 1700 & 1700 & 1608 & 1700 \\
\hline Adj Flow Rate, veh/h & 3 & 6 & 3 & 37 & 10 & 16 & 3 & 479 & 48 & 16 & 447 & 7 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 & 6 & 6 & 6 \\
\hline Cap, veh/h & 5 & 9 & 5 & 42 & 11 & 18 & 82 & 691 & 66 & 92 & 721 & 11 \\
\hline Arrive On Green & 0.01 & 0.01 & 0.01 & 0.05 & 0.05 & 0.05 & 0.46 & 0.46 & 0.46 & 0.46 & 0.46 & 0.46 \\
\hline Sat Flow, veh/h & 368 & 736 & 368 & 862 & 233 & 373 & 2 & 1472 & 147 & 19 & 1539 & 24 \\
\hline Grp Volume(v), veh/h & 12 & 0 & 0 & 63 & 0 & 0 & 530 & 0 & 0 & 470 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1472 & 0 & 0 & 1468 & 0 & 0 & 1621 & 0 & 0 & 1582 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.4 & 0.0 & 0.0 & 1.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.4 & 0.0 & 0.0 & 1.9 & 0.0 & 0.0 & 11.5 & 0.0 & 0.0 & 9.8 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.25 & & 0.25 & 0.59 & & 0.25 & 0.01 & & 0.09 & 0.03 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 18 & 0 & 0 & 72 & 0 & 0 & 840 & 0 & 0 & 823 & 0 & 0 \\
\hline VIC Ratio(X) & 0.66 & 0.00 & 0.00 & 0.88 & 0.00 & 0.00 & 0.63 & 0.00 & 0.00 & 0.57 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 134 & 0 & 0 & 266 & 0 & 0 & 1440 & 0 & 0 & 1399 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 22.0 & 0.0 & 0.0 & 21.1 & 0.0 & 0.0 & 9.6 & 0.0 & 0.0 & 9.2 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 33.7 & 0.0 & 0.0 & 26.5 & 0.0 & 0.0 & 0.8 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 0.0 & 0.0 & 1.3 & 0.0 & 0.0 & 5.8 & 0.0 & 0.0 & 5.1 & 0.0 & 0.0 \\
\hline LnGrp Delay \({ }^{\text {d }}\) ),s/veh & 55.7 & 0.0 & 0.0 & 47.6 & 0.0 & 0.0 & 11.1 & 0.0 & 0.0 & 10.4 & 0.0 & 0.0 \\
\hline LnGrp LOS & E & & & D & & & B & & & B & & \\
\hline Approach Vol, veh/h & & 12 & & & 63 & & & 530 & & & 470 & \\
\hline Approach Delay, s/veh & & 55.7 & & & 47.6 & & & 11.1 & & & 10.4 & \\
\hline Approach LOS & & E & & & D & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 27.4 & & 7.5 & & 27.4 & & 9.2 & & & & \\
\hline Change Period ( \(Y+R \mathrm{R}\) ), s & & 7.0 & & 7.0 & & 7.0 & & 7.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 37.0 & & 4.0 & & 37.0 & & 8.0 & & & & \\
\hline Max Q Clear Time (g_c+1), \(s\) & & 13.5 & & 2.4 & & 11.8 & & 3.9 & & & & \\
\hline Green Ext Time (p_c), s & & 6.9 & & 0.0 & & 7.0 & & 0.1 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 13.4 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & 4 & \(\dagger\) & / \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \({ }_{*}{ }^{1}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 9 & 3 & 4 & 460 & 450 & 15 \\
\hline Future Volume (vph) & 9 & 3 & 4 & 460 & 450 & 15 \\
\hline Satd. Flow (prot) & 1414 & 0 & 0 & 1581 & 1576 & 0 \\
\hline Flt Permitted & 0.963 & & & & & \\
\hline Satd. Flow (perm) & 1414 & 0 & 0 & 1581 & 1576 & 0 \\
\hline Confl. Peds. (\#/hr) & 3 & 11 & 5 & & & 5 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 11\% & 0\% & 0\% & 4\% & 4\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 13 & 0 & 0 & 504 & 505 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization 43.7\%} & & \multicolumn{3}{|r|}{ICU Level of Service A} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Major/Minor & Minor2 & Major1 & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 1014 & 513 & 510 & 0 & - & 0 \\
\(\quad\) Stage 1 & 502 & - & - & - & - & - \\
\(\quad\) Stage 2 & 512 & - & - & - & - & - \\
Critical Hdwy & 6.51 & 6.2 & 4.1 & - & - & - \\
Critical Hdwy Stg 1 & 5.51 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.51 & - & - & - & - & - \\
Follow-up Hdwy & 3.599 & 3.3 & 2.2 & - & - & - \\
Pot Cap-1 Maneuver & 254 & \(* 109\) & \(* 163\) & - & - & - \\
\(\quad\) Stage 1 & 590 & - & - & - & - & - \\
\(\quad\) Stage 2 & 584 & - & - & - & - & - \\
Platoon blocked, \% & & 1 & 1 & - & - & - \\
Mov Cap-1 Maneuver & 243 & \(* 107\) & \(* 162\) & - & - & - \\
Mov Cap-2 Maneuver & 243 & - & - & - & - & - \\
\(\quad\) Stage 1 & 587 & - & - & - & - & - \\
Stage 2 & 562 & - & - & - & - & - \\
& & & & & &
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, \(s\) & 26.1 & 0.2 & 0
\end{tabular}

HCM LOS D
\begin{tabular}{lrrrrl} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR & \\
\hline Capacity (veh/h) & \(* 162\) & -184 & - & - & \\
HCM Lane V/C Ratio & 0.027 & -0.071 & - & - & \\
HCM Control Delay (s) & 27.8 & 0 & 26.1 & - & - \\
HCM Lane LOS & D & A & D & - & - \\
HCM 95th \%otile Q(veh) & 0.1 & - & 0.2 & - & - \\
Notes & & & & \\
\hline\(\because\) Volume exceeds capacity & \(\$:\) Delay exceeds 300s & \(+:\) Computation Not Defined & \(*:\) All major volume in platoon
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(>\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \$ & & & \({ }_{\$}\) & \\
\hline Traffic Volume (vph) & 3 & 3 & 10 & 3 & 1 & 5 & 10 & 460 & 9 & 7 & 440 & 1 \\
\hline Future Volume (vph) & 3 & 3 & 10 & 3 & 1 & 5 & 10 & 460 & 9 & 7 & 440 & 1 \\
\hline Satd. Flow (prot) & 0 & 1412 & 0 & 0 & 1496 & 0 & 0 & 1592 & 0 & 0 & 1565 & 0 \\
\hline Flt Permitted & & 0.991 & & & 0.984 & & & 0.999 & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1412 & 0 & 0 & 1496 & 0 & 0 & 1592 & 0 & 0 & 1565 & 0 \\
\hline Confl. Peds. (\#hr) & 66 & & & & & 66 & 23 & & 66 & 66 & & 23 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 9\% & 0\% & 0\% & 0\% & 0\% & 3\% & 0\% & 0\% & 5\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 16 & 0 & 0 & 9 & 0 & 0 & 493 & 0 & 0 & 462 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 52.9\%
ICU Level of Service A
Analysis Period (min) 15
}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & & \[
4
\] & \(\dagger\) & & & & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & & & & \$ & & & * & \\
\hline Traffic Volume (vph) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Future Volume (vph) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Satd. Flow (prot) & 0 & 1562 & 0 & 0 & 0 & 0 & 0 & 1577 & 0 & 0 & 1549 & 0 \\
\hline Flt Permitted & & 0.999 & & & & & & 0.998 & & & 0.987 & \\
\hline Satd. Flow (perm) & 0 & 1562 & 0 & 0 & 0 & 0 & 0 & 1574 & 0 & 0 & 1530 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & 4 & & 4 & 2 & & 2 & 2 & & 2 & 1 & & 6 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 0\% & 4\% & 11\% & 2\% & 2\% & 2\% & 0\% & 3\% & 0\% & 17\% & 5\% & 5\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 181 & 0 & 0 & 0 & 0 & 0 & 471 & 0 & 0 & 500 & 0 \\
\hline Turn Type & Perm & NA & & & & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & & & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & & & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Total Split (s) & 23.0 & 23.0 & & & & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (\%) & 38.3\% & 38.3\% & & & & & 61.7\% & 61.7\% & & 61.7\% & 61.7\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & None & None & & None & None & \\
\hline Act Effct Green (s) & & 14.0 & & & & & & 25.6 & & & 25.6 & \\
\hline Actuated g/C Ratio & & 0.34 & & & & & & 0.62 & & & 0.62 & \\
\hline v/c Ratio & & 0.34 & & & & & & 0.48 & & & 0.53 & \\
\hline Control Delay & & 17.9 & & & & & & 10.1 & & & 10.9 & \\
\hline Queue Delay & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 17.9 & & & & & & 10.1 & & & 10.9 & \\
\hline LOS & & B & & & & & & B & & & B & \\
\hline Approach Delay & & 17.9 & & & & & & 10.1 & & & 10.9 & \\
\hline Approach LOS & & B & & & & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 41 & & & & & & 72 & & & 79 & \\
\hline Queue Length 95th (ft) & & 99 & & & & & & 188 & & & 210 & \\
\hline Internal Link Dist (ft) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 777 & & & & & & 1121 & & & 1089 & \\
\hline Starvation Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.23 & & & & & & 0.42 & & & 0.46 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 60 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 41.3
Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.53
Intersection Signal Delay: \(11.6 \quad\) Intersection LOS: B
Intersection Capacity Utilization 59.6\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 24: Route 138 \& Brook Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & \(\checkmark\) & 7 & & 4 & \[
4
\] & \(\dagger\) & \(p\) & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & & & & \& & & & \& & \\
\hline Traffic Volume (veh/h) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Future Volume (veh/h) & 5 & 160 & 9 & 0 & 0 & 0 & 2 & 410 & 40 & 10 & 450 & 20 \\
\hline Number & 7 & 4 & 14 & & & & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & & & & 0 & 15 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 0.99 & & & & 1.00 & & 1.00 & 1.00 & & 0.99 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1631 & 1700 & & & & 1700 & 1655 & 1700 & 1700 & 1615 & 1700 \\
\hline Adj Flow Rate, veh/h & 5 & 167 & 9 & & & & 2 & 427 & 42 & 10 & 469 & 21 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & & & & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & & & & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 0 & 4 & 0 & & & & 3 & 3 & 3 & 5 & 5 & 5 \\
\hline Cap, veh/h & 6 & 268 & 11 & & & & 84 & 853 & 75 & 89 & 870 & 35 \\
\hline Arrive On Green & 0.16 & 0.16 & 0.16 & & & & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 \\
\hline Sat Flow, veh/h & 45 & 1489 & 80 & & & & 1 & 1482 & 145 & 9 & 1518 & 67 \\
\hline Grp Volume(v), veh/h & 181 & 0 & 0 & & & & 471 & 0 & 0 & 500 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1613 & 0 & 0 & & & & 1628 & 0 & 0 & 1594 & 0 & 0 \\
\hline Q Serve(g_s), s & 4.4 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 4.4 & 0.0 & 0.0 & & & & 7.1 & 0.0 & 0.0 & 7.9 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.03 & & 0.05 & & & & 0.00 & & 0.09 & 0.02 & & 0.04 \\
\hline Lane Grp Cap(c), veh/h & 283 & 0 & 0 & & & & 1013 & 0 & 0 & 992 & 0 & 0 \\
\hline V/C Ratio(X) & 0.64 & 0.00 & 0.00 & & & & 0.47 & 0.00 & 0.00 & 0.50 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 700 & 0 & 0 & & & & 1302 & 0 & 0 & 1275 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 0.00 & & & & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 17.2 & 0.0 & 0.0 & & & & 6.6 & 0.0 & 0.0 & 6.9 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 2.4 & 0.0 & 0.0 & & & & 0.3 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 24.8 & 0.0 & 0.0 & & & & 3.0 & 0.0 & 0.0 & 3.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 4.9 & 0.0 & 0.0 & & & & 5.7 & 0.0 & 0.0 & 6.2 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 44.4 & 0.0 & 0.0 & & & & 9.9 & 0.0 & 0.0 & 10.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & & & & & & A & & & B & & \\
\hline Approach Vol, veh/h & & 181 & & & & & & 471 & & & 500 & \\
\hline Approach Delay, s/veh & & 44.4 & & & & & & 9.9 & & & 10.6 & \\
\hline Approach LOS & & D & & & & & & A & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 30.0 & & 11.5 & & 30.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 6.0 & & 5.0 & & 6.0 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 31.0 & & 18.0 & & 31.0 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 9.1 & & 6.4 & & 9.9 & & & & & & \\
\hline Green Ext Time (p_c), s & & 6.4 & & 0.7 & & 6.3 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
\\
Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & 1 & 1 & 460 & 1 & 5 & 450 \\
Traffic Volume (vph) & 1 & 1 & & & \\
Future Volume (vph) & 1 & 1 & 460 & 1 & 5 & 450 \\
Satd. Flow (prot) & 1495 & 0 & 1642 & 0 & 0 & 1642 \\
Flt Permitted & 0.976 & & & & & 0.999 \\
Satd. Flow (perm) & 1495 & 0 & 1642 & 0 & 0 & 1642 \\
Confl. Peds. (\#/hr) & 3 & & & 11 & 11 & \\
Peak Hour Factor & 0.25 & 0.25 & 0.92 & 0.25 & 0.63 & 0.88 \\
Heavy Vehicles (\%) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Shared Lane Traffic (\%) & & & & & & \\
Lane Group Flow (vph) & 8 & 0 & 504 & 0 & 0 & 519 \\
Sign Control & Stop & & Free & & & Free
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 40.9\%
ICU Level of Service A
Analysis Period (min) 15
}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.2 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Tr & & \(\uparrow\) & & & \(\neq\) \\
Traffic Vol, veh/h & 1 & 1 & 460 & 1 & 5 & 450 \\
Future Vol, veh/h & 1 & 1 & 460 & 1 & 5 & 450 \\
Conflicting Peds, \#/hr & 3 & 0 & 0 & 11 & 11 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 25 & 25 & 92 & 25 & 63 & 88 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 0 & 0 & 0 \\
Mvmt Flow & 4 & 4 & 500 & 4 & 8 & 511
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor M & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 1043 & 513 & 0 & 0 & 515 & 0 \\
\hline Stage 1 & 513 & - & - & - & - & - \\
\hline Stage 2 & 530 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.1 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.2 & - \\
\hline Pot Cap-1 Maneuver & 256 & 565 & - & - & 1061 & - \\
\hline Stage 1 & 605 & - & - & - & - & - \\
\hline Stage 2 & 594 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 250 & 560 & - & - & 1061 & - \\
\hline Mov Cap-2 Maneuver & 250 & - & - & - & - & - \\
\hline Stage 1 & 599 & - & - & - & - & - \\
\hline Stage 2 & 586 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 15.7 & & 0 & & 0.1 & \\
\hline HCM LOS & C & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & NBRW & VBLn1 & SBL & \\
\hline \multicolumn{2}{|l|}{Capacity (veh/h)} & - & & 346 & 1061 & - \\
\hline \multicolumn{2}{|l|}{HCM Lane V/C Ratio} & - & - & 0.023 & 0.007 & - \\
\hline \multicolumn{2}{|l|}{HCM Control Delay (s)} & - & - & 15.7 & 8.4 & 0 \\
\hline \multicolumn{2}{|l|}{HCM Lane LOS} & - & - & C & A & A \\
\hline \multicolumn{2}{|l|}{HCM 95th \%tile Q(veh)} & - & - & 0.1 & 0 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & & \(\dagger\) & & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & & \(\hat{}\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 1210 & 50 & 8 & 1260 \\
\hline Future Volume (vph) & 0 & 0 & 1210 & 50 & 8 & 1260 \\
\hline Satd. Flow (prot) & 0 & 0 & 1791 & 0 & 0 & 1819 \\
\hline Flt Permitted & & & & & & \\
\hline Satd. Flow (perm) & 0 & 0 & 1791 & 0 & 0 & 1819 \\
\hline Confl. Peds. (\#/hr) & & & & 6 & 6 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.91 & 0.78 & 0.67 & 0.97 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 1394 & 0 & 0 & 1311 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 76.0\%
Analysis Period (min) 15} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 3.4 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & 个 & & & 4 \\
Traffic Vol, veh/h & 10 & 70 & 1200 & 0 & 0 & 1260 \\
Future Vol, veh/h & 10 & 70 & 1200 & 0 & 0 & 1260 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 1 & 2 & 2 & 1 \\
Mvmt Flow & 11 & 75 & 1290 & 0 & 0 & 1355
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & \(\dagger\) & & & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & & 个 & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 0 & 0 & 1230 & 25 & 25 & 1250 \\
\hline Future Volume (vph) & 0 & 0 & 1230 & 25 & 25 & 1250 \\
\hline Satd. Flow (prot) & 0 & 0 & 1810 & 0 & 0 & 1817 \\
\hline Flt Permitted & & & & & & 0.999 \\
\hline Satd. Flow (perm) & 0 & 0 & 1810 & 0 & 0 & 1817 \\
\hline Confl. Peds. (\#/hr) & & & & 1 & 1 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.89 & 0.50 & 0.72 & 0.96 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 1\% & 0\% & 0\% & 1\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 1432 & 0 & 0 & 1337 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 89.2\%} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service}} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & 7 & \(\dagger\) & & & 4 & \(\uparrow\) & 7 & - & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\dagger\) & & & \(\dagger\) & & & \(\uparrow\) & & & \(\hat{1}\) & \\
\hline Traffic Volume (vph) & 5 & 0 & 10 & 6 & - & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Future Volume (vph) & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Satd. Flow (prot) & 0 & 1645 & 0 & 0 & 1601 & 0 & 0 & 1819 & 0 & 0 & 1817 & 0 \\
\hline Flt Permitted & & 0.984 & & & 0.996 & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1645 & 0 & 0 & 1601 & 0 & 0 & 1819 & 0 & 0 & 1817 & 0 \\
\hline Confl. Peds. (\#/hr) & 5 & & & & & 5 & & & & & & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 0\% & 2\% & 0\% & 0\% & 1\% & 0\% & 2\% & 1\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 15 & 0 & 0 & 78 & 0 & 0 & 1262 & 0 & 0 & 1306 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
Control Type: Unsignalized
Intersection Capacity Utilization 80.6\%
ICU Level of Service D
Analysis Period (min) 15
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|l|}{2.7} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \& & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Future Vol, veh/h & 5 & 0 & 10 & 6 & 0 & 70 & 4 & 1220 & 0 & 0 & 1260 & 7 \\
\hline Conflicting Peds, \#/hr & 5 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 & 97 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
\hline Mvmt Flow & 5 & 0 & 10 & 6 & 0 & 72 & 4 & 1258 & 0 & 0 & 1299 & 7 \\
\hline
\end{tabular}


12: Route 138 \& Summit Rd. \& Canton Ave.




\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Yr & & & -1 & \(\uparrow\) & \\
Traffic Vol, veh/h & 0 & 6 & 6 & 850 & 1270 & 0 \\
Future Vol, veh/h & 0 & 6 & 6 & 850 & 1270 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 96 & 96 & 96 & 96 & 96 & 96 \\
Heavy Vehicles, \(\%\) & 2 & 0 & 0 & 2 & 1 & 0 \\
Mvmt Flow & 0 & 6 & 6 & 885 & 1323 & 0
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & \(\rightarrow\) & & 7 & & & 4 & \(\dagger\) & \(p\) & & \(\dagger\) & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\stackrel{1}{*}\) & & \({ }^{1}\) & \(\uparrow\) & & & 4 & & & \(\hat{\dagger}\) & \\
\hline Traffic Volume (vph) & 5 & 0 & 330 & 170 & 120 & 0 & 0 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (vph) & 5 & 0 & 330 & 170 & 120 & 0 & 0 & 850 & 0 & 0 & 770 & 5 \\
\hline Satd. Flow (prot) & 0 & 1423 & 0 & 1546 & 1643 & 0 & 0 & 1611 & 0 & 0 & 1610 & 0 \\
\hline Flt Permitted & & 0.997 & & 0.395 & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1420 & 0 & 643 & 1643 & 0 & 0 & 1611 & 0 & 0 & 1610 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 1\% & 0\% & 13\% & 0\% & 2\% & 2\% & 2\% & 2\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 352 & 0 & 179 & 126 & 0 & 0 & 895 & 0 & 0 & 816 & 0 \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & & 45.0 & & & 45.0 & \\
\hline Total Split (\%) & 40.0\% & 40.0\% & & 40.0\% & 40.0\% & & & 60.0\% & & & 60.0\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 5.0 & & & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 5.0 & 5.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & & None & & & None & \\
\hline Act Effct Green (s) & & 21.8 & & 21.8 & 21.8 & & & 39.1 & & & 39.1 & \\
\hline Actuated g/C Ratio & & 0.30 & & 0.30 & 0.30 & & & 0.54 & & & 0.54 & \\
\hline v/c Ratio & & 0.82 & & 0.92 & 0.25 & & & 1.02 & & & 0.93 & \\
\hline Control Delay & & 40.1 & & 74.4 & 20.0 & & & 56.9 & & & 36.7 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 40.1 & & 74.4 & 20.0 & & & 56.9 & & & 36.7 & \\
\hline LOS & & D & & E & B & & & E & & & D & \\
\hline Approach Delay & & 40.1 & & & 51.9 & & & 56.9 & & & 36.7 & \\
\hline Approach LOS & & D & & & D & & & E & & & D & \\
\hline Queue Length 50th (ft) & & 143 & & 76 & 42 & & & \(\sim 470\) & & & 345 & \\
\hline Queue Length 95th (ft) & & \#269 & & \#188 & 81 & & & \#684 & & & \#601 & \\
\hline Internal Link Dist (ft) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 495 & & 224 & 572 & & & 875 & & & 875 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.71 & & 0.80 & 0.22 & & & 1.02 & & & 0.93 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 75
Actuated Cycle Length: 72
```

Natural Cycle: }9
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.02
Intersection Signal Delay: 46.8 Intersection LOS: D
Intersection Capacity Utilization 97.0% ICU Level of Service F
Analysis Period (min) }1

```
~ Volume exceeds capacity, queue is theoretically infinite.
    Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
    Queue shown is maximum after two cycles.

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & 4 & & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \({ }^{7}\) & \(\hat{\beta}\) & & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 5 & 0 & 330 & 170 & 120 & 0 & 0 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (veh/h) & 5 & 0 & 330 & 170 & 120 & 0 & 0 & 850 & 0 & 0 & 770 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 20 & 0 & 10 & 10 & 0 & 0 & 10 & 0 & 0 & 40 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1700 & 1700 & 1683 & 1700 & 1700 & 0 & 1667 & 0 & 0 & 1667 & 1700 \\
\hline Adj Flow Rate, veh/h & 5 & 0 & 347 & 179 & 126 & 0 & 0 & 895 & 0 & 0 & 811 & 5 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & 49 & 5 & 372 & 180 & 567 & 0 & 0 & 867 & 0 & 0 & 863 & 2 \\
\hline Arrive On Green & 0.33 & 0.00 & 0.33 & 0.33 & 0.33 & 0.00 & 0.00 & 0.52 & 0.00 & 0.00 & 0.52 & 0.52 \\
\hline Sat Flow, veh/h & 5 & 15 & 1426 & 982 & 1700 & 0 & 0 & 1667 & , & 0 & 1655 & 10 \\
\hline Grp Volume(v), veh/h & 352 & 0 & 0 & 179 & 126 & 0 & 0 & 895 & 0 & 0 & 0 & 816 \\
\hline Grp Sat Flow(s),veh/h/ln & 1446 & 0 & 0 & 982 & 1700 & 0 & 0 & 1667 & 0 & 0 & 0 & 1665 \\
\hline Q Serve(g_s), s & 0.0 & 0.0 & 0.0 & 7.0 & 4.0 & 0.0 & 0.0 & 39.0 & 0.0 & 0.0 & 0.0 & 34.6 \\
\hline Cycle Q Clear(g_c), s & 16.1 & 0.0 & 0.0 & 23.0 & 4.0 & 0.0 & 0.0 & 39.0 & 0.0 & 0.0 & 0.0 & 34.6 \\
\hline Prop In Lane & 0.01 & & 0.99 & 1.00 & & 0.00 & 0.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 402 & 0 & 0 & 180 & 567 & 0 & 0 & 867 & 0 & 0 & 0 & 866 \\
\hline VIC Ratio( X ) & 0.87 & 0.00 & 0.00 & 0.99 & 0.22 & 0.00 & 0.00 & 1.03 & 0.00 & 0.00 & 0.00 & 0.94 \\
\hline Avail Cap(c_a), veh/h & 531 & 0 & 0 & 296 & 567 & 0 & 0 & 867 & 0 & 0 & 0 & 866 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 22.3 & 0.0 & 0.0 & 31.7 & 18.6 & 0.0 & 0.0 & 18.0 & 0.0 & 0.0 & 0.0 & 18.0 \\
\hline Incr Delay (d2), s/veh & 12.1 & 0.0 & 0.0 & 39.7 & 0.2 & 0.0 & 0.0 & 39.3 & 0.0 & 0.0 & 0.0 & 18.1 \\
\hline Initial Q Delay(d3),s/veh & 122.6 & 0.0 & 0.0 & 196.5 & 2.9 & 0.0 & 0.0 & 39.3 & 0.0 & 0.0 & 0.0 & 140.1 \\
\hline \%ile BackOfQ(50\%),veh/ln & 21.4 & 0.0 & 0.0 & 15.5 & 3.2 & 0.0 & 0.0 & 37.0 & 0.0 & 0.0 & 0.0 & 55.6 \\
\hline LnGrp Delay(d),s/veh & 157.0 & 0.0 & 0.0 & 267.9 & 21.7 & 0.0 & 0.0 & 96.6 & 0.0 & 0.0 & 0.0 & 176.2 \\
\hline LnGrp LOS & F & & & F & C & & & F & & & & F \\
\hline Approach Vol, veh/h & & 352 & & & 305 & & & 895 & & & 816 & \\
\hline Approach Delay, s/veh & & 157.0 & & & 166.2 & & & 96.6 & & & 176.2 & \\
\hline Approach LOS & & F & & & F & & & F & & & F & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 45.0 & & 30.0 & & 45.0 & & 30.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), s & & 6.0 & & 5.0 & & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 39.0 & & 25.0 & & 39.0 & & 25.0 & & & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{-} \mathrm{c}+11\right)\), s & & 41.0 & & 18.1 & & 36.6 & & 25.0 & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & 2.3 & & 2.0 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 142.0 & & & & & & & & & \\
\hline HCM 2010 LOS & & & F & & & & & & & & & \\
\hline
\end{tabular}



Cycle Length: 90
Actuated Cycle Length: 85.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: \(36.3 \quad\) Intersection LOS: D
Intersection Capacity Utilization 85.3\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 16: Route 138 \& Neponset Valley Pkwy.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \[
4
\] & 9 & \(\dagger\) & \(\downarrow\) & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR & & \\
\hline Lane Configurations & * & & \({ }^{1}\) & 4 & 个 & & & \\
\hline Traffic Volume (veh/h) & 4 & 200 & 390 & 490 & 570 & 1 & & \\
\hline Future Volume (veh/h) & 4 & 200 & 390 & 490 & 570 & 1 & & \\
\hline Number & 7 & 14 & 5 & 2 & 6 & 16 & & \\
\hline Initial Q (Qb), veh & 5 & 0 & 10 & 15 & 15 & 0 & & \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & 0.94 & 1.00 & & & 0.96 & & \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Adj Sat Flow, veh/h/ln & 1667 & 1700 & 1635 & 1683 & 1667 & 1700 & & \\
\hline Adj Flow Rate, veh/h & 4 & 206 & 402 & 505 & 588 & 1 & & \\
\hline Adj No. of Lanes & 0 & 0 & 1 & 1 & 1 & 0 & & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & & \\
\hline Percent Heavy Veh, \% & 0 & 0 & 4 & 1 & 2 & 2 & & \\
\hline Cap, veh/h & 24 & 236 & 446 & 1127 & 684 & 1 & & \\
\hline Arrive On Green & 0.19 & 0.19 & 0.17 & 0.67 & 0.42 & 0.42 & & \\
\hline Sat Flow, veh/h & 25 & 1299 & 1557 & 1683 & 1663 & 3 & & \\
\hline Grp Volume(v), veh/h & 211 & 0 & 402 & 505 & 0 & 589 & & \\
\hline Grp Sat Flow(s),veh/h/ln & 1331 & 0 & 1557 & 1683 & 0 & 1666 & & \\
\hline Q Serve(g_s), s & 10.7 & 0.0 & 9.2 & 10.0 & 0.0 & 22.1 & & \\
\hline Cycle Q Clear(g_c), s & 10.7 & 0.0 & 9.2 & 10.0 & 0.0 & 22.1 & & \\
\hline Prop In Lane & 0.02 & 0.98 & 1.00 & & & 0.00 & & \\
\hline Lane Grp Cap(c), veh/h & 261 & 0 & 446 & 1127 & 0 & 679 & & \\
\hline V/C Ratio(X) & 0.81 & 0.00 & 0.90 & 0.45 & 0.00 & 0.87 & & \\
\hline Avail Cap(c_a), veh/h & 342 & 0 & 652 & 1489 & 0 & 856 & & \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & & \\
\hline Uniform Delay (d), s/veh & 31.9 & 0.0 & 25.8 & 6.3 & 0.0 & 24.5 & & \\
\hline Incr Delay (d2), s/veh & 10.4 & 0.0 & 11.6 & 0.3 & 0.0 & 7.8 & & \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 36.6 & 2.3 & 0.0 & 26.5 & & \\
\hline \%ile BackOfQ(50\%),veh/ln & 5.8 & 0.0 & 16.3 & 7.6 & 0.0 & 21.2 & & \\
\hline LnGrp Delay(d),s/veh & 42.3 & 0.0 & 74.1 & 8.9 & 0.0 & 58.9 & & \\
\hline LnGrp LOS & D & & E & A & & E & & \\
\hline Approach Vol, veh/h & 211 & & & 907 & 589 & & & \\
\hline Approach Delay, s/veh & 42.3 & & & 37.8 & 58.9 & & & \\
\hline Approach LOS & D & & & D & E & & & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & \\
\hline Phs Duration ( \(G+Y+R c\) ), s & & 51.8 & & 18.3 & 17.1 & 34.7 & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 5.0 & & 5.0 & 5.0 & 5.0 & & \\
\hline Max Green Setting (Gmax), s & & 62.0 & & 18.0 & 21.0 & 36.0 & & \\
\hline Max Q Clear Time ( \(\mathrm{g}_{-} \mathrm{c}+11\) ), s & & 12.0 & & 12.7 & 11.2 & 24.1 & & \\
\hline Green Ext Time (p_c), s & & 9.5 & & 0.3 & 0.9 & 5.6 & & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 45.6 & & & & & \\
\hline HCM 2010 LOS & & & D & & & & & \\
\hline Notes & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 4 & & & \[
4
\] & \(\dagger\) & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & * & & 7 & \(\uparrow\) & & & \& & \\
\hline Traffic Volume (vph) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Future Volume (vph) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Satd. Flow (prot) & 0 & 1567 & 0 & 0 & 1589 & 0 & 1561 & 1622 & 0 & 0 & 1618 & 0 \\
\hline Flt Permitted & & 0.916 & & & 0.948 & & 0.465 & & & & 0.999 & \\
\hline Satd. Flow (perm) & 0 & 1451 & 0 & 0 & 1517 & 0 & 764 & 1622 & 0 & 0 & 1616 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Confl. Peds. (\#/hr) & & & 1 & 1 & & & & & & & & \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 4\% & 0\% & 0\% & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 1\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 145 & 0 & 0 & 111 & 0 & 16 & 493 & 0 & 0 & 595 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 30.0 & 30.0 & & 30.0 & 30.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 23.0 & 23.0 & & 37.0 & 37.0 & & 37.0 & 37.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & 50.0 & 50.0 & & 50.0 & 50.0 & \\
\hline Total Split (\%) & 37.5\% & 37.5\% & & 37.5\% & 37.5\% & & 62.5\% & 62.5\% & & 62.5\% & 62.5\% & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & & 5.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & \\
\hline Act Effct Green (s) & & 11.1 & & & 11.1 & & 34.7 & 34.7 & & & 34.7 & \\
\hline Actuated g/C Ratio & & 0.21 & & & 0.21 & & 0.66 & 0.66 & & & 0.66 & \\
\hline v/c Ratio & & 0.48 & & & 0.35 & & 0.03 & 0.46 & & & 0.56 & \\
\hline Control Delay & & 25.6 & & & 22.7 & & 6.3 & 9.2 & & & 10.8 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Delay & & 25.6 & & & 22.7 & & 6.3 & 9.2 & & & 10.8 & \\
\hline LOS & & C & & & C & & A & A & & & B & \\
\hline Approach Delay & & 25.6 & & & 22.7 & & & 9.1 & & & 10.8 & \\
\hline Approach LOS & & C & & & C & & & A & & & B & \\
\hline Queue Length 50th (ft) & & 40 & & & 30 & & 2 & 80 & & & 107 & \\
\hline Queue Length 95th (ft) & & 100 & & & 78 & & 10 & 195 & & & 261 & \\
\hline Internal Link Dist (ft) & & 1017 & & & 791 & & & 1154 & & & 1181 & \\
\hline Turn Bay Length (ft) & & & & & & & 200 & & & & & \\
\hline Base Capacity (vph) & & 714 & & & 747 & & 622 & 1320 & & & 1315 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & 0 & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.20 & & & 0.15 & & 0.03 & 0.37 & & & 0.45 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Cycle Length: 80 & & & & & & & & & & & & \\
\hline
\end{tabular}

Actuated Cycle Length: 52.9
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.56
Intersection Signal Delay: 12.7 Intersection LOS: B
Intersection Capacity Utilization 57.4\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 17: Route 138 \& Milton St./Dollar Ln.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(y\) & & & & & & 4 & 4 & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & \% & \(\uparrow\) & & & \$ & \\
\hline Traffic Volume (veh/h) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Future Volume (veh/h) & 30 & 100 & 8 & 15 & 70 & 20 & 15 & 460 & 9 & 1 & 540 & 25 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & 0 & 25 & 0 & 0 & 15 & 0 & 0 & 15 & 0 & 0 & 30 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1700 & 1652 & 1700 & 1700 & 1700 & 1700 & 1700 & 1683 & 1700 & 1700 & 1684 & 1700 \\
\hline Adj Flow Rate, veh/h & 32 & 105 & 8 & 16 & 74 & 21 & 16 & 484 & 9 & 1 & 568 & 26 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 4 & 4 & 4 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline Cap, veh/h & 105 & 267 & 10 & 95 & 265 & 36 & 472 & 974 & 17 & 59 & 921 & 36 \\
\hline Arrive On Green & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 \\
\hline Sat Flow, veh/h & 226 & 1252 & 86 & 126 & 1181 & 305 & 790 & 1647 & 31 & 0 & 1597 & 73 \\
\hline Grp Volume(v), veh/h & 145 & 0 & 0 & 111 & 0 & 0 & 16 & 0 & 493 & 595 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1564 & 0 & 0 & 1612 & 0 & 0 & 790 & 0 & 1678 & 1671 & 0 & 0 \\
\hline Q Serve(g_s), s & 1.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 8.1 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 4.2 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.6 & 0.0 & 8.1 & 10.8 & 0.0 & 0.0 \\
\hline Prop In Lane & 0.22 & & 0.06 & 0.14 & & 0.19 & 1.00 & & 0.02 & 0.00 & & 0.04 \\
\hline Lane Grp Cap(c), veh/h & 380 & 0 & 0 & 358 & 0 & 0 & 472 & 0 & 1001 & 964 & 0 & 0 \\
\hline VIC Ratio(X) & 0.38 & 0.00 & 0.00 & 0.31 & 0.00 & 0.00 & 0.03 & 0.00 & 0.49 & 0.62 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 862 & 0 & 0 & 880 & 0 & 0 & 785 & 0 & 1459 & 1525 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 21.8 & 0.0 & 0.0 & 20.3 & 0.0 & 0.0 & 5.4 & 0.0 & 7.3 & 12.0 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.6 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.6 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 50.4 & 0.0 & 0.0 & 18.3 & 0.0 & 0.0 & 0.0 & 0.0 & 3.2 & 18.3 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 9.8 & 0.0 & 0.0 & 4.7 & 0.0 & 0.0 & 0.1 & 0.0 & 7.0 & 15.9 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 72.8 & 0.0 & 0.0 & 39.1 & 0.0 & 0.0 & 5.4 & 0.0 & 10.9 & 30.9 & 0.0 & 0.0 \\
\hline LnGrp LOS & E & & & D & & & A & & B & C & & \\
\hline Approach Vol, veh/h & & 145 & & & 111 & & & 509 & & & 595 & \\
\hline Approach Delay, s/veh & & 72.8 & & & 39.1 & & & 10.7 & & & 30.9 & \\
\hline Approach LOS & & E & & & D & & & B & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 37.0 & & 12.5 & & 37.0 & & 12.5 & & & & \\
\hline Change Period ( \(Y+R \mathrm{R}\) ), s & & 7.0 & & 5.0 & & 7.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 43.0 & & 25.0 & & 43.0 & & 25.0 & & & & \\
\hline Max Q Clear Time (g_c +11 ), s & & 10.1 & & 6.2 & & 12.8 & & 5.0 & & & & \\
\hline Green Ext Time (p_c), s & & 8.5 & & 1.3 & & 8.3 & & 1.4 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 28.5 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

18: Route 138 \& Blue Jay Way (Curry College)

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & 个 & \\
Traffic Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 0 \\
Future Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 92 & 92 & 92 & 92 & 92 & 92 \\
Heavy Vehicles, \(\%\) & 0 & 7 & 1 & 8 & 6 & 0 \\
Mvmt Flow & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}



Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: \(0.0 \quad\) Intersection LOS: A
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 19: Route 138 \& Atherton St. \& Bradlee Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & \(\rightarrow\) & & 7 & & & \[
4
\] & 4 & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \& & & & * & & & \$ & & & * & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1717 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 3\% & 0\% & 13\% & 0\% & 8\% & 8\% & 0\% & 7\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Turn Type} \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & 4.5 & & & 4.5 & & & 4.5 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline \multicolumn{13}{|l|}{Act Effct Green (s)} \\
\hline \multicolumn{13}{|l|}{Actuated g/C Ratio} \\
\hline \multicolumn{13}{|l|}{v/c Ratio} \\
\hline \multicolumn{13}{|l|}{Control Delay} \\
\hline \multicolumn{13}{|l|}{Queue Delay} \\
\hline \multicolumn{13}{|l|}{Total Delay} \\
\hline \multicolumn{13}{|l|}{LOS} \\
\hline \multicolumn{13}{|l|}{Approach Delay} \\
\hline \multicolumn{13}{|l|}{Approach LOS} \\
\hline \multicolumn{13}{|l|}{Queue Length 50th (ft)} \\
\hline \multicolumn{13}{|l|}{Queue Length 95th (ft)} \\
\hline Internal Link Dist (ft) & & 939 & & & 647 & & & 711 & & & 3441 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline \multicolumn{13}{|l|}{Base Capacity (vph)} \\
\hline \multicolumn{13}{|l|}{Starvation Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Spillback Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Storage Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Reduced v/c Ratio} \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 25
```

Natural Cycle: }4
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: 0.0 Intersection LOS: A
Intersection Capacity Utilization 0.0% ICU Level of Service A
Analysis Period (min) }1

```

Splits and Phases: 20: Route 138 \& Robbins St.



21: Route 138 \& Cheever St./Blue Hill Terrace St.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\psi
\] & & & 4 & & & \[
4
\] & 9 & \(p\) & \[
t
\] & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\leftrightarrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1701 & 0 \\
\hline Flt Permitted & & & & & & & & & & & & \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1701 & 0 & 0 & 1701 & 0 \\
\hline Satd. Flow (RTOR) & & & & & & & & & & & & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 1\% & 0\% & 0\% & 0\% & 8\% & 0\% & 13\% & 8\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Turn Type & & & & & & & & & & & & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & 4.5 & & & 4.5 & & & 4.5 & \\
\hline Lead/Lag & & & & & & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Act Effct Green (s) & & & & & & & & & & & & \\
\hline Actuated g/C Ratio & & & & & & & & & & & & \\
\hline v/c Ratio & & & & & & & & & & & & \\
\hline Control Delay & & & & & & & & & & & & \\
\hline Queue Delay & & & & & & & & & & & & \\
\hline Total Delay & & & & & & & & & & & & \\
\hline LOS & & & & & & & & & & & & \\
\hline Approach Delay & & & & & & & & & & & & \\
\hline Approach LOS & & & & & & & & & & & & \\
\hline Queue Length 50th (ft) & & & & & & & & & & & & \\
\hline Queue Length 95th (ft) & & & & & & & & & & & & \\
\hline Internal Link Dist (ft) & & 838 & & & 877 & & & 3441 & & & 407 & \\
\hline Turn Bay Length (ft) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & & & & & & & & & & & & \\
\hline Starvation Cap Reductn & & & & & & & & & & & & \\
\hline Spillback Cap Reductn & & & & & & & & & & & & \\
\hline Storage Cap Reductn & & & & & & & & & & & & \\
\hline Reduced v/c Ratio & & & & & & & & & & & & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 40
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 40
Control Type: Pretimed
Maximum v/c Ratio: 0.00
\begin{tabular}{ll} 
Intersection Signal Delay: 0.0 & Intersection LOS: A \\
Intersection Capacity Utilization 0.0\% & ICU Level of Service A
\end{tabular}

Analysis Period (min) 15
Splits and Phases: 21: Route 138 \& Cheever St./Blue Hill Terrace St.


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & 4 & \(\downarrow\) & 1 \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \({ }_{*}{ }^{+}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 1 & 2 & 2 & 270 & 350 & 15 \\
\hline Future Volume (vph) & 1 & 2 & 2 & 270 & 350 & 15 \\
\hline Satd. Flow (prot) & 1645 & 0 & 0 & 1801 & 1808 & 0 \\
\hline Flt Permitted & 0.984 & & & & & \\
\hline Satd. Flow (perm) & 1645 & 0 & 0 & 1801 & 1808 & 0 \\
\hline Confl. Peds. (\#/hr) & 8 & & 5 & & & 5 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 2\% & 1\% & 0\% \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 3 & 0 & 0 & 292 & 392 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 29.4\%} & \multicolumn{3}{|r|}{ICU Level of Service} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & & - & \(\uparrow\) & \\
Traffic Vol, veh/h & 1 & 2 & 2 & 270 & 350 & 15 \\
Future Vol, veh/h & 1 & 2 & 2 & 270 & 350 & 15 \\
Conflicting Peds, \#/hr & 8 & 0 & 5 & 0 & 0 & 5 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \(\#\) & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 2 & 1 & 0 \\
Mvmt Flow & 1 & 2 & 2 & 290 & 376 & 16
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\downarrow\) & \(\rightarrow\) & & \(\dagger\) & 4 & 4 & 4 & \(\uparrow\) & 7 & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \$ & & & \(\uparrow\) & & & ¢ & \\
\hline Traffic Volume (vph) & 0 & O & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1837 & 0 & 0 & 1837 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 25\% & 0\% & 0\% & 0\% & 7\% & 0\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Control Type: Unsignalized
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & 4 & \(p\) & \(\checkmark\) & \(\frac{1}{7}\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & & & & \$ & & & \$ & \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Satd. Flow (prot) & 0 & 1818 & 0 & 0 & 0 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Flt Permitted} \\
\hline Satd. Flow (perm) & 0 & 1818 & 0 & 0 & 0 & 0 & 0 & 1717 & 0 & 0 & 1701 & 0 \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 13\% & 1\% & 0\% & 2\% & 2\% & 2\% & 20\% & 7\% & 9\% & 0\% & 8\% & 0\% \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Turn Type} \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & & & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & & & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & & & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (s) & 20.0 & 20.0 & & & & & 20.0 & 20.0 & & 20.0 & 20.0 & \\
\hline Total Split (\%) & 50.0\% & 50.0\% & & & & & 50.0\% & 50.0\% & & 50.0\% & 50.0\% & \\
\hline Yellow Time (s) & 3.5 & 3.5 & & & & & 3.5 & 3.5 & & 3.5 & 3.5 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & & & & 1.0 & 1.0 & & 1.0 & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 4.5 & & & & & & 4.5 & & & 4.5 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Recall Mode & None & None & & & & & Min & Min & & Min & Min & \\
\hline \multicolumn{13}{|l|}{Act Efft Green (s)} \\
\hline \multicolumn{13}{|l|}{Actuated g/C Ratio} \\
\hline \multicolumn{13}{|l|}{v/c Ratio} \\
\hline \multicolumn{13}{|l|}{Control Delay} \\
\hline \multicolumn{13}{|l|}{Queue Delay} \\
\hline \multicolumn{13}{|l|}{Total Delay} \\
\hline \multicolumn{13}{|l|}{LOS} \\
\hline \multicolumn{13}{|l|}{Approach Delay} \\
\hline \multicolumn{13}{|l|}{Approach LOS} \\
\hline \multicolumn{13}{|l|}{Queue Length 50th (ft)} \\
\hline \multicolumn{13}{|l|}{Queue Length 95th (ft)} \\
\hline Internal Link Dist (tt) & & 967 & & & 1001 & & & 519 & & & 1021 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (tt)} \\
\hline \multicolumn{13}{|l|}{Base Capacity (vph)} \\
\hline \multicolumn{13}{|l|}{Starvation Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Spillback Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Storage Cap Reductn} \\
\hline \multicolumn{13}{|l|}{Reduced v/c Ratio} \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

Cycle Length: 40
Actuated Cycle Length: 25

Natural Cycle: 40
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.00
Intersection Signal Delay: \(0.0 \quad\) Intersection LOS: A
Intersection Capacity Utilization 0.0\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 24: Route 138 \& Brook Rd.



\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.3 & & & & & \\
Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Mr & & \(\uparrow\) & & & \(\uparrow\) \\
Traffic Vol, veh/h & 0 & 0 & 270 & 30 & 100 & 250 \\
Future Vol, veh/h & 0 & 0 & 270 & 30 & 100 & 250 \\
Conflicting Peds, \#/hr & 19 & 0 & 0 & 53 & 53 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
Grade, \% & 0 & - & 0 & - & - & 0 \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \(\%\) & 0 & 0 & 0 & 0 & 1 & 0 \\
Mvmt Flow & 0 & 0 & 290 & 32 & 108 & 269
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor M & Minor1 & & Major1 & & Major2 & \\
\hline Conflicting Flow All & 862 & 359 & 0 & 0 & 376 & 0 \\
\hline Stage 1 & 359 & - & - & - & - & - \\
\hline Stage 2 & 503 & - & - & - & - & - \\
\hline Critical Hdwy & 6.4 & 6.2 & - & - & 4.11 & - \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
\hline Follow-up Hdwy & 3.5 & 3.3 & - & - & 2.209 & - \\
\hline Pot Cap-1 Maneuver & 328 & 690 & - & - & 1188 & - \\
\hline Stage 1 & 711 & - & - & - & - & - \\
\hline Stage 2 & 612 & - & - & - & - & - \\
\hline Platoon blocked, \% & & & - & - & & - \\
\hline Mov Cap-1 Maneuver & 275 & 658 & - & - & 1188 & - \\
\hline Mov Cap-2 Maneuver & 275 & - & - & - & - & - \\
\hline Stage 1 & 678 & - & - & - & - & - \\
\hline Stage 2 & 537 & - & - & - & - & - \\
\hline & & & & & & \\
\hline Approach & WB & & NB & & SB & \\
\hline HCM Control Delay, s & 0 & & 0 & & 2.4 & \\
\hline HCM LOS & A & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBT & \multicolumn{2}{|l|}{NBRWBLn1} & SBL & \\
\hline Capacity (veh/h) & & - & - & - & 1188 & - \\
\hline HCM Lane V/C Ratio & & - & - & - & 0.091 & - \\
\hline HCM Control Delay (s) & & - & - & 0 & 8.3 & 0 \\
\hline HCM Lane LOS & & - & - & A & A & A \\
\hline HCM 95th \%tile Q(veh) & & - & - & - & 0.3 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & 4 & \(\dagger\) & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \% & \(\hat{1}\) & & \({ }^{7}\) & 4 & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 6 & 0 & 310 & 125 & 5 & 5 & 160 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (vph) & 6 & 0 & 310 & 125 & 5 & 5 & 160 & 970 & 0 & 0 & 660 & 7 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (t) & 0 & & 0 & 0 & & 0 & 200 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 0 & 1 & & 0 & 1 & & 0 & 0 & & 0 \\
\hline Taper Length (t) & 0 & & & 0 & & & 0 & & & 0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.867 & & & 0.925 & & & & & & 0.999 & \\
\hline Flt Protected & & 0.999 & & 0.950 & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 0 & 1545 & 0 & 1728 & 1588 & 0 & 1745 & 1733 & 0 & 0 & 1683 & 0 \\
\hline Flt Permitted & & 0.997 & & 0.339 & & & 0.167 & & & & & \\
\hline Satd. Flow (perm) & 0 & 1542 & 0 & 616 & 1588 & 0 & 307 & 1733 & 0 & 0 & 1683 & 0 \\
\hline Right Turn on Red & & & No & & & No & & & No & & & No \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 986 & & & 278 & & & 267 & & & 2293 & \\
\hline Travel Time (s) & & 22.4 & & & 6.3 & & & 6.1 & & & 52.1 & \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 3\% & 1\% & 1\% & 13\% & 0\% & 6\% & 2\% & 2\% & 9\% & 14\% \\
\hline Adj. Flow (vph) & 6 & 0 & 323 & 130 & 5 & 5 & 167 & 1010 & 0 & 0 & 688 & 7 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 329 & 0 & 130 & 10 & 0 & 167 & 1010 & 0 & 0 & 695 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(t) & & 0 & & & 11 & & & 11 & & & 11 & \\
\hline Link Offset(ft) & & -3 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(tt) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 & 1.04 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 1 & 2 & & 1 & 2 & & 1 & 2 & & & 2 & \\
\hline Detector Template & Left & Thru & & Left & Thru & & Left & Thru & & & Thru & \\
\hline Leading Detector (tt) & 20 & 100 & & 20 & 100 & & 20 & 100 & & & 100 & \\
\hline Trailing Detector (ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Position(ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Size(ft) & 20 & 6 & & 20 & 6 & & 20 & 6 & & & 6 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 2 Position(ft) & & 94 & & & 94 & & & 94 & & & 94 & \\
\hline Detector 2 Size(tt) & & 6 & & & 6 & & & 6 & & & 6 & \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Turn Type & Perm & NA & & Perm & NA & & pm+pt & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & 5 & 2 & & & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & 4 & \(\uparrow\) & \(p\) & & \(\ddagger\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 5 & 2 & & & 6 & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 10.0 & 10.0 & & 5.0 & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 23.0 & 23.0 & & 24.0 & 24.0 & & 10.0 & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 28.0 & 28.0 & & 28.0 & 28.0 & & 11.0 & 62.0 & & & 51.0 & \\
\hline Total Split (\%) & 31.1\% & 31.1\% & & 31.1\% & 31.1\% & & 12.2\% & 68.9\% & & & 56.7\% & \\
\hline Maximum Green (s) & 23.0 & 23.0 & & 22.0 & 22.0 & & 6.0 & 57.0 & & & 46.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 5.0 & 5.0 & & 4.0 & 4.0 & & & 4.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 6.0 & 6.0 & & 5.0 & 5.0 & & & 5.0 & \\
\hline Lead/Lag & & & & & & & Lead & & & & Lag & \\
\hline Lead-Lag Optimize? & & & & & & & Yes & & & & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & None & None & & & None & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#hr) & 10 & 10 & & 10 & 10 & & & 10 & & & 10 & \\
\hline Act Efft Green (s) & & 21.9 & & 20.9 & 20.9 & & 52.4 & 52.4 & & & 41.2 & \\
\hline Actuated g/C Ratio & & 0.26 & & 0.25 & 0.25 & & 0.62 & 0.62 & & & 0.49 & \\
\hline v/c Ratio & & 0.82 & & 0.86 & 0.03 & & 0.57 & 0.94 & & & 0.85 & \\
\hline Control Delay & & 49.5 & & 78.5 & 26.2 & & 14.6 & 32.5 & & & 30.2 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Delay & & 49.5 & & 78.5 & 26.2 & & 14.6 & 32.5 & & & 30.2 & \\
\hline LOS & & D & & E & C & & B & C & & & C & \\
\hline Approach Delay & & 49.5 & & & 74.8 & & & 30.0 & & & 30.2 & \\
\hline Approach LOS & & D & & & E & & & C & & & C & \\
\hline 90th \%ile Green (s) & 23.0 & 23.0 & & 22.0 & 22.0 & & 6.0 & 57.0 & & & 46.0 & \\
\hline 90th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Max & \\
\hline 70th \%ile Green (s) & 23.0 & 23.0 & & 22.0 & 22.0 & & 6.0 & 57.0 & & & 46.0 & \\
\hline 70th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Max & \\
\hline 50th \%ile Green (s) & 23.0 & 23.0 & & 22.0 & 22.0 & & 6.0 & 57.0 & & & 46.0 & \\
\hline 50th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Hold & \\
\hline 30th \%ile Green (s) & 23.0 & 23.0 & & 22.0 & 22.0 & & 6.0 & 55.0 & & & 44.0 & \\
\hline 30th \%ile Term Code & Hold & Hold & & Max & Max & & Max & Gap & & & Hold & \\
\hline 10th \%ile Green (s) & 17.3 & 17.3 & & 16.3 & 16.3 & & 6.0 & 37.0 & & & 26.0 & \\
\hline 10th \%ile Term Code & Hold & Hold & & Gap & Gap & & Max & Gap & & & Hold & \\
\hline Stops (vph) & & 271 & & 99 & 9 & & 60 & 759 & & & 538 & \\
\hline Fuel Used(gal) & & 7 & & 3 & 0 & & 1 & 13 & & & 19 & \\
\hline CO Emissions (g/hr) & & 497 & & 197 & 9 & & 80 & 883 & & & 1328 & \\
\hline NOX Emissions (g/hr) & & 97 & & 38 & 2 & & 16 & 172 & & & 258 & \\
\hline VOC Emissions (g/hr) & & 115 & & 46 & 2 & & 18 & 205 & & & 308 & \\
\hline Dilemma Vehicles (\#) & & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Queue Length 50th (tt) & & 177 & & 71 & 4 & & 35 & 455 & & & 313 & \\
\hline Queue Length 95th (ft) & & \#321 & & \#178 & 17 & & 60 & \#787 & & & \#492 & \\
\hline Internal Link Dist (tt) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline Turn Bay Length ( t ) & & & & & & & 200 & & & & & \\
\hline Base Capacity (vph) & & 427 & & 163 & 421 & & 294 & 1190 & & & 933 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\Rightarrow\) & \(\rightarrow\) & & 7 & & & & \(\dagger\) & 7 & , & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Starvation Cap Reductn & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Spillback Cap Reductn & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Storage Cap Reductn & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Reduced v/c Ratio & 0.77 & & 0.80 & 0.02 & & 0.57 & 0.85 & & & 0.74 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline Area Type: Other & \multicolumn{11}{|c|}{Other} \\
\hline \multicolumn{12}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 84.5} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 0.94} \\
\hline Intersection Signal Delay: 35.5 & & & \multicolumn{9}{|c|}{Intersection LOS: D} \\
\hline \multicolumn{12}{|l|}{Intersection Capacity Utilization 92.2\% ICU Level of Service F} \\
\hline \multicolumn{12}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{12}{|l|}{90th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{70th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{50th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{30th \%ile Actuated Cycle: 88} \\
\hline \multicolumn{12}{|l|}{10th \%ile Actuated Cycle: 64.3} \\
\hline \multicolumn{12}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & 4 & & * & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & \% & F & & \% & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 6 & - & 310 & 125 & 5 & 5 & 160 & 970 & 0 & 0 & 660 & 7 \\
\hline Future Volume (veh/h) & 6 & 0 & 310 & 125 & 5 & 5 & 160 & 970 & 0 & 0 & 660 & 7 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 10 & 0 & 5 & 10 & 0 & 0 & 20 & 0 & 0 & 15 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1900 & 1846 & 1900 & 1881 & 1776 & 1900 & 1900 & 1792 & 0 & 0 & 1742 & 1900 \\
\hline Adj Flow Rate, veh/h & 6 & 0 & 323 & 130 & 5 & 5 & 167 & 1010 & 0 & 0 & 688 & 7 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 1 & 1 & 0 & 6 & 0 & 0 & 9 & 9 \\
\hline Cap, veh/h & 40 & 5 & 320 & 175 & 344 & 188 & 252 & 1119 & 0 & 0 & 868 & 7 \\
\hline Arrive On Green & 0.25 & 0.00 & 0.25 & 0.25 & 0.25 & 0.25 & 0.06 & 0.62 & 0.00 & 0.00 & 0.50 & 0.50 \\
\hline Sat Flow, veh/h & 9 & 20 & 1542 & 1063 & 816 & 816 & 1810 & 1792 & 0 & , & 1722 & 18 \\
\hline Grp Volume(v), veh/h & 329 & 0 & 0 & 130 & 0 & 10 & 167 & 1010 & 0 & 0 & 0 & 695 \\
\hline Grp Sat Flow(s),veh/h/n & 1571 & 0 & 0 & 1063 & 0 & 1632 & 1810 & 1792 & 0 & 0 & 0 & 1739 \\
\hline Q Serve(g_s), s & 2.1 & 0.0 & 0.0 & 3.9 & 0.0 & 0.4 & 3.7 & 42.6 & 0.0 & 0.0 & 0.0 & 29.0 \\
\hline Cycle Q Clear(g_c), s & 17.1 & 0.0 & 0.0 & 21.0 & 0.0 & 0.4 & 3.7 & 42.6 & 0.0 & 0.0 & 0.0 & 29.0 \\
\hline Prop In Lane & 0.02 & & 0.98 & 1.00 & & 0.50 & 1.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 311 & 0 & 0 & 175 & 0 & 417 & 252 & 1119 & 0 & 0 & 0 & 870 \\
\hline VIC Ratio(X) & 1.06 & 0.00 & 0.00 & 0.74 & 0.00 & 0.02 & 0.66 & 0.90 & 0.00 & 0.00 & 0.00 & 0.80 \\
\hline Avail Cap(c_a), veh/h & 458 & 0 & 0 & 223 & 0 & 414 & 333 & 1177 & 0 & 0 & 0 & 922 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(1) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 32.3 & 0.0 & 0.0 & 38.2 & 0.0 & 25.2 & 19.8 & 16.2 & 0.0 & 0.0 & 0.0 & 19.6 \\
\hline Incr Delay (d2), s/veh & 53.8 & 0.0 & 0.0 & 9.5 & 0.0 & 0.0 & 3.0 & 9.5 & 0.0 & 0.0 & 0.0 & 4.8 \\
\hline Initial Q Delay(d3),s/veh & 102.4 & 0.0 & 0.0 & 22.9 & 0.0 & 4.2 & 0.0 & 23.6 & 0.0 & 0.0 & 0.0 & 10.6 \\
\hline \%ile BackOfQ(50\%),veh/ln & 22.4 & 0.0 & 0.0 & 5.3 & 0.0 & 1.7 & 3.3 & 36.0 & 0.0 & 0.0 & 0.0 & 20.0 \\
\hline LnGrp Delay(d),s/veh & 188.5 & 0.0 & 0.0 & 70.7 & 0.0 & 29.5 & 22.8 & 49.3 & 0.0 & 0.0 & 0.0 & 35.0 \\
\hline LnGrp LOS & F & & & E & & C & C & D & & & & C \\
\hline Approach Vol, veh/h & & 329 & & & 140 & & & 1177 & & & 695 & \\
\hline Approach Delay, s/veh & & 188.5 & & & 67.7 & & & 45.5 & & & 35.0 & \\
\hline Approach LOS & & F & & & E & & & D & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 58.8 & & 28.0 & 10.6 & 48.2 & & 28.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{Cc}\), s & & 5.0 & & * 6 & 5.0 & 5.0 & & 6.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 57.0 & & * 23 & 6.0 & 46.0 & & 22.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 44.6 & & 19.1 & 5.7 & 31.0 & & 23.0 & & & & \\
\hline Green Ext Time (p_c), s & & 9.2 & & 1.0 & 0.0 & 10.7 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 63.8 & & & & & & & & & \\
\hline HCM 2010 LOS & & & E & & & & & & & & & \\
\hline
\end{tabular}

\section*{Notes}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & & & \[
4
\] & \(\dagger\) & \(p\) & & \(\frac{1}{\dagger}\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & \({ }^{7}\) & \(\uparrow\) & & \({ }^{1}\) & 4 & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 15 & 0 & 370 & 140 & 5 & 5 & 90 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (vph) & 15 & 0 & 370 & 140 & 5 & 5 & 90 & 790 & 0 & 0 & 770 & 0 \\
\hline Ideal Flow (vphpl) & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.870 & & & 0.925 & & & & & & & \\
\hline Flt Protected & & 0.998 & & 0.950 & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 0 & 1413 & 0 & 1546 & 1441 & 0 & 1561 & 1580 & 0 & 0 & 1565 & 0 \\
\hline Flt Permitted & & 0.992 & & 0.321 & & & 0.104 & & & & & \\
\hline Satd. Flow (perm) & 0 & 1405 & 0 & 522 & 1441 & 0 & 171 & 1580 & 0 & 0 & 1565 & 0 \\
\hline Right Turn on Red & & & No & & & No & & & No & & & No \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 35 & & & 35 & \\
\hline Link Distance (ft) & & 986 & & & 278 & & & 267 & & & 2293 & \\
\hline Travel Time (s) & & 22.4 & & & 6.3 & & & 5.2 & & & 44.7 & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 1\% & 1\% & 3\% & 8\% & 0\% & 4\% & 2\% & 2\% & 5\% & 0\% \\
\hline Adj. Flow (vph) & 15 & 0 & 381 & 144 & 5 & 5 & 93 & 814 & 0 & 0 & 794 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 396 & 0 & 144 & 10 & 0 & 93 & 814 & 0 & 0 & 794 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 11 & & & 11 & & & 11 & \\
\hline Link Offset(ft) & & -3 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 1 & 2 & & 1 & 2 & & 1 & 2 & & & 2 & \\
\hline Detector Template & Left & Thru & & Left & Thru & & Left & Thru & & & Thru & \\
\hline Leading Detector (ft) & 20 & 100 & & 20 & 100 & & 20 & 100 & & & 100 & \\
\hline Trailing Detector (ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Position(ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Size(ft) & 20 & 6 & & 20 & 6 & & 20 & 6 & & & 6 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 2 Position(ft) & & 94 & & & 94 & & & 94 & & & 94 & \\
\hline Detector 2 Size(ft) & & 6 & & & 6 & & & 6 & & & 6 & \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Turn Type & Perm & NA & & Perm & NA & & pm+pt & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 5 & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
```

Area Type:
Other

```

Cycle Length: 90
Actuated Cycle Length: 88.1
Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.03
Intersection Signal Delay: 52.2 Intersection LOS: D

Intersection Capacity Utilization 103.1\% ICU Level of Service G
Analysis Period (min) 15
90th \%ile Actuated Cycle: 90
70th \%ile Actuated Cycle: 90
50th \%ile Actuated Cycle: 90
30th \%ile Actuated Cycle: 90
10th \%ile Actuated Cycle: 80.5
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{ }\) & & & 7 & & & 4 & \(\dagger\) & & & & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & \% & \(\hat{F}\) & & \({ }^{4}\) & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 15 & 0 & 370 & 140 & 5 & 5 & 90 & 790 & 0 & 0 & 770 & 0 \\
\hline Future Volume (veh/h) & 15 & 0 & 370 & 140 & 5 & 5 & 90 & 790 & 0 & 0 & 770 & 0 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & 0 & 20 & 0 & 10 & 10 & 0 & 0 & 10 & 0 & 0 & 40 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/n & 1700 & 1684 & 1700 & 1683 & 1611 & 1700 & 1700 & 1635 & 0 & 0 & 1619 & 1700 \\
\hline Adj Flow Rate, veh/h & 15 & 0 & 381 & 144 & 5 & 5 & 93 & 814 & 0 & 0 & 794 & 0 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 3 & 3 & 0 & 4 & 0 & 0 & 5 & 5 \\
\hline Cap, veh/h & 42 & 9 & 280 & 156 & 382 & 196 & 161 & 960 & 0 & 0 & 791 & 0 \\
\hline Arrive On Green & 0.29 & 0.00 & 0.29 & 0.29 & 0.29 & 0.29 & 0.05 & 0.59 & 0.00 & 0.00 & 0.49 & 0.00 \\
\hline Sat Flow, veh/h & 24 & 30 & 1381 & 1008 & 740 & 740 & 1619 & 1635 & 0 & 0 & 1619 & 0 \\
\hline Grp Volume(v), veh/h & 396 & 0 & 0 & 144 & 0 & 10 & 93 & 814 & 0 & 0 & 794 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1435 & 0 & 0 & 1008 & 0 & 1481 & 1619 & 1635 & 0 & 0 & 1619 & 0 \\
\hline Q Serve(g_s), s & 9.8 & 0.0 & 0.0 & 1.8 & 0.0 & 0.4 & 2.4 & 36.7 & 0.0 & 0.0 & 43.5 & 0.0 \\
\hline Cycle Q Clear (g_c), s & 24.2 & 0.0 & 0.0 & 26.0 & 0.0 & 0.4 & 2.4 & 36.7 & 0.0 & 0.0 & 43.5 & 0.0 \\
\hline Prop In Lane & 0.04 & & 0.96 & 1.00 & & 0.50 & 1.00 & & 0.00 & 0.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 271 & 0 & 0 & 156 & 0 & 433 & 161 & 960 & 0 & 0 & 791 & 0 \\
\hline V/C Ratio(X) & 1.46 & 0.00 & 0.00 & 0.92 & 0.00 & 0.02 & 0.58 & 0.85 & 0.00 & 0.00 & 1.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 459 & 0 & 0 & 176 & 0 & 430 & 171 & 968 & 0 & 0 & 787 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 29.1 & 0.0 & 0.0 & 38.7 & 0.0 & 23.5 & 20.9 & 16.1 & 0.0 & 0.0 & 23.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 223.0 & 0.0 & 0.0 & 44.1 & 0.0 & 0.0 & 4.2 & 7.1 & 0.0 & 0.0 & 32.8 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 155.0 & 0.0 & 0.0 & 197.5 & 0.0 & 3.9 & 0.0 & 5.1 & 0.0 & 0.0 & 166.7 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/In & 43.5 & 0.0 & 0.0 & 14.3 & 0.0 & 1.6 & 1.4 & 21.5 & 0.0 & 0.0 & 66.8 & 0.0 \\
\hline LnGrp Delay (d),s/veh & 407.1 & 0.0 & 0.0 & 280.2 & 0.0 & 27.4 & 25.1 & 28.4 & 0.0 & 0.0 & 222.5 & 0.0 \\
\hline LnGrp LOS & F & & & F & & C & C & C & & & F & \\
\hline Approach Vol, veh/h & & 396 & & & 154 & & & 907 & & & 794 & \\
\hline Approach Delay, s/veh & & 407.1 & & & 263.8 & & & 28.0 & & & 222.5 & \\
\hline Approach LOS & & F & & & F & & & C & & & F & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 58.5 & & 31.0 & 9.0 & 49.5 & & 31.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{Rc}\), , \(s\) & & 6.0 & & 5.0 & 4.5 & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 53.0 & & 26.0 & 5.0 & 43.5 & & 26.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 38.7 & & 26.2 & 4.4 & 45.5 & & 28.0 & & & & \\
\hline Green Ext Time (p_c), s & & 9.3 & & 0.0 & 0.0 & 0.0 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 179.4 & & & & & & & & & \\
\hline HCM 2010 LOS & & & F & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Notes} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & \(\uparrow\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & \% & \(\hat{\beta}\) & & \% & 4 & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 5 & 0 & 330 & 170 & 10 & 5 & 170 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (vph) & 5 & 0 & 330 & 170 & 10 & 5 & 170 & 850 & 0 & 0 & 770 & 5 \\
\hline Ideal Flow (vphpl) & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 & 1700 \\
\hline Storage Length (t) & 0 & & 0 & 0 & & 0 & 200 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 0 & 1 & & 0 & 1 & & 0 & 0 & & 0 \\
\hline Taper Length (t) & 0 & & & 0 & & & 0 & & & 0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.867 & & & 0.953 & & & & & & 0.999 & \\
\hline Flt Protected & & 0.999 & & 0.950 & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 0 & 1423 & 0 & 1546 & 1505 & 0 & 1561 & 1611 & 0 & 0 & 1610 & 0 \\
\hline Flt Permitted & & 0.998 & & 0.340 & & & 0.087 & & & & & \\
\hline Satd. Flow (perm) & 0 & 1422 & 0 & 553 & 1505 & 0 & 143 & 1611 & 0 & 0 & 1610 & 0 \\
\hline Right Turn on Red & & & No & & & No & & & No & & & No \\
\hline \multicolumn{13}{|l|}{Satd. Flow (RTOR)} \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 35 & & & 35 & \\
\hline Link Distance (ft) & & 986 & & & 278 & & & 267 & & & 2293 & \\
\hline Travel Time (s) & & 22.4 & & & 6.3 & & & 5.2 & & & 44.7 & \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 0\% & 2\% & 0\% & 1\% & 0\% & 13\% & 0\% & 2\% & 2\% & 2\% & 2\% & 0\% \\
\hline Adj. Flow (vph) & 5 & 0 & 347 & 179 & 11 & 5 & 179 & 895 & 0 & 0 & 811 & 5 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 352 & 0 & 179 & 16 & 0 & 179 & 895 & 0 & 0 & 816 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(t) & & 0 & & & 11 & & & 11 & & & 11 & \\
\hline Link Offset(ft) & & -3 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(tt) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 1 & 2 & & 1 & 2 & & 1 & 2 & & & 2 & \\
\hline Detector Template & Left & Thru & & Left & Thru & & Left & Thru & & & Thru & \\
\hline Leading Detector (tt) & 20 & 100 & & 20 & 100 & & 20 & 100 & & & 100 & \\
\hline Trailing Detector (ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Position(ft) & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Detector 1 Size(ft) & 20 & 6 & & 20 & 6 & & 20 & 6 & & & 6 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 2 Position(t) & & 94 & & & 94 & & & 94 & & & 94 & \\
\hline Detector 2 Size(tt) & & 6 & & & 6 & & & 6 & & & 6 & \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Turn Type & Perm & NA & & Perm & NA & & pm+pt & NA & & & NA & \\
\hline Protected Phases & & 4 & & & 8 & & 5 & 2 & & & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & & & \[
4
\] & \(\dagger\) & & & \(\frac{1}{1}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 5 & 2 & & & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 5.0 & 10.0 & & & 10.0 & \\
\hline Minimum Split (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & 9.5 & 45.0 & & & 45.0 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & 10.0 & 60.0 & & & 50.0 & \\
\hline Total Split (\%) & 33.3\% & 33.3\% & & 33.3\% & 33.3\% & & 11.1\% & 66.7\% & & & 55.6\% & \\
\hline Maximum Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 3.5 & 5.0 & & & 5.0 & \\
\hline All-Red Time (s) & 1.0 & 1.0 & & 1.0 & 1.0 & & 1.0 & 1.0 & & & 1.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.0 & & 5.0 & 5.0 & & 4.5 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & & Lead & & & & Lag & \\
\hline Lead-Lag Optimize? & & & & & & & Yes & & & & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & None & None & & & None & \\
\hline Act Effct Green (s) & & 25.0 & & 25.0 & 25.0 & & 55.5 & 54.0 & & & 44.0 & \\
\hline Actuated g/C Ratio & & 0.28 & & 0.28 & 0.28 & & 0.62 & 0.60 & & & 0.49 & \\
\hline v/c Ratio & & 0.89 & & 1.17 & 0.04 & & 1.03 & 0.93 & & & 1.04 & \\
\hline Control Delay & & 57.9 & & 158.9 & 24.2 & & 96.3 & 33.8 & & & 66.9 & \\
\hline Queue Delay & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Delay & & 57.9 & & 158.9 & 24.2 & & 96.3 & 33.8 & & & 66.9 & \\
\hline LOS & & E & & F & C & & F & C & & & E & \\
\hline Approach Delay & & 57.9 & & & 147.9 & & & 44.3 & & & 66.9 & \\
\hline Approach LOS & & E & & & F & & & D & & & E & \\
\hline 90th \%ile Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline 90th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Max & \\
\hline 70th \%ile Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline 70th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Max & \\
\hline 50th \%ile Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline 50th \%ile Term Code & Max & Max & & Max & Max & & Max & Max & & & Max & \\
\hline 30th \%ile Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline 30th \%ile Term Code & Max & Max & & Max & Max & & Max & Hold & & & Max & \\
\hline 10th \%ile Green (s) & 25.0 & 25.0 & & 25.0 & 25.0 & & 5.5 & 54.0 & & & 44.0 & \\
\hline 10th \%ile Term Code & Hold & Hold & & Max & Max & & Max & Hold & & & Max & \\
\hline Stops (vph) & & 288 & & 127 & 12 & & 72 & 671 & & & 639 & \\
\hline Fuel Used(gal) & & 8 & & 7 & 0 & & 4 & 13 & & & 28 & \\
\hline CO Emissions (g/hr) & & 566 & & 459 & 12 & & 294 & 877 & & & 1970 & \\
\hline NOx Emissions (g/hr) & & 110 & & 89 & 2 & & 57 & 171 & & & 383 & \\
\hline VOC Emissions (g/hr) & & 131 & & 106 & 3 & & 68 & 203 & & & 457 & \\
\hline Dilemma Vehicles (\#) & & 0 & & 0 & 0 & & 0 & 41 & & & 39 & \\
\hline Queue Length 50th (ft) & & 192 & & ~122 & 7 & & \(\sim 57\) & 421 & & & ~505 & \\
\hline Queue Length 95th (ft) & & \#352 & & \#250 & 22 & & \#191 & \#719 & & & \#727 & \\
\hline Internal Link Dist (ft) & & 906 & & & 198 & & & 187 & & & 2213 & \\
\hline Turn Bay Length (ft) & & & & & & & 200 & & & & & \\
\hline Base Capacity (vph) & & 395 & & 153 & 418 & & 174 & 966 & & & 787 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & 4 & \(\dagger\) & 7 & , & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Reduced v/c Ratio & 0.89 & & 1.17 & 0.04 & & 1.03 & 0.93 & & & 1.04 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Area Type: \\
Other \\
Cycle Length: 90
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 90} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 130} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 1.17} \\
\hline Intersection Signal Delay: 62.1 & & & \multicolumn{9}{|c|}{Intersection LOS: E} \\
\hline Intersection Capacity Utilization 106.9\% & & & \multicolumn{9}{|c|}{ICU Level of Service G} \\
\hline \multicolumn{12}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{12}{|l|}{90th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{70th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{50th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{30th \%ile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{10th \%oile Actuated Cycle: 90} \\
\hline \multicolumn{12}{|l|}{~ Volume exceeds capacity, queue is theoretically infinite.} \\
\hline \multicolumn{12}{|l|}{Queue shown is maximum after two cycles.} \\
\hline \multicolumn{12}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline Queue shown is maximum after two & cycles. & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 14: Route 138 \& Brush Hill Rd.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & \(t\) & & & 4 & 4 & & & \(\dagger\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & * & \(\hat{\beta}\) & & \% & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 5 & 0 & 330 & 170 & 10 & 5 & 170 & 850 & 0 & 0 & 770 & 5 \\
\hline Future Volume (veh/h) & 5 & 0 & 330 & 170 & 10 & 5 & 170 & 850 & 0 & 0 & 770 & 5 \\
\hline Number & 7 & & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 15 & 0 & 5 & 5 & 0 & 5 & 5 & 0 & 0 & 20 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/n & 1700 & 1700 & 1700 & 1683 & 1634 & 1700 & 1700 & 1667 & 0 & 0 & 1667 & 1700 \\
\hline Adj Flow Rate, veh/h & 5 & 0 & 347 & 179 & 11 & 5 & 179 & 895 & 0 & 0 & 811 & 5 \\
\hline Adj No. of Lanes & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & 41 & 4 & 316 & 150 & 406 & 128 & 179 & 1000 & 0 & 0 & 811 & 2 \\
\hline Arrive On Green & 0.28 & 0.00 & 0.28 & 0.28 & 0.28 & 0.28 & 0.06 & 0.60 & 0.00 & 0.00 & 0.49 & 0.49 \\
\hline Sat Flow, veh/h & 6 & 15 & 1427 & 1040 & 1064 & 484 & 1619 & 1667 & 0 & 0 & 1655 & 10 \\
\hline Grp Volume(v), veh/h & 352 & 0 & 0 & 179 & 0 & 16 & 179 & 895 & 0 & 0 & 0 & 816 \\
\hline Grp Sat Flow(s),veh/h/ln & 1447 & 0 & 0 & 1040 & 0 & 1548 & 1619 & 1667 & 0 & 0 & 0 & 1665 \\
\hline Q Serve(g_s), s & 3.1 & 0.0 & 0.0 & 4.1 & 0.0 & 0.7 & 5.5 & 41.8 & 0.0 & 0.0 & 0.0 & 44.0 \\
\hline Cycle Q Clear (g_c), s & 20.9 & 0.0 & 0.0 & 25.0 & 0.0 & 0.7 & 5.5 & 41.8 & 0.0 & 0.0 & 0.0 & 44.0 \\
\hline Prop In Lane & 0.01 & & 0.99 & 1.00 & & 0.31 & 1.00 & & 0.00 & 0.00 & & 0.01 \\
\hline Lane Grp Cap(c), veh/h & 327 & 0 & 0 & 150 & 0 & 431 & 179 & 1000 & 0 & 0 & 0 & 815 \\
\hline VIC Ratio( X ) & 1.08 & 0.00 & 0.00 & 1.19 & 0.00 & 0.04 & 1.00 & 0.89 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Avail Cap(c_a), veh/h & 443 & 0 & 0 & 197 & 0 & 430 & 179 & 1000 & 0 & 0 & 0 & 814 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 30.9 & 0.0 & 0.0 & 39.2 & 0.0 & 24.1 & 23.8 & 16.0 & 0.0 & 0.0 & 0.0 & 23.0 \\
\hline Incr Delay (d2), s/veh & 62.9 & 0.0 & 0.0 & 128.8 & 0.0 & 0.0 & 67.4 & 10.5 & 0.0 & 0.0 & 0.0 & 32.0 \\
\hline Initial Q Delay(d3),s/veh & 139.3 & 0.0 & 0.0 & 93.9 & 0.0 & 1.0 & 100.6 & 1.7 & 0.0 & 0.0 & 0.0 & 86.9 \\
\hline \%ile BackOfQ(50\%),veh/ln & 28.8 & 0.0 & 0.0 & 14.1 & 0.0 & 0.9 & 12.8 & 23.3 & 0.0 & 0.0 & 0.0 & 47.4 \\
\hline LnGrp Delay(d),s/veh & 233.1 & 0.0 & 0.0 & 261.9 & 0.0 & 25.2 & 191.8 & 28.2 & 0.0 & 0.0 & 0.0 & 141.8 \\
\hline LnGrp LOS & F & & & F & & C & F & C & & & & F \\
\hline Approach Vol, veh/h & & 352 & & & 195 & & & 1074 & & & 816 & \\
\hline Approach Delay, s/veh & & 233.1 & & & 242.4 & & & 55.5 & & & 141.8 & \\
\hline Approach LOS & & F & & & F & & & E & & & F & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 60.0 & & 30.0 & 10.0 & 50.0 & & 30.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{C}\) ), \(s\) & & 6.0 & & 5.0 & 4.5 & 6.0 & & 5.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 54.0 & & 25.0 & 5.5 & 44.0 & & 25.0 & & & & \\
\hline Max Q Clear Time ( \(g_{-}\)c+11), \(s\) & & 43.8 & & 22.9 & 7.5 & 46.0 & & 27.0 & & & & \\
\hline Green Ext Time (p_c), s & & 7.6 & & 0.7 & 0.0 & 0.0 & & 0.0 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2010 Ctrl Delay} & \multicolumn{10}{|l|}{125.0} \\
\hline HCM 2010 LOS & & & F & & & & & & & & & \\
\hline
\end{tabular}

\section*{Appendix G: Survey Comments}

Part 1: Common comments encountered in the Milton Complete Streets Prioritization Plan at wikimapping.com
Part 2: Significant free-response feedback for one or more questions

\title{
Part 1: Common Comments Encountered in the Milton Complete Streets \\ Prioritization Plan at Wikimapping.com
}




Part 2: Significant Free-Response Feedback for Questions
\begin{tabular}{|l} 
Survey \#6 (3/22/2018) \\
8. Mattapan square (end of new neponset river greenway trail) to south- \\
bound rt 138 is very difficult and dangerous to navigate by bike. \\
Signals are poorly timed, and trying to use the ped crossings brings \\
bikes in direct conflict with high speed traffic. \\
Survey \#10 (3/22/2018) \\
8. Brush hill road at robbins the wait time too long at light \\
\hline \begin{tabular}{l} 
Survey \#13 (3/22/2018) \\
7. More frequent/better trash collection; better enforcement of littering \\
laws
\end{tabular} \\
\hline \begin{tabular}{l} 
Survey \#15 (3/22/2018) \\
8. I would like to see the royal street traffic stop backing up rt138 \\
southbound traffic. One royal st car can stop a line of traffic for too \\
much time. Let royal st wait like everyone else. \\
\hline Survey \#16 (3/22/2018) \\
4. Poor street lighting definitley \#1, sidewalks in poor condition \#2
\end{tabular} \\
\hline Survey \#18 (3/22/2018) \\
1. I would also be a cyclist on 138 if it felt safer. \\
\hline \begin{tabular}{l} 
3. Poorly marked, people not knowing what lanes to me on coming out \\
of mattapan. \\
Sourvey \#20 (3/22/2018) \\
3. People come up on the right and it is not even a lane \\
6. I feel it has become a highway. Also need to install "don't block the \\
box". Too many cars sit in the middle of an intersection when traffic is \\
heavy
\end{tabular} \\
\hline Survey \#24 (3/22/2018) \\
8. Protect bike lanes on the whole corridor! So many people bike down \\
this route to get to the blue hills. It is dangerous. \\
\hline Survey \#29 (3/22/2018) \\
\hline
\end{tabular}

\section*{Survey \#32 (3/22/2018)}
3. Poor sight distance on the hilltops only. Aggressive drivers pass in the shoulder and the double yellow line.
4. Sidewalks are lacking in the southern area, where people walk or bike to curry college. Sidewalks would help for their runners, too. Knotweed grows and blocks the shoulder between curry college and milton st.
5. I bike on route 138 , but \(i\) try to avoid the area north of churchill st because of all the parked cars and the narrow road.
6. The i-93 interchange in canton, with its high-speed ramps is most in need of complete streets improvements. Elsewhere please reduce vehicle speeds or use separated bike-ped facilities.
7. Some drivers pass in the wide shoulders, please change the road to discourage this. A left turn lane to neponset valley pkwy would be helpful, but please do not eliminate the bike lane I shoulder.
8. Please add a signalized crosswalk and curb bumpouts at oak street for children going to tucker school. Consider lowering the speed limit north of blue hill terrace street and making the speed limits consistent south of there (varies between 35 and 45). A sidewalk or shared-use path would be preferred between blue hill terrace and robbins. North of blue hill terrace, if good bike lanes are not possible, consider wayfinding signage to direct bicyclists to blue hills parkway bike lanes.

\section*{Survey \#39 (3/22/2018)}
3. Bicycle accommodations too meager. Need separated lanes. Also keep speed limit one speed entire stretch. Stupid to go 35, 45, 40 all in the stretch. 35 is fine with timed lights.

Survey \#40 (3/22/2018)
7. Police presence at tucker school drop off and pick up. Crossing guard only responsible for crossing. Cars speed, drive on the wrong side of the road to avoid waiting for cars to turn on to oak street.
8. "oak street during tucker school drop off and pick up.

Survey \#43 (3/22/2018)
6. After 4pm, it typically takes 25 minutes to travel less than \(\mathbf{2}\) miles; from bradley rd to route 95 !

Survey \#46 (3/22/2018)
5. It's clear after living here for 35 years that milton is the cut through capital. People speed to cut through milton.

Survey \#66 (3/23/2018)
1. I would like to be a bike rider but the road feels unsafe for bikes.

Survey \#76 (3/23/2018)
8. The traffic jams on the road start at 230 pm and continue until 630 pm
" \(€\) making the road almost impossible to use without massive waiting time in traffic.

Survey \#78 (3/23/2018)
8. The section between royale and canton ave is part of a very popular bike route and should be of immediate concern. I am a member of the blue hills cycling club and ride that section several times per week and feel like a dedicated (with physical barriers) bike lane on the ski resort side of street would significantly increase safety

Survey \#85 (3/23/2018)
3. Congestion from poorly configured student drop off at tucker in am. Back up to valentine road some days.
8. Regulation sidewalks the length of the road. Dedicated bike lanes the length of the road. Reduce congestion at signals due to poorly configured lights. Fix tucker school drop off so it does not have a major impact on traffic

\section*{Survey \#89 (3/23/2018)}
8. It is extremely frustrating for all involved pedestrians cyclists and drivers alike become frustrated with each other for the above reasons it's tough to share the road when we are all lacking in space pedestrians are definitely not accommodated especially near the blue hill area

\section*{Survey \#90 (3/23/2018)}
8. Slow down traffic. When i pull out of my street (pagoda street) cars are often traveling very fast. Fortunate to have blue hill terrace light nearby, but traffic coming inbound to boston travels very fast.

\section*{Survey \#95 (3/23/2018)}
3. The long wait is at the signals trying to get onto 138.
4. Cars usually drive to the right of the white line.
7. Normally, when they say they are going to make it safer, it usually has the opposite effect. (see intersection at canton ave and brook rd.) Be sure to keep safety vehicles in mind when planning any changes.
8. At the end of vose hill rd, there must be some kind of bend in the road where vehicles always seem to crowd the side of the road where i'm walking.

\section*{Survey \#96 (3/23/2018)}
4. Student's safety walking to school, and crossing 138. There are guards on the parkway for high school and middle school students, but none for 138
6. "the study should include how traffic on brush hill/ truman hwy affect 138. Many high park residents zoom through this corridor. As a resident of cheever street i monitor this activity and have some specific suggestions to remedy some of this behavior.

\section*{Survey \#98 (3/23/2018)}
4. I won't walk on route 138 with my children and very rarely with my dog. Also there is a ridiculous amount of trash along the side of the road.
7. To me it is unacceptable that it is not possible to walk on that road safely.

Survey \#113 (3/23/2018)
8. Don't know how anyone would dare walk along here; it is far too dangerous. Cycling is possible as most of blue hill ave has pretty good width for cycle lane, but safety could be improved tremendously as noted above.

Survey \#114 (3/23/2018)
8. Fix left hand turn only out of parking lot at ski mountain. And left hand only lane to turn in.

Survey \#115 (3/23/2018)
7. Even with a bike lane, \(i\) would not bike on that road. Drivers don't comply with keeping clear of bike lanes. Would bike on wide sidewalk

Survey \#119 (3/23/2018)
8. Fix the lane leaving the ski mountain when you leave that you can only turn right and then on the entrance when you're trying to turn left into the parking lot make a left turn only lane.

Survey \#121 (3/23/2018)
7. Ban bicycles for everyone's safety. The road is too narrow with too much traffic.

Survey \#122 (3/23/2018)
3. Delays at blue hill avel brush hill rd, due to thacher montessori school start \& end, blocking blue hill ave due to no access from brush hill rd, which would be safer for students \& ease congestion on 138, which back traffic all the way down 138 towards mattapan sq
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Survey \#124 (3/23/2018) \\
3. Cars backed up going into thatcher montessori sometimes
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#125 (3/23/2018) \\
3. Drivers ignoring the yellow and red lights. And the trucks going to fast \\
8. Lights at brush hill and also at robbins streets need more enforcement.
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#128 (3/23/2018) \\
3. Wish we had two lines on blue hill instead of one. Kind of like randolph ave
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#129 (3/23/2018) \\
3. High volume at peak traffic times only-morning and evening commutes and when day care is getting out. \\
4. I do not bike or walk rte 138 because it is so dangerous for bicyclists and pedestrians. I checked the above boxes because when i see a pedestrian or bicyclist \(i\) know how insufficient the road is for them.
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#131 (3/23/2018) \\
3. I actually don't experience problems on the small part i use; typically the signal at blue hill terrace, cutting across to cheever.
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#134 (3/23/2018) \\
4. When making a left turn onto 138 southbound from brush hill road (canton ave side), there is no left turn arrow or concessions for bikes, so i'm often turning into traffic making a right turn from the opposite direction. Also, there are a lot of drivers that run that red light on 138 which makes pulling out dangerous. \\
5. I still ride on 138, but generally its a meas to an end (better riding on canton ave, green st, hillside, etc...)
\end{tabular} \\
\hline \begin{tabular}{l}
Survey \#137 (3/23/2018) \\
3. Merging from 2 lanes into one northbound from rt128 there is no merge sign. Very dangerous. \\
7. Merge sign northbound going from 2 lanes into one. \\
8. Needmerge sign northbound from 128 from 2 lanes into 1
\end{tabular} \\
\hline
\end{tabular}

\section*{Survey \#140 (3/23/2018)}
8. Neponset valley pkwy intersection during peak times is dangerous, as those going onto or coming from neponset are very aggressive entering and exiting. Perhaps an officer directing traffic orr and onto 138? Also light at 138/canton ave/brush hill rd back up heading to 95 during afternoon commute.

\section*{Survey \#141 (3/23/2018)}
3. Biggest problem are the intersections - congestion at them and the people turning from side streets don't abide by the turn on red rules. They think they can merge into slow moving oncoming traffic when in fact the turn on red rule is that you can stop and turn on red if nothing is coming.
4. I've walked on 138 a few times but won't do it unless there is a side walk.

Survey \#144 (3/23/2018)
2. Between milton st and bradlee rd/atherton st. The curry college entrance is particularly dangerous.
3. Safety concerns with the entering and exiting out of curry college on 138.
6. Between milton st and bradlee rd/atherton st. The curry college entrance is particularly dangerous.
8. Deal with the congestion, make it safer for people to walk from robbins to blue hill river rd

Survey \#148 (3/23/2018)
3. Coming from direction of robbins and moving towards 128, i'm always wary of the rise that happens at coulter and worry about any pedestrian/cyclist that might be just over the rise.
8. For me it's mostly about sidewalks. Even for the areas that have a useable shoulder, i do not trust the drivers to not veer into them and feel that a sidewalk is the only way that i would let my kids ride bikes/walk on this road. Even the short sections that i run along, i'm very mindful of the speed and aggressive nature of the traffic and never trust drivers. I'm happy to hear of this study and look forward to changes.

\section*{Survey \#150 (3/23/2018)}
4. I do a lot of running on rt. 138 between neponset and mattapan sq and to be fair find it very easy to navigate. Wide shoulders where there are no sidewalks and sidewalks where there are no shoulders.

Survey \#153 (3/23/2018)
1. Homeowner with a driveway that has an entrancelexit on blue hill ave/rt138
3. Not quite congestion, but high volume northbound at morning drivetime and southbound evening drivetime, which makes drivers more aggressive and creates dangerous conditions for entering and exiting sidestreets.
5. With lack of sidewalks or sidewalks only on one side of roadway, pedestrians are forced to either walk on roadway or make crossings. Frequency of aggressive drivers in travel lane passing slower cars by using the curbside/parking(or in many cases walking or bicycling)lane to pass illegally on the right creating a major danger for anyone who might be in that lane because of lack of sidewalks

Survey \#155 (3/23/2018)
8. Physical barriers separating motor vehicles from pedestrians \& bicyclists would allow cars and trucks to maintain high speed and everyone to maintain safety. Painting a picture of a bicycle on a road just puts bikers in danger. There needs to be jersey barrier walls or pylons separating car lanes and bike lanes.

\section*{Survey \#160 (3/23/2018)}
2. "pedestrian and cycling from robbins towards boston

Survey \#162 (3/23/2018)
8. Turns into some driveways and side streets are too sharp, this makes for some quick crazy turns or the risk of being rear-ended

Survey \#163 (3/23/2018)
8. I know it's not the most important thing, but it's really unpleasant to walk along 138 because of all of the trash/litter.

Survey \#165 (3/23/2018)
8. "1/ sidewalks between valentine and amor road on other side so kids can safely walk to school and all can walk safely to the train station in mattapan

Survey \#168 (3/23/2018)
8. 138 n near the blue hills is heavily congested and entering form the side streets is nearly impossible

Survey \#171 (3/23/2018)
8. Better lighting, traffic light coordination, sidewalks and and bike/run/walk lanes would be a huge improvement! We have many kids that use 138 to get home and many live on the other side of 138. There are no cross walks between blue hills terrace and robbins street and is virtually impossible to cross. Our children are at risk on a daily basis.

\section*{Survey \#175 (3/23/2018)}
8. I consider 138 a highway, so i'm not sure adding bike lanes is such a good idea. Cyclists should be encouraged to take canton ave or brush hill road, which run parallel to 138 . Adding turning lanes and second lanes at certain points would be a better use of resources.

\section*{Survey \#177 (3/23/2018)}
2. Brush hill intersects \(\mathbf{1 3 8}\) in \(\mathbf{2}\) locations: just over the mattapan bridge \& just before trailside.
3. Poor sight distance just at the firehouse, where that firefighter was so terribly injured.
8. "nerve-wracking to take left into trailside parking lot.

Survey \#181 (3/23/2018)
8. Designated bike lane markers on the existing shoulders. The road isms already wide enough. Law enforcement speed trap/write more speed tickets. I have never seen a police car positioned to monitor speed.

Survey \#183 (3/23/2018)
6. Cars and trucks ignore the yellow and red lights on 138
7. More policing is needed to slow down the 18 wheelers and the cars that ignore the traffic lights and the speed limits

Survey \#187 (3/23/2018)
3. The 18 wheelers and other trucks. They go fast down blue hill specifically between oak street and brook road. Pot holes don't help at night it sounds like the trucks are coming into our house as they go over the pot holes/dips in the street
8. Speeding and passing from the start of 138 after mattapan all the way up 138 pass the church. Specifically in front of our house always congested with traffic the trucks (18 wheelers) speed heavily and people are so impatient iget scared they will crash in our yard.

Survey \#189 (3/23/2018)
3. When trying to turn onto 138 from side streets, there are often cars parked on 138 which makes seeing oncoming vehicles very difficult.
7. Restrict street parking to reduce blind intersections.
\begin{tabular}{|l|}
\hline Survey \#196 (3/23/2018) \\
3. Milton street intersection must have a "no turn on red" sign. It used \\
to. There is one for the opposite side of the intersection (dollar lane). \\
4. The entire area around route 138 should have sidewalks. No walk \\
light at milton street/rte 138 intersection. \\
8. "1. No turn on red sign installed at milton street intersection with rte \\
138. \\
\hline Survey \#201 (3/23/2018) \\
3. Too much development in milton leading to crowding, crime, litter \\
\hline Survey \#204 (3/23/2018) \\
8. Speeding on side streets by people cutting through from brush hill \\
to 138. Very dangerous for children and people pulling out of \\
driveways on vose hill rd and hilside rd \\
\hline Survey \#205 (3/23/2018) \\
3. I would like a bike path physically separated from cars \\
\hline Survey \#208 (3/23/2018) \\
2. Only between blue hills terrace and decker street. \\
3. Haven't had any problems in the short distance that i sometimes \\
drive. \\
4. I don't have any problems but i worry about the families that park on \\
blue hill avenue to attend our school (the campbell school in the \\
concord baptist church). \\
5. I only walk to the mailbox in front of the building. No problems. \\
8. Very clear pedestrian crossings near tucker school. Very dangerous \\
area and my kids walk on 138 to get home
\end{tabular}

Survey \#222 (3/23/2018)
5. I will continue to walk on 138. However, my husband and \(i\) are having discussions as to whether we feel comfortable letting our 11 year old daughter walk to pierce middle school (when she starts there in fall 2018) because she must cross 138 to do so.

Survey \#223 (3/23/2018)
1. Just did this survey, didn't i? No acknowledgement.
4. Sidewalks. Driving by bikers and walkers always makes me nervous that they will fall unto road.
5. Sidewalks. Bad weather effects bikers and walkers

Survey \#225 (3/23/2018)
3. People go through obvious red lights at an extremely high rate of speed at the intersection of blue hill river road and route 138.

Survey \#228 (3/23/2018)
8. "intersection at 138 is consistently blocked by traffic at the light. Add a Ãđâ, ᄀËœbox' to the intersection to restrict 138 traffic from blocking side road access to the roadway in all directions. Same applies to intersection at brush hill rd.

Survey \#230 (3/23/2018)
2. Intersection of milton st / dollar lane and 138. I am a resident of milton st and use 138 as a driver. I use that intersection as a pedestrian. It is treacherous.
3. Drivers speeding in and out of boston as fast as they can.

Commuters using this roadway to cut through to boston causing congestion, blocking the box at every intersection.
4. No sidewalks at all where i live at the junction of 138 and milton st.
6. Intersection of milton st and 138 and dollar lane. Need pedestrian crosswalk lights.
8. Police presanse everywhere. I think its a state rd so probably would be state police as opposed to milton police. Speed traps. Stop speeders, aggressive drivers. Give tickets. Patrol the intersection at milton st especially at rush hour which is backed up way past our intersection. People blocking the box we can't even get out of our street. You would meet your monthly quota of tickets in the first week of the month! Delay in traffic lights. Add pedestrian traffic lights at this intersection. Curry college kids jog along this area all the time. It is treacherous to all! I would venture to say that most of the drivers coming in and out of boston on 138 are not even milton residents! We should put up toll booths!

Survey \#233 (3/23/2018)
3. Inability to cross over re 138 at dollar lane due to drivers consistently blocking the intersection by ignoring the changing traffic light.
7. Increased police presence to manage scofflaws (speed, obstructing intersections). Designate neighboring streets oneway at peak traffic time (2pm-7pm) to deter high speed cut through traffic.
8. "1. Intersection of rte 138 and dollar lane is obstructed daily at peak traffic times by vehicles ignoring the changing light. - signage to remind drivers not to ""block the box"" and enforcement.

\section*{Survey \#235 (3/23/2018)}
3. Occasionally there are aggressive drivers, but 138 feels safer than it 28.

Survey \#238 (3/23/2018)
3. As a parent parking and walking to tucker, \(i\) have been nearly sideswiped / run over getting out of my car. I am new to milton and disturbed by the aggressive, speedy drivers in an area where children are walking. This road needs speed bumps, as it's treated as a commuter cut-through. It's also completely unkept, and i'm surprised and disappointed that the town doesn't do more to encourage pride of ownership, litter clean-up, and tree planting.
4. The tucker crossing guard stays in her car, unless she notices that someone is coming. She needs to be out of her car and off of her phone. She is a very nice person, but i've had to try to get her attention in order to cross multiple times, and that's not what she's being paid for.
7. If the road was made to discourage people from speeding, with either more traffic lights, or speed bumps, there would be less tailgating, people would feel more comfortable biking, walking, etc. Make it friendlier for people walking and biking, less accommodating for people in their cars zooming down the road to their destination.

\section*{Survey \#240 (3/23/2018)}
4. Passing cars on the right when another car is stopped or taking a left turn is very dangerous for cyclists. High rate of speed is also dangerous to cyclists.

\section*{Survey \#241 (3/23/2018)}
8. The sidewalks stopped abruptly and there is no safe place to walk. The sidewalks built nearer to the fire station area should have a barrier from the traffic.

\section*{Survey \#244 (3/23/2018)}
1. Also an abutting resident. Maintaining the sides of the roads would help both drivers and pedestrians. There is little to no maintenance currently between atherton and royall, i.e., grass not cut, debris such as fallen tree limps and animal carcasses not removed.
4. Maintaining the off road areas running along rte 138 (mowing, debris removal) between atherton and royall

Survey \#246 (3/23/2018)
1. I would ride my ride, if the bike lane was more guarded

Survey \#247 (3/23/2018)
3. Only if \(i\) am driving to the mattapan station at rush hour. It is much better though than it used to be with the addition of the second lane down at the intersection with blue hills pkwy and brush hill road.
4. Please, please, please do not add bike lanes to the highway. It is too dangerous and the people who live along the street use those lanes for guest parking since the houses are small and have little parking in them.
5. I do not bike and do not wish to see biking on the busy street. Sidewalks need some help, but are not too bad.
6. No bikes!! Please no bikes on this road. It is a foolish idea as it was on truman hwy. Sooner or later someone will get killed or severley injured.
7. There is no bus that goes to either mattapan or ashmont.
8. I appreciate what you did with the intersection with blue hills terrace and brush hill road. That has made both driving and walking easier and better. Taking away the second lane at the intersection will make the traffic back up again as it used to. I find the right hand lane perfect for getting over to the right turn to the station. Do not change that for bike lanes that will not be used enough to justify taking away these and the parking lanes. Better marked crossing lanes especially at blue hills terrace would be good as a lot of kids cross over there before putting making the often dangerous trek on blue hills terrace to school.

\section*{Survey \#249 (3/23/2018)}
8. The traffic light congestion at brushhill road/138/canton ave intersection

Survey \#250 (3/23/2018)
3. Do not add a bicycle lane. Speed limit not adhered too, aggressive drivers.
6. Sidewalks for upper blue hill avenue after robbins street not available for pedestrians on either side, making it dangerous to walk.
7. "accommodate pedestrians only! Reduce speed in areas from 45 mph to 35 mph .

\section*{Survey \#256 (3/23/2018)}
3. Therefore bottle necks at every intersection. Reducing lanes in an intersection will always make traffic problems.

\section*{Survey \#260 (3/23/2018)}
4. Terrifying road on a bicycle. I would be so grateful for any improvements.
8. Sure would be great if you could bicycle safely from blue hills to mattapan square.

\section*{Survey \#262 (3/23/2018)}
8. "as a milton resident i drive on 138 all the time. I try to avoid using 138 in the evenings due to traffic congestion.

Survey \#265 (3/23/2018)
2. Tucker school area, sometimes no crossing guard for kids and parents.
4. Need crosswalks and pedestrian activated light at 138 and brush hill road, need enforcement of no left turn going north at brush hill road or a left turn signal.
8. "brush hill road pedestrian crossing and crosswalk.

Survey \#269 (3/23/2018)
7. Increase police presence to subdue aggressive driving.
8. Blue hills ski area can be a nightmare during the winter.

Survey \#270 (3/23/2018)
6. None, the issue relates to safety for drivers, not bikers.
7. The road needs to be reevaluated to reduce deadly crashes, possibly by reducing to 1 lane each way with a central turn lane (reducing multiple lanes of high speed traffic).

\section*{Survey \#271 (3/23/2018)}
8. Shoulder road conditions can be difficult; pot holes, rain/water pooling, debris, and markings.

Survey \#272 (3/23/2018)
6. Specifically at brook road and 138; automotive speeding traffic to make the light, backup traffic to make left turn
8. The only truck (heavy vehicle), and other traffic pass-through access from 138 to route 28 is at brook road. There is heavy traffic at this intersection especially with all the trucks making the turn onto this one lane, heavily congested/populated street. The traffic from brook rd (starting at blue hills parkway) often backs up onto and up route 138, especially at rush hour.

Survey \#275 (3/23/2018)
7. Improve timing of lights at both royal and brush hill

Survey \#279 (3/23/2018)
3. The largest problem is there are too many vehicles traveling at ridiculously fast speeds.

\section*{Survey \#281 (3/23/2018)}
8. With the rise of technology and awareness, this road has become a pass through for boston to i-95... Congestion especially on fridays is brutal... I'm not sure how to solve...perhaps resident stickers? More hourly restrictions for usage

\section*{Survey \#285 (3/23/2018)}
8. Crossing in blue hills reservation from one section to other on either side of 138

Survey \#286 (3/23/2018)
8. Every intersection with traffic lights needs to have a delayed green from the side streets because people run the red lights on 138 all the time

Survey \#287 (3/23/2018)
7. Widening the roads in milton to add left hand turns will just make milton more of a cut through town. Slow traffic down, plant trees (traffic calming measure) add safe biking and walking routes as well as more public transportation.
8. Slow traffic down! Milton is a cut through traffic town cars need to slow down!!! Add trees etc and safe off the road walking and biking options.

Survey \#288 (3/23/2018)
8. There are no side walks between bradlee and robbins. Traffic especially from curry college to blue hill terrace often greatly exceeds speed limits. The congestion is so bad between 3pm and 6pm from curry college to royal st that the road is virtually unusable. Traffic coming from brush hill road onto rt 138 take right turns on red into oncoming traffic and without coming to a stop.
\begin{tabular}{|l} 
Survey \#292 (3/23/2018) \\
7. Need left hand turn signal at brush hill and blue hill \\
Survey \#293 (3/23/2018) \\
7. Addition of sidewalks beyond robbins st (going towards canton) \\
Survey \#294 (3/23/2018) \\
3. Big trucks parked at intersection totally block vision 100\% when \\
trying to get onto rt 138 from side streets; cars go too fast as well on rt \\
138. \\
4. N/a, i do not walk or bike on this crazy street, rt 138 \\
7. Do not add left-turn lanes...it is the side streets that need to figure \\
out access to rt 138 ! \\
8. I feel i have addressed all concerns i can think of at the moment. \\
\hline Survey \#295 (3/23/2018) \\
6. Tucker school has kids who walk and bike to school bus 138. \\
3. Every morning i hesitate before venturing onto blue hill ave when \\
the light changes to green due to aggressive drivers who run red \\
lights. They may not value the lives they are endangering by doing so. \\
However, i want to venture out safely without fear of being hit. \\
8. Lighting, bike lanes, slowing the speed of traffic. \\
Survey \#300 (3/23/2018) \\
8. The idea that milton was ever voted as second best town to live in in \\
america a few times was laughable. I feel trapped living in milton next \\
to route 138 because it has no sidewalks. I would never feel \\
comfortable walking a dog around milton street, canton street, route \\
138...just pick a street. \\
\hline Survey \#299 (3/23/2018) \\
\hline
\end{tabular}

\section*{Survey \#302 (3/23/2018)}
4. I live at the corner of cheever st. And 138, and often cross there with my children. I find the crosswalk light responsive, however the stop line for vehicles is not clearly marked, and cars often will stop well beyond the stop line. I have also seen people run this light many times particularly when heading southbound, coming up over the hill. I have almost been hit while carrying/strolling my children multiple times, and once returned from bringing my daughter to pre-school to find an accident scene in the crosswalk i had been in just moments before. Residents often don't shovel or rake access to ramps and crosswalk lights.
7. Better speed control (people drive like they're still on the highway) and more obviously visible crosswalks!
8. Per above, the cheever/blue hills terrace/138 intersection is especially treacherous for crossing as a pedestrian - particularly because it's an unusually shaped intersection and cars often don't stop at the proper stop line or simply run through the light. At a minimum, please re-paint the stop line in the southbound lane to make the proper stop area more obvious. Lack of sidewalks after amor road prevent me from walking along 138 without having to cross to the other side.

\section*{Survey \#304 (3/23/2018)}
7. Bring the boston subway closer to the center of milton.

Survey \#310 (3/23/2018)
8. Left turn lane at neponset valley parkway when proceeding toward milton/mattapan and better sidewalks and crossings near the blue hills reservation and blue hills trail museum. Speed limits more clearly marked throughout.

Survey \#311 (3/23/2018)
8. Southbound traffic in the evening can be very bad. Most of this traffic is headed for the i93 junction in canton.

\section*{Survey \#312 (3/23/2018)}
6. From mattapan to the blue hills in canton is 4 miles that \(i\) would like to access safely for walking and biking.
8. The number of semi trucks that use this route into boston should be considered when developing the area.

\section*{Survey \#315 (3/23/2018)}
7. Not really any destination close-by, so rarely walk. Generally used as a route to hwy. So not walking that far. Have walked to curry, about 3.5 miles rt , and some areas without sidewalks were dangerous.
8. Adding more destinations close enough to walk to would be the only reason/improvement that would get me to walk on that road.


Survey \#345 (3/24/2018)
8. Traffic moves very fast with high volume and no dedicated bike lane only shoulder. A rumble strip between drivers lane and well marked bike lane would be awesome. Narrow the driver lane should help slow speed down.

\section*{Survey \#346 (3/24/2018)}
3. Not crashes, people driving too fast, trying to inappropriately pass, being on their phones.
4. "138 connects the city to blue hills, the region's most important "wild space" for outdoor recreation and the roadway there is virtually no way to access it by walking, running or cycling unless you want to risk your life with the insane way people drive through there. Which i have done. There needs to be a dedicated, physically protected way to move non vehicular traffic. And traffic calming ' \(€\) people are driving far too fast. More public transit would also be welcome. Turning very road in mass into i-95 is shortsighted.

Survey \#348 (3/24/2018)
3. High volume is only encountered at commuter rush hour

Survey \#349 (3/24/2018)
3. Intersetions of neponset valley parkway and brush hill road turning into south bound lane at these intersections slowing the traffic back on 138.
6. See above about neponset valley road and brush hill road right hand turns onto south bound 138.
7. Light on neponset valley and 138 road with no right on red signs, put up no right on red at brush hill road and 138
8. Light on neponset valley and 138 road with no right on red signs, put up no right on red at brush hill road and 138

Survey \#352 (3/24/2018)
3. The closer you get to 95 intersecetion the worse traffic gets, but all lights are long
7. Ban trucks coming off of 95- dangerous and cause congestion

Survey \#354 (3/24/2018)
2. Mostly from neponset valley parkway, into stoughton
3. During "rush hour" times it can take about an hour to get from neposet valley parkway/rt 138, through 2 traffic lights to the highway exit
8. The traffic congestion is getting out of control. It shouldn't take 45 \(\min\) to an hour to drive a mile \& a half. It's super frustrating for drivers, and i'm guessing this is leading to fender benders because of driver frustration. Also, coming back from stoughton toward hyde park, just before blue hills, where 2 lakes merge into 1 lane. This is a problem area. Nobody wants to merge and drivers get very aggressive.

Survey \#356 (3/24/2018)
8. Way too much congestion!...the waits along rte. 138 during late afternoon and drive home hours are horrific.

Survey \#357 (3/24/2018)
4. What percent of travelers on 138 are bicyclists? Less tha \(\mathbf{1 \%}\)
8. Looks like this study is gearing up for an outcome pushing for bike lanes and sidewalks. A good and noble idea, but a small percentage of users. I suggest focusing on better lighting, signage, traffic safety enforcement

Survey \#360 (3/24/2018)
8. Cars on 138 very often run red lights so cross traffic lights seem very quick as cars have to hesitate before crossing 138 despite having a green light

Survey \#362 (3/24/2018)
3. People speed, follow too closely. They treat it as a high speed highway.
4. Snow not cleared off sidewalks, so have to walk in road with extremely fast vehicles. Cars don't stop when i cross at a crosswalk. I think they don't think of it as a road that pedestrians use and seem surprised to see a pedestrian trying to cross.
7. Slow down vehicle traffic and make pedestrian crossings safer.
8. The crossing by tucker school is the one that \(i\) use the most. I see children crossing often at this and nearby pedestrian crossings in the direction away from mattapan, and cars don't seem to stop. Often 4 or 5 cars will pass me before one will stop. If there were some traffic slowing devices or enforcement of speeding laws and stopping for pedestrians or something along those lines, \(i\) think that would help. If there was some way to signal to drivers that this road is not a high speed highway that would help as well.


Survey \#387 (3/24/2018)
8. This road has become too congested and people drive far too fast and are very reckless. It's a huge problem at rush hour and the traffic volume seems to only be increasing

Survey \#388 (3/24/2018)
8. Road should be widened to two lanes approaching central st. Have had many drivers tailgating as i slow to make the turn.

\section*{Survey \#389 (3/24/2018)}
7. Shuttle service to mattapan station would be awesome.
8. Intersection with canton. It's such a bottleneck. Please improve?

\section*{Survey \#393 (3/24/2018)}
8. Atherton st. At the firehouse has frequent crashes. Firehouse down to the ski slopes gets all backed up to a standstill practically everyday at rush hours or if there is an accident. People use this road to cut through to the highway. Number of loud trucks is out of control especially in the wee hours of the night. I grew up right on rt 138 and parent still live there. They can't even get out of their driveway now much of the time and the dirt from the traffic and noise from trucks and motorcycles at night and early am is awful and keeps them from sleeping.

Survey \#396 (3/24/2018)
8. Blinded when entering rt. 138 for cars jumping the lights

Survey \#398 (3/24/2018)
8. I think there needs to be some sort of pedestrian crossing light or flashing light at oak st., where the kids cross for school. I've seen cars try to pass on the right when the crossing guard has traffic stopped, and almost hit a kid stepping off the sidewalk!

Survey \#399 (3/24/2018)
7. Balance royal st. Traffic lights so that royal st wait (backup) is same as the rte. 138 vehicles
8. Traffic lights must favor rte. 138 (the arterial) flow, even if side streets get backed up. It is wrong to phase the traffic lights to exit five or so cars from royal st. While backing 138 southbound volume to neponset valley parkway..

\section*{Survey \#403 (3/24/2018)}
8. 1) change speed limit. Why is is 45 mph after robbins, heading toward mattapan? That is a very populated area with a lot of side streets. When pulling out of side streets the line of sight is reduced due to people parking on blue hill. 2) there should a nb turning lane into curry college. 3) there should be a nb turning lane into neoponset pkwy. 4) when there is standstill traffic (primarily sb in evening) drivers block the side roads and traffic light intersections. 5) it would be nice to have defined bus stops, where cars can't park so the bus can pull aside.

\section*{Survey \#404 (3/24/2018)}
8. Streetlight bulb replacement in a timely fashion. As a middle-and woman who commutes via the trolley, the walk home is treacherous in the dark of winter. Also please replace the hydrant that is in the middle of 5he very narrow sidewalk and forces pedestrians to choose between the street and the untrimmed hedges.

\section*{Survey \#417 (3/24/2018)}
8. Southbound approaching rte128/93 the traffic is real bad. It needs to be moved much better. The wait in both directions is bad but southbound is rediculous. Please do something for a better, safer, easier and faster flow.

Survey \#420 (3/25/2018)
3. Speed of vehicles. Also, turning in and out of neponsett pkwy

\section*{Survey \#421 (3/25/2018)}
1. I would like to be a bicyclist but feel the road is too unsafe for biking
8. There are many problems along 138 for drivers, pedestrians, and bicyclists, and i hope solutions are identified that can make the experience safer for everyone. However, i also don't want 138 to become more of a highway than it is already. Sections of 138 run beside and/or through the blue hills reservation and it is important to maintain the beauty of the area. For instance, no trees should be removed just to make more room for traffic. In fact, more trees should be planted as they are proven to calm traffic. Additionally, any work done should not lead to more animal deaths on the roads. Countless deer, raccoons, possums, and squirrels die along these sections of route 138. In other words, solutions that take into account the unique natural area as well as human safety should be sought.

Survey \#426 (3/25/2018)
7. Signage or flashing crossing light for parent/children crossing to get to tucker school.
8. It is very unsafe to cross at oak street to get to school. Someone is going to get hurt unless this crossing area gets a flashing light or something to warn drivers that there are people crossing.

Survey \#427 (3/25/2018)
7. Flyovers and on/off ramps for local traffic. There should be parts that are limited access from side streets so that traffic can quickly move north/south, separately from local/pedestrians. Like parts of route 9 in newton

Survey \#428 (3/25/2018)
8. The turn at neponset valley parkway, exits of blue hills parking lots

Survey \#430 (3/25/2018)
2. Milton st./dollar lane where there are many accidents.
6. Especially milton st./dollar lane area. From curry college to the blue hills needs to be redone.
8. Milton st./dollar lane continual crashes, and the massive line of traffic that forms heading to 95 from 2pm-7pm.

Survey \#431 (3/25/2018)
6. Especially milton st./dollar lane - curry on past the blue hills.
8. Milton st./dollar lane from 2pm-7pm headed toward 95 is ridiculous.

\section*{Survey \#434 (3/25/2018)}
6. Route 138 is a congested and poorly engineered state highway.

Adding accommodations for pedestrians and bicyclists is not a safe or smart idea. Traffic backs up daily for miles, beginning at the poorly timed signals at the canton gas stations.
7. Since the traffic signals were installed at the canton gas stations a few years ago, backups have increased by several miles in both directions. The deadly "climbing lane" heading north just after the gas stations was a poor decision - i travel this road at least once daily, and cannot believe the lack of merging signs, painted roadway lines, etc. That leads to the game of "chicken" with merging lanes. Whatever the reason for this lane drop, by allowing a maximum of 5 extra cars to exit the intersection and climb into this lane is offset by the road rage and inconsiderate drivers that are experienced here.
8. Having the long red light for north/south traffic at royall st intersection is infuriating for drivers stacked back for miles, while allowing multiple right/left/straight arrows allow minimum volume of traffic - sometimes one single car - to halt the majority of traffic volume through this intersection. The traffic backups for the accommodation of a few cars makes absolutely no sense here. Royall should have another exit or entrance elsewhere on 138 - not necessarily in an intersection with multiple retail and gas stations congesting this area. Has anyone ever measured the miles that 138 backs up on any given weekday for several hours each afternoon?

\section*{Survey \#435 (3/25/2018)}
8. The lights at 138 \& royall st. Need to be adjusted to allow 138 south traffic to move more freely, easing backups along 138 although making royall st. Vehicles wait longer.

\section*{Survey \#436 (3/25/2018)}
3. Being passed on the left by tractor trailers, speeding, drunk drivers
7. Local law enforcement actually pulling people over
8. Between brook rd and 28 (mattapan square) is the worst part. Trucks have driven into homes, cars into fences. You can not park on the side of the road in that area - unless you want a new car.

\section*{Survey \#437 (3/25/2018)}
7. Reduce side street congestion on robbins street. It is a high speed cut through.
8. Lower speeds and reduce congestion approaching the blue hills area.

Survey \#443 (3/25/2018)
4. Sidewalks are not available on both sides of the parkway. Poor lighting makes it dangerous to cross. High speed limits in residential areas
8. Better lighting. Reduce speed limit from 45 mph in residential areas especially between royall and blue hills parkway. Sidewalks on both sides.

Survey \#445 (3/25/2018)
1. It backs up all the way from route 128 almost to atherton for most of the afternoon."
8. Street signs over road when approaching major intersections with the name of the cross street.

Survey \#447 (3/25/2018)
7. Add a "no jake brake" zone for big trucks to keep road noise at a minimum.
8. Noise and congestion, commuters using the entire corridor as a "cut thru" to get to and from boston

Survey \#449 (3/25/2018)
8. My highest concern for blue hills ave is that my children and \(i\) are not able to safely cross to the tucker school. Oak street is closed at school pick up and even with a crossing guard there are aggressive drivers that place all the children and adults in danger.

Survey \#451 (3/25/2018)
1. I am a recreational walker and occasionally have to cross rte. 138.

Very dangerous with volume and velocity of traffic, depending on time of day.
3. I obey speed limits in the area. Aggressive drivers have passed me on rte. 138 (and canton avenue!) Several times. Curry college entrance is a problem -- turning traffic -- and excessive speedinglaggression of its commuters
4. Generally, i avoid walking routes that cross 138 bc of these issues -sadly, accessing dcr sidewalks on neponset valley parkway is extremely hazardous!
5. I am not a cyclist but might be tempted if safe provisions were made for it.
6. Problem areas for all accessibility: thacher montessori, blue hills reservation trails (royall street to canton ave.); fuller village; curry college; atherton fire station, delphi academy, concord baptist church, neponset parkway intersection
7. I am not a traffic engineer but please consider additional traffic lights, flashing speed-limit signs, and pedestrian-activated / flashing crossing signs
8. Problem areas for all accessibility: thacher montessori school, blue hills reservation trails (royall street to canton ave.); fuller village; curry college; atherton fire station, delphi academy, concord baptist church, neponset parkway/green street/brush hill road intersections. Why is traffic congestion so toxic at p.m. Rush hour south-bound? Ned corcoran (local attorney) claims it is because traffic lights are not properly synchronized --- really?!

Survey \#453 (3/25/2018)
8. Heading west on 138 toward canton is always extremely slow particularly through lights at brish hill road and lights at royall street. It's awful at afternoon rush hour.

Survey \#457 (3/25/2018)
3. I actually feel like the section between royal st. And canton ave./brush hill rd. Is not bad at all.

\section*{Survey \#459 (3/25/2018)}
6. None. Route 138 is too narrow to accommodate a bike and pedestrian lane. Doing so could limit the ability to bypass turning vehicles and exacerbate the traffic issue.
8. Smarter traffic lights would be great to allow more traffic to pass. It may also prevent the aggressiveness of drivers trying to turn onto 138 Also, citations to drivers who block intersections would be helpful.

\section*{Survey \#462 (3/26/2018)}
4. I don't believe it is safe to walk or bicycle on route 138

Survey \#463 (3/26/2018)
2. To the blue hills or to canton or to get on 128 to westwood
8. Cars fly and tailgate, dangerous at times...those on bikes need their own space- not safe

Survey \#466 (3/26/2018)
4. Along with vehicle drivers there are also cyclists who aggravate the issues with their own inconsiderate actions.
5. Cycling less on it each year because of speed of cars but especially large trucks.

Survey \#470 (3/26/2018)
4. When coming off the neponset trail, how are you supposed to go south on 138 / blue hills parkway? It's not very clear or easy transission.
5. I tend to drive more than ride a bike on 138 save for the early connector from mattapan to blue hills parkway.

Survey \#472 (3/26/2018)
3. Numerous potholes and construction at inconvenient point on the road
8. Improve the general congestion that is found in blue hill road from 4 7 pm , add left turn lanes, and accommodate space for bikers and pedestrians by creating better sidewalks and shoulders.

Survey \#479 (3/26/2018)
4. Bicycles in the way of traffic, bad behavior of bicycle riders, probably due to insufficient space for bicycle traffic. Separate off road path should be created away from vehicle traffic.

Survey \#480 (3/27/2018)
3. Bicyclists are not vehicles nor pedestrians. They need to obey the rules of the road not when it's just convenient for them

Survey \#481 (3/27/2018)
8. Mail a flyer out about bicyclists obey the rules of the road. The led lights might last longer or save the town money but they are poor lighting

Survey \#482 (3/27/2018)
3. In my car taking my kids to blue hills ski area - getting from canton ave. On to 138 at brush hill rd crossing. Great to have an arrow. Great if 138 cars did not go in to the intersection when teh light is red!. On my bicycle, great to have bike lanes painted on the shoulder and have the shoulder swept to keep broken glass from giving my a flat tire.
4. During traffic times i cannot make a left turn from green st north bound. Probably no solution.
8. Since cars leaving blue hills ski area are supposed to go right, anyone who wants to go south on 138 needs to go to the brush hill rd. Intersection via canton ave. So, make sure that intersection works for those cars. Now they compete to turn with cars comign the other way on brush hill rd and cars on 138 block the intersection during heavy traffic red lights. It's very stressful.

Survey \#484 (3/27/2018)
4. Crossing 138 from green street to go north, there should be a pedestrian crossing light.

Survey \#486 (3/27/2018)
1. I have 3 children under the age of 10 who walk to school on 138
2. The sections don't all make sense to me. Our family uses the section between cheever/blue hill terrace and the intersection with blue hills parkway at the mattapan/milton line
3. My 10 year old sometimes walks to and from school by herself. She has to cross rte 138 at oak street. There are no signs warning drivers that a school is there and even when the crossing guard is present, cars don't always stop. We have been in the crosswalk and had cars pass the stopped vehicules at high speed. It's only a matter of time before a child gets hit.
4. The sidwalk on the east side of 138 is narrow and bumpy with tree roots. Some residents have overgrown landscape trees that obstruct the sidewalk. It's impossible in some places for one adult and one child to walk side by side ( near churchill street)
5. There really should be a light at oak street and signaling that there is an elementary school around the corner. The other concern is that on the east side on craig street, there is a speed limit sign that says 45. So drivers speed up and have trouble slowing down when they get to the school. How is the increased speed limit ok in the middle of a town? Also, i can't recall a good sidewalk near curry college and atherton. I live close enough i could bike to the blue hills reservation but it really isn't possible safely right now.
8. I do not feel that it is safe at this time for my children to walk along rte 138 to school. Cars are accelerating as they get closer- not slowing down, there is no signaling and no crosswalk by the school. Further south, there is no sidewalk or bike lane- making access to the blue hills reservation by foot or bike impossible.

Survey \#487 (3/27/2018)
4. Terribly unsafe attempting to cross 138 from green st to lot across the street. Which i do several times a week to run in the blue hills. I reside on green st.
8. Please add safe crosswalks between parking areas across 138 to access blue hill and little blue hiking areas.

Survey \#488 (3/27/2018)
1. Many crashes in our yard- total one of our vehicles

Survey \#491 (3/28/2018)
5. No one ploughs the snow from the sidewalks further up. Like between amor and robbins.
8. Why does 138 not have a legitimate mbta bus? There is the subsidiary bus but its not easily recognisable, not trackable on the mbta apps, only runs once an hour, there are no bus stops. With the coming blue hill ave commuter rail train it would be nice to get to mattapan on a regular, easily predictable, frequent bus.

Survey \#493 (3/28/2018)
8. Would like a more frequent and legit bus that runs more than once an hour and can be tracked on apps. Would be nice to see sidewalk clearing of snow and over grown foliage.

Survey \#495 (3/28/2018)
8. There really needs to be a way to cross 138 near the trailside museum. Particularly at green street. The area is supposed to be for, and promote, hiking and outdoor activities and yet doesn't allow for that in a safe way. Please add a crosswalk and slow traffic by green street!!

Survey \#497 (3/28/2018)
4. Cars speeding. Cars coming into shoulder due to being on cell phone.
6. 138 and neponset valley is a particularly dangerous interesection when riding on a bike. Either direction.

Survey \#500 (3/29/2018)
3. Traveling southbound in the early morning, cars routinely pass me in no-passing zones. Sometimes cars pass me on the right, endangering cyclists and pedestrians.
7. Coming from their new warehouse in hyde park, trucks from katsiroubas produce routinely park along the side of the road southbound, early mornings, with drivers picking up coffee at dunkin donuts. They are blocking the right travel lane daily.
8. Mass dot's planned intersection improvement at neponset valley parkway would impair northbound cyclists with a very narrow lane and impatient drivers swerving around left-turning traffic. Mass dot restriped the lanes here a few years ago and safety was greatly impaired when southbound travel lanes did not align with northbound lanes. My concerns were addressed to milton police who had mass dot change the lane striping.

Survey \#502 (3/30/2018)
1. If there were a way to prevent drivers from cutting to the right to pass on 138, that would be great."

Survey \#504 (3/30/2018)
3. People do not care for cyclists and do not give enough room on the road

Survey \#506 (3/30/2018)
3. Just last week an angry driver was tailgating us on 138 and passed in front

Survey \#509 (3/30/2018)
1. Would love to see this become more pedestrian and bike friendly and use some traffic calming measures.
5. Unpleasant to walk. There are no street trees. It feels very highway like, not residential. The roadway is too wide. It can be narrowed quite a bit and still get the same volume of traffic through. Need traffic calming measures.
7. We would like traffic cameras on the lights that give tickets to cars for speeding.
8. "there is a large need for a complete streets implementation from robbins street towards the blue hills parkway in mattapan, that would connect to the dcr bikeway as well as pleasant walking experiences down here as well.

\section*{Survey \#512 (3/31/2018)}
2. I have lived on a side street that directly connects to route 138 for 27 years and use this corridor many times per day.
3. Cars racing through red lights at crosswalk in front of the concord baptist while pedestrians are attempting to cross this main street. I was also rear-ended while stopped to turn onto my side street and nearly killed by a car going 55mph claiming he did not see me during daylight hours with no adverse weather conditions. My car was pushed across the opposite lane into oncoming traffic.
4. We were nearly hit walking on the sidewalk by a speeding car that lost control and came up over the curve. We have had multiple close calls using the crosswalk lights when cars don't stop.
7. Restrict commercial development on this already overburdened main road and the impact of more lights and heavy traffic turning on/off this busy roadway. More bus service and shuttles connecting to mattapan, hyde park and e milton enabling local residence and college students other options besides driving.
8. Absolutely a signal cross walk at the entrance to the side street for tucker school!!! Electronic speed monitoring devices that alert drivers to the speed limit and their traveling speed. Repair sidewalks. Move the signal light box higher on the pole at the crosswalk at concord baptist. The current height is a hazard for children on bicycles especially without helmets.

Survey \#513 (3/31/2018)
2. I have lived on a side street off route 138 for almost 30 years and travel this corridor many times per day.
3. Cars passing moving traffic on the right especially at rush hour. Log backups preventing us from exiting our side street. I was injured when a car going 55 mph rear ended me and pushed me into oncoming traffic as i waited on route 138 to turn onto my street.
4. Road grit and trash including glass that is builds up on sidewalks and to the curb.
5. We were nearly hit walking on the sidewalk by a speeding car that lost control and came up over the curve. We have had to run to avoid cars racing through the red light at the signalized cross walk.
7. Absolutely a signalized cross walk at tucker school!!! Bus \& shuttle service to mattapan, hyde park and east milton accessible to local residents and college students in an effort to decrease vehicle congestion.
8. Absolutely a signalized crossing at tucker school and improved signal at the concord baptist church. Restricting commercial development on this already danderous and congested roadway.


\section*{Survey \#551 (4/1/2018)}
3. See people littering out their car windows - please add signs reminding of littering fines
4. Terrible to cross with children on foot or on bikes, rude, fast drivers
6. **138 \& brook rd, ****138 \& oak street/tucker elementary school entry
from 138
7. Traffic light with pedestrian crossing at 138 \& oak st/tucker elementary school - signs regarding excessive littering
8. Problems safely crossing the street with children on foot or on bikes.

\section*{Survey \#553 (4/1/2018)}
2. Unsafe crossing over to the tucker school when crossing guards are not present. Walked from my home to open house one evening and literally almost was hit by a car while i was in the crosswalk. Car in right lane stopped for me to cross, car on left sped through!! Such a scary moment!! I do not think it's an isolated incident either.
7. Add crossing signals or a light where the tucker is located. So dangerous for our children to cross when the crossing guards are not present

\section*{Survey \#556 (4/1/2018)}
3. Morning traffic, aggressive drivers are a huge safety concerns for the children
7. Add a "school zone flash" with reduced speed. People speed to much during arrival and release time. It is not sare for the kids
8. I think there should be a school zone on 138 and a turning line added to turn and drop off students so people on 138 can pass (with reduced speed). Or maybe add a traffic light

\section*{Survey \#559 (4/2/2018)}
4. "thank you for this opportunity to contribute to these efforts.

\section*{Survey \#563 (4/2/2018)}
4. Blue hill ave near blue hill parkway, very narrow sidewalk due to overgrown bushes of last house on street with hydrant. This is just where blue hill ave goes to 2 lanes. It is dangerous when there are snow banks.

Survey \#569 (4/2/2018)
8. I think the stretch between bradlee rd and blue hills pkw could use more clear lane markings for driving, parking and bike lanes, as well as lowering of the speed limit. This is a very residential area and there are many kids walking/crossing roads to reach milton high or tucker elementary.

\section*{Survey \#576 (4/2/2018)}
7. Improve access to tucker school from rt 138: the cars queuing to turn right from rt 138 onto oak st at drop-off and pick-up both blocks other traffic and makes turning left on rt 138 onto oak, union, and churchill at those times of day almost impossible.

\section*{Survey \#580 (4/2/2018)}
3. Picking up my daughter after school when there are no crossing guards is extremely challenging. Drivers just don't stop.
8. The sidewalks during the winter were very poorly shoveled and it was difficult to park and walk my child into school. Crossing the street is challenging as there are no cross walks, except at tucker school, and without the crossing guards, you take your life in your hands.

Survey \#584 (4/2/2018)
1. We either drive or walk to drop-off our child at tucker elementary.
3. High volume during tucker elementary drop-off. Traffic backs up trying to turn onto oak street heading toward blue hills parkway.
8. My biggest concern for pedestrian and driver safety is in the area of tucker elementary (primarily at oak street), as well as the congestion in that area at school drop-off and pick-up.

\section*{Survey \#591 (4/2/2018)}
4. I would never bike or walk along this route. Too dangerous.

\section*{Survey \#592 (4/2/2018)}
8. Interested in seeing improvements for the children traveling to and from school. (i.e. More responsive crosswalks for pedestrians indicating they want to cross the street)

\section*{Survey \#594 (4/2/2018)}
4. Aggressive drivers do not stop even when we're in the crosswalk. I have difficulty crossing as an adult so imagine a child crossing to get to school.
5. Again, drivers refuse to stop for pedestrians in the crosswalk. Crossing 138 can be very intimidating.
8. The intersection of blue hill ave and oak st is very difficult to cross for both adults and children and since it is a school zone it would greatly benefit from some increased safety measures (flashing lights or a stop sign)!

Survey \#595 (4/2/2018)
1. Route 138 is not biker/walker friendly. Too many aggressive drivers that speed down 138.
4. It is almost impossible to cross 138. Drivers just do not stop for people even though you're in a crosswalk. As an adult, i find myself having to step out into traffic before a driver decides to stop. Completely infuriating!
5. The feeling is that 138 is for drivers only with no regard for bicyclists or walkers.
8. The intersection of blue hill ave and oak st. This is a crosswalk that is used by many people most of whom are children. It is an intersection that is used by many school children for tucker elementary school. Once the crossing guard is gone it is nearly impossible to get across (using the crosswalk!) Because the drivers just do not stop. This intersection would benefit from some more safety measures like walk signals or a stop sign.

Survey \#603 (4/3/2018)
3. Issues at delphi academy entrance during drop-off and pick-up times for kids.

Survey \#605 (4/4/2018)
3. Inconsistent speed limits that vary back \& forth too frequently.

Traffic has increased exponentially now that gps has redirected drivers away from congested se expressway, i-93/i-95. 138 is now a cut thru from boston to the south, south west as drivers have realized it cuts through from expressway to rt 128 (whatever interstate it is now called) traffic regularly backs up from royall st to milton \& atherton st. This is increased by stopped traffic trying to turn left at intersections, into curry, into blue hills ski area/trailside museum.
4. Don't need bike lanes where road almost needs to be a highway. Bike lanes are ridiculous to expect \(5-10 \mathrm{mph}\) vehicles to interact with 30-45 mph vehicles.
5. Don't need bike lanes where road almost needs to be a highway. Bike lanes are ridiculous to expect \(5-10 \mathrm{mph}\) vehicles to interact with 30-45 mph vehicles. Narrowing vehicle space for a couple dozen bikers who might use a road in the course of a year is simply a waste of time \& money and unsafe for all involved.
6. Don't need bike lanes where road almost needs to be a highway. Bike lanes are ridiculous to expect \(5-10 \mathrm{mph}\) vehicles to interact with 30-45 mph vehicles. Narrowing vehicle space for a couple dozen bikers who might use a road in the course of a year is simply a waste of time \& money and unsafe for all involved. Bike lanes on blue hills parkway were stupid, on rt 138 would be insane.
7. Rt. 138 must be improved for vehicle traffic \& adding accomodations for a handful of pedestrians \& bicyclists that are infrequently in the area by altering lanes where vehicles are all the time is equivalent to narrowing sidewalks to one lane in order to widen traffic lanes.
8. Streets that intesect 138 from robbins st to parkway are often at an angle easing left turn entrance to the side street if coming out of mattapan, but also making right turns onto side streets more difficult, especially when the corners are not plowed. Theses angled streets are Survey \#607 (4/4/2018)
3. For cycling - lots of debris on the road shoulders

Survey \#609 (4/5/2018)
8. Afternoon traffic delay making turn from canton ave. Onto 138 west heading for 128 " \(€ 20\) minutes = too long. No immediate solution comes to mind, but it's often a looooong crawl.

\section*{Survey \#614 (4/5/2018)}
3. For the short distance i drive, i rarely encounter problems.

\section*{Survey \#617 (4/5/2018)}
8. Speed limit and lights at 4-way intersections with a left turn signal

\section*{Survey \#624 (4/5/2018)}
8. The corner of blue hill parkway and blue hill ave is very problematic for pedestrians. There is a right lane for the cars so you can't walk in the road. The sidewalk is very narrow and the bushes in the area are overgrown. If it snows, pedestrians are really in danger.

\section*{Survey \#625 (4/5/2018)}
7. Focus on drop off at tucker school: both for parents/students drop off and others that are trying to go past oak but get stuck in the school traffic.

Survey \#626 (4/5/2018)
8. Turning at intersection of 138 and brush hill road. Need dedicated left from canton ave and no turn on red coming from brush hill road.

Survey \#627 (4/5/2018)
8. I don't think that route 138 need big improvements

Survey \#629 (4/5/2018)
8. The turn from canton ave to brush hill rd there is so much congestion and turning left onto 138 is an issue. Would be nice to have a shielded arrow to make the turn

\section*{Survey \#632 (4/5/2018)}
2. From unquity road to tucker elementary and down to the next traffic light to return to unquity rd. At the end of the day.
3. Safety concerns regarding children and families crossing to tucker elem schoo

Survey \#633 (4/6/2018)
6. At tucker elementary they don't even have school lights
8. There needs to be more safety for the children who go to school there cause it's extremely dangerous and i fear for my safety when i am dropping off and picking up

Survey \#638 (4/6/2018)
5. I don't live near here so i am only driving on 138.

Survey \#643 (4/6/2018)
8. "need better traffic for oak street were children cross to go to school.

\section*{Survey \#645 (4/6/2018)}
3. The outbound traffic (going towards canton) can be horrific depending on the day and time of day. I avoid it at all costs using this route for inbound travel (going towards mattapan sq).
4. Route 138 is a major route of traffic. Anyone who goes for a "bike ride" or a "stroll" is out of their mind!
5. I would never use this route for pleasure purposes. There is too much pollution for the constant automobile traffic. Anyone who goes for a "bike ride" or a "stroll" is out of their mind!
6. Only in neighborhoods that have houses facing the street and have existing sidewalks.

\footnotetext{
Survey \#646 (4/6/2018)
4. Drivers speed all the time. No crosswalks. Aggressive drivers.
8. Add pedestrian crosswalks and bike path. Difficult crossing 138 if \(i\) am walking or biking with my kids. Sidewalks are only on one side of 138 from austin str to robbins. No sidewalks on the opposite side of the street. Only 4 to 5 pedestrian crosswalks from austin to robbins. More pedestrian crosswalks speed limit signs needed.
}

\section*{Survey \#649 (4/7/2018)}
8. It's driven on as if it were a highway. The crossing by 128 is particularly scary on a bike.

Survey \#652 (4/7/2018)
8. Signal at canton ave intersection with blue hills ave

Survey \#655 (4/7/2018)
1. My sons and their friends are snowboarders and they have actually snowboarded home along rt 138 and down green st/hemenway drive. Also, i have seen many people with ski gear walking along 138 on west side attempting to cross to eat side where blue hill ski area located.
2. I live one street over from 138 opposite where the ski area is, so use this section of 138 multiple times each day.
8. There remain today road pedestrian crossing signs to warn drivers as they approached crossing in front of blue hill ski area. Prior to repaving of 138 several years ago covered the painted white street crossing lines. I called the mass. State highways dept and they said they would repaint the crossing lines. They never did. Nick vinke 617-407-4514

\section*{Survey \#657 (4/7/2018)}
7. Left turn lane at nep valley pkwy would be a good start. A left turn into the north trailside parking lot, from 138 south, can be next to impossible - even on sunday afternoon. The sight line, for traffic coming over the hill towards the parking lot is very poor.
8. The area north of blue hill river rd where 138 goes from 2 lanes to 1 lane does not provide for safe merging. Cars turning left into the park\&ride lot a little further north create another dangerous situation for traffic traveling north. A left turn lane at the main curry college entrance would also increase safety for northbound traffic.

Survey \#658 (4/7/2018)
8. "rte 138 and brush hill road.. Northbound motorists ignoring the no left turn. Eastbound motorists on brush hill turning onto 138 southbound ignoring the traffic light (this also applies to westbound motrists turning onto 138 southbound)

Survey \#662 (4/8/2018)
8. From 4-6:30 pm, it may take 30-45 minutes to travel the rte 138 corridor.

Survey \#666 (4/9/2018)
1. I use it daily to drop off kids at tucker school. Also to access route 93.
4. Pedestrian / student safety need to be enhanced at intersection of oak st., for tucker school. An extra lane, perhaps, for parents queuing up for morning drop off?
6. I don't know all the streets you list in the options. But i would request oak st. Intersection for tucker school.
7. Once again, student safety and parent drop-off lane for tucker school, at oak st. Local bus service to mattapan would be nice, too.

Survey \#669 (4/10/2018)
8. Rte. 138 is unbearable due to congested traffic during particular hours - between usually \(4-6 \mathrm{pm}\). It can take \(1 / 2\) hour to drive distance usually taking 5-10 minutes. Stay clear during that time period.

\section*{Survey \#673 (4/10/2018)}
8. Turning off rt 138 to brush hill road is a big problem because of terrible road conditions (pot holes) on brush hill rd. Calls to dpw are not helping!!

Survey \#678 (4/10/2018)
8. I am not a driver. I do often use the mattapan/cobb's corner van. I catch this van directly across 138 from the entrance to fuller blue hill campus. This is the best location and much safer and better than the intersection at light at brush hill. This has been confirmed by the van drivers. Because of my poor vision, \(i\) have to use extreme caution when crossing. A pedestrian crosswalk would really help.

Survey \#682 (4/11/2018)
7. Better timing of lights to reduce congestion in the evening hours heading south towards the highway. Coming off canton ave/dollar lane to get on 138 is a nightmare in the evenings.
8. This isn't specifically a 138 but the major intersection where blue hill ave splits to brush hill, 138 and route 28 is a cluster. The new lights and the timing has created backupson river street coming from lower mills, mattapan square is even more gridlocked and cummins highway is starting to get the same gridlock as more and more people are using that. I know it's a mass dot, dcr and city of boston problem but if you could get together and review that intersection that would be amazing and appreciated.

\section*{Survey \#687 (4/11/2018)}
8. Traveling along 138 at commuter hours there is lots of traffic and it is very very slow-only one lane light at corner of brush hill and 138. It only allows 3-4 cars when it turns green.

Survey \#688 (4/11/2018)
7. Mark road lines in the center and sides. Use same paint material they did at beginning of crossover to fuller village and brush hill ave, from canton ave.

\section*{Survey \#694 (4/11/2018)}
8. Widen the road into a 4 lane highway-2 on each lane; also a service lane when it's possible. Get into the 21st century!

\section*{Survey \#697 (4/11/2018)}
1. Very heavy traffic from 2-5pm-long waits on \(\mathbf{m - 1 2 8}\) to get to fuller village.
2. 138 to caroline area to parking at foster bldg at blue hill

Survey \#699 (4/11/2018)
8. Too much traffic for only 2 lanes; need to slow traffic down, lower speed limits after leaving fuller village taking right; this intersection is very bad; no lights; only a stop sign.

Survey \#702 (4/12/2018)
8. Canton avenue is a narrow country road winding with curves creating several hidden now dangerous driveways. \(\mathbf{3 0}\) mph signs are ignored. Implement physical traffic bumps or rumble strips and signs (warning hidden driveway) located between southern entrance and atherton street.

Survey \#706 (4/13/2018)
4. Cars parked in bike lanes! Church parking along "no parking" areas/bikelane on weekends

Survey \#708 (4/13/2018)
8. Canton ave.. Is a winding narrow country road now being used as a speedway, alternative to \(138,30 \mathrm{mph}\) signs are ignored. Driveways obscured by curves are now dangerous. Implement physical traffic calming rumble strips and "caution hidden driveway" signs between southern entrance from 138 and atherton street. Intersection of brush hill rd and neponset valley prkway is also dangerous because of curves and speeding traffic. Implement a traffic light with timing adjusted to traffic flow.

Survey \#709 (4/13/2018)
1. I would definitely be a pedestrian and possibly bicyclist too but it's far too dangerous where i live near the intersection with brush hill. I even drive to go across the street to the blue hills reservation. There aren't even crosswalks or sidewalks.
4. The situation is so bad that \(i\) am essentially prevented from walking and biking.
8. Make it possible to walk between fuller village and the blue hills reservation. Also to cross from fuller village to shuttle going towards mattapan. Reduce traffic and/or improve flow on 138 between dollar lane and 95, also on brush hill rd and canton ave coming into 138. Create noise barriers from surrey lane to brush hill. Fix brush hill rd. (it's in a state of serious deterioration).

Survey \#711 (4/13/2018)
3. I see way too many aggressive drivers. I have seen on many occasions cars passing other cars on the shoulder or across the double lines.

Survey \#714 (4/15/2018)
8. Any improvements should include enforcement of traffic rules for both motorists and bicyclist. Currently, bicyclists often travel between traffic lanes and ignore stop signs.

\section*{Survey \#715 (4/16/2018)}
4. Bike lane/shoulder often have lots of debris (rocks, branches, trash, etc). Also, storm drains, grates, and manhole covers are often located in the shoulder/bike lane.
\begin{tabular}{|l} 
Survey \#725 (4/17/2018) \\
8. Extend 2 lane road going north beyond base of blue hill traffic lights \\
to canton ave exit \\
Survey \#728 (4/17/2018) \\
3. High traffic from brush hill road to 138 between 3:30 pm and 6:30 pm \\
Survey \#730 (4/17/2018) \\
3. Traffic from canton ave to brush hill road and then taking left onto \\
138. Help \\
Survey \#733 (4/18/2018) \\
3. Today i witnessed a cyclist get hit by a car (prius) that was turning \\
into the park \& ride east of dunkin donuts, 4/13/18 around 6pm. \\
hills museum and hiking trails, nor is there any sidewalk to walk on. \\
Also, there are no cross walks on brush hill/138 light (and no walking \\
light either). We are only .4 miles from blue hills parking lot but cannot \\
walk there! \\
Right now it's is too dangerous! \\
3. No place to walk as pedestrian from brush hill to blue hills \\
musuem/other hiking areas. \\
3. Hould like to be a pedestrian from brush hill road to the blue hills \\
reservation but there is nowhere to safely cross 138 or walk. \\
hiking trails in the blue hills. \\
Survey \#737 (4/23/2018) \\
7. Improve safety for pedestrians and horseback riding \\
accommodations. \\
5. Poor connectivity between blue hills hiking area and paths to royall \\
street equestrian workout ring. \\
Survey \#734 (4/20/2018) \\
not comply with safety laws around equines. \\
\hline Survey \#735 (4/18/2018) \\
\hline
\end{tabular}

\section*{Survey \#738 (4/23/2018)}
3. It feels dangerous driving on, especially at the signaled intersections but also just in general. Neponset valley intersection needs traffic signals and better turn lane to make traffic move more safely and efficiently.
8. Neponset valley prkwy intersection needs to be improved with signals and turn lanes. Visible cross walks/flashing lights near blue hills trailside museum and curry college. Speed restrictions through residential sections and a guardrail protected bike lane along more secluded portion.

\section*{Survey \#740 (4/24/2018)}
6. "students at milton high school, pierce middle school, and tucker school (elementary school) who live west of route 138 are at great risk.

Survey \#742 (4/26/2018)
2. Between dollar lane and upper canton avenue. My child attends thacher montessori school at 1425 blue hill ave.
7. Brush hill and blue hill ave intersection - it is very dangerous trying to take a left on to blue hill ave. This intersection requires cars taking a left from brush hill onto blue hill ave going toward 128 and cars taking a right toward 128 to merge. If the cars taking a left yield, they will never get through the light. Having no left arrow requires drivers to be aggressive in order to get through the intersection. Also, taking a right out of thacher montessori school (where my child goes) after this intersection, is very dangerous. I then have to take an almost immediate right onto the canton ave. There should be a wider section of road there for cars behind people taking a right to safely go around so traffic isn't backed up and to prevent stopped cars waiting to turn right from being rear-ended. Also, there should be an opening in the double yellow line on blue hill ave. Where cars can turn right onto canton ave, so it's obvious that it's legal to make a right here. Finally, there should be a light at the termination of neoponsite valley parkway to assist cars turning on from blue hill ave and those turning right onto blue hill ave from the parkway. Cars turning on to blue hill ave never stop at the stop sign and i've had to slam on my breaks even going under the speed limit to avoid an accident here.

\section*{Survey \#743 (4/27/2018)}
8. Sidewalks along brush hill rd. Very heavy traffic volume especially near curry college and heading to truman parkway. Very dangerous to walk along!

\section*{Appendix H: MassDOT Highway Division Project Development Process}

\section*{Overview of the Project Development Process}

Transportation decision-making is complex and can be influenced by legislative mandates, environmental regulations, financial limitations, agency programmatic commitments, and partnering opportunities. Decision-makers and reviewing agencies, when consulted early and often throughout the project development process, can ensure that all participants understand the potential impact these factors can have on project implementation. Project development is the process that takes a transportation improvement from concept through construction.

The MassDOT Highway Division has developed a comprehensive project development process which is contained in Chapter 2 of the MassDOT Highway Division's Project Development and Design Guide. The eight-step process covers a range of activities extending from identification of a project need, through completion of a set of finished contract plans, to construction of the project. The sequence of decisions made through the project development process progressively narrows the project focus and, ultimately, leads to a project that addresses the identified needs. The descriptions provided below are focused on the process for a highway project, but the same basic process will need to be followed for non-highway projects as well.

\section*{1. Needs Identification}

For each of the locations at which an improvement is to be implemented, MassDOT leads an effort to define the problem, establishes project goals and objectives, and defines the scope of the planning needed for implementation. To that end, it has to complete a Project Need Form (PNF), which states in general terms the deficiencies or needs related to the transportation facility or location. The PNF documents the problems and explains why corrective action is needed. For this study, the information defining the need for the project will be drawn primarily, perhaps exclusively, from the present report. Also, at this point in the process, MassDOT meets with potential participants, such as the Metropolitan Planning Organization (MPO) and community members, to allow for an informal review of the project.

The PNF is reviewed by the MassDOT Highway Division district office whose jurisdiction includes the location of the proposed project. MassDOT also sends the PNF to the MPO, for informational purposes. The outcome of this step determines whether the project requires further planning, whether it is already well supported by prior planning studies, and, therefore, whether it is ready to move forward into the design phase, or whether it should be dismissed from further consideration.

\section*{2. Planning}

This phase will likely not be required for the implementation of the improvements proposed in this planning study, as this planning report should constitute the outcome of this step. However, in general, the purpose of this implementation step is for the project proponent to identify issues, impacts, and approvals that may need to be obtained, so that the subsequent design and permitting processes are understood.

The level of planning needed will vary widely, based on the complexity of the project. Typical tasks include: define the existing context, confirm project need, establish goals and objectives, initiate public outreach, define the project, collect data, develop and analyze alternatives, make recommendations, and provide documentation. Likely outcomes include consensus on the project definition to enable it to move forward into environmental documentation (if needed) and design, or a recommendation to delay the project or dismiss it from further consideration.

\section*{3. Project Initiation}

At this point in the process, the proponent, MassDOT Highway Division, fills out a Project Initiation Form (PIF) for each improvement, which is reviewed by its Project Review Committee (PRC) and the MPO. The PRC is composed of the Chief Engineer, each District Highway Director, and representatives of the Project Management, Environmental, Planning, Right-ofWay, Traffic, and Bridge departments, and the MassDOT Federal Aid Program Office (FAPO). The PIF documents the project type and description, summarizes the project planning process, identifies likely funding and project management responsibility, and defines a plan for interagency and public participation. First the PRC reviews and evaluates the proposed project based on the MassDOT's statewide priorities and criteria. If the result is positive, MassDOT Highway Division moves the project forward to the design phase, and to programming review by the MPO. The PRC may provide a Project Management Plan to define roles and responsibilities for subsequent steps. The MPO review includes project evaluation based on the MPO's regional priorities and criteria. The MPO may assign project evaluation criteria score, a Transportation Improvement Program (TIP) year, a tentative project category, and a tentative funding category.

\section*{4. Environmental Permitting, Design, and Right-of-Way Process}

This step has four distinct but closely integrated elements: public outreach, environmental documentation and permitting (if required), design, and right-of-way acquisition (if required). The outcome of this step is a fully designed and permitted project ready for construction. However, a project does not have to be fully designed in order for the MPO to program it in the TIP. The sections below provide more detailed information on the four elements of this step of the project development process.

\section*{Public Outreach}

Continued public outreach in the design and environmental process is essential to maintain public support for the project and to seek meaningful input on the design elements. The public outreach is often in the form of required public hearings, but can also include less formal dialogues with those interested in and affected by a proposed project.

Environmental Documentation and Permitting
The project proponent, in coordination with the Environmental Services section of the MassDOT Highway Division, will be responsible for identifying and complying with all applicable federal, state, and local environmental laws and requirements. This includes determining the appropriate project category for both the Massachusetts Environmental Protection Act (MEPA) and the National Environmental Protection Act (NEPA). Environmental documentation and permitting is often completed in conjunction with the Preliminary Design phase described below.

Design
There are three major phases of design. The first is Preliminary Design, which is also referred to as the 25-percent submission. The major components of this phase include full survey of the project area, preparation of base plans, development of basic geometric layout, development of preliminary cost estimates, and submission of a functional design report. Preliminary Design, although not required to, is often completed in conjunction with the Environmental Documentation and Permitting. The next phase is Final Design, which is also referred to as the 75-percent and \(100-\) percent submission. The major components of this phase include preparation of a subsurface exploratory plan (if required), coordination of utility relocations, development of traffic management plans through construction zones, development of final cost estimates, and refinement and finalization of the construction plans. Once Final Design is complete, a full set of Plans, Specifications, and Estimates (PS\&E) is developed for the project.

Right-of-Way Acquisition
A separate set of Right-of-Way plans are required for any project that requires land acquisition or easements. The plans must identify the existing and proposed layout lines, easements, property lines, names of property owners, and the dimensions and areas of estimated takings and easements.

\section*{5. Programming (Identification of Funding)}

Programming, which typically begins during the design phase, can actually occur at any time during the process, from planning to design. In this step, which is distinct from project initiation, the proponent requests that the MPO place the project in the region's Transportation Improvement Program (TIP). The proponent requesting the project's listing on the TIP can be the community or it can be one of the MPO member agencies (the Regional Planning Agency, MassDOT, and the Regional Transit Authority). The MPO then considers the project in terms of state and regional needs, evaluation criteria, and compliance with the regional Transportation Plan and decides whether to place it in the draft TIP for public review and then in the final TIP.

\section*{6. Procurement}

Following project design and programming of a highway project, the MassDOT Highway Division publishes a request for proposals. It then reviews the bids and awards the contract to the qualified bidder with the lowest bid.

\section*{7. Construction}

After a construction contract is awarded, MassDOT Highway Division and the contractor develop a public participation plan and a management plan for the construction process.

\section*{8. Project Assessment}

The purpose of this step is to receive constituents' comments on the project development process and the project's design elements. MassDOT Highway Division can apply what is learned in this process to future projects.

\section*{Project Development Schematic Timetable}
\begin{tabular}{|c|c|c|}
\hline Description & Schedule Influence & Typical Duration \\
\hline Step I: Problem/Need/Opportunity Identification The proponent completes a Project Need Form (PNF). This form is then reviewed by the MassDOT District office which provides guidance to the proponent on the subsequent steps of the process. & The Project Need Form has been developed so that it can be prepared quickly by the proponent, including any supporting data that is readily available. The District office shall return comments to the proponent within one month of PNF submission. & 1 to 3 months \\
\hline \begin{tabular}{l}
Step II: Planning \\
Project planning can range from agreement that the problem should be addressed through a clear solution to a detailed analysis of alternatives and their impacts.
\end{tabular} & For some projects, no planning beyond preparation of the Project Need Form is required. Some projects require a planning study centered on specific project issues associated with the proposed solution or a narrow family of alternatives. More complex projects will likely require a detailed alternatives analysis. & Project Planning Report: 3 to 24+ months \\
\hline \begin{tabular}{l}
Step III: Project Initiation \\
The proponent prepares and submits a Project Initiation Form (PIF) and a Transportation Evaluation Criteria (TEC) form in this step. The PIF and TEC are informally reviewed by the Metropolitan Planning Organization (MPO) and MassDOT District office, and formally reviewed by the PRC.
\end{tabular} & The PIF includes refinement of the preliminary information contained in the PNF. Additional information summarizing the results of the planning process, such as the Project Planning Report, are included with the PIF and TEC. The schedule is determined by PRC staff review (dependent on project complexity) and meeting schedule. & 1 to 4 months \\
\hline \begin{tabular}{l}
Step IV: Design, Environmental, and Right of Way \\
The proponent completes the project design. Concurrently, the proponent completes necessary environmental permitting analyses and files applications for permits. Any right of way needed for the project is identified and the acquisition process begins.
\end{tabular} & The schedule for this step is dependent upon the size of the project and the complexity of the design, permitting, and right-of-way issues. Design review by the MassDOT district and appropriate sections is completed in this step. & 3 to 48+ months \\
\hline \begin{tabular}{l}
Step V: Programming \\
The MPO considers the project in terms of its regional priorities and determines whether or not to include the project in the draft Regional Transportation Improvement Program (TIP) which is then made available for public comment. The TIP includes a project description and funding source.
\end{tabular} & The schedule for this step is subject to each MPO's programming cycle and meeting schedule. It is also possible that the MPO will not include a project in its Draft TIP based on its review and approval procedures. & 3 to 12+ months \\
\hline Step VI: Procurement The project is advertised for construction and a contract awarded. & Administration of competing projects can influence the advertising schedule. & 1 to 12 months \\
\hline Step VII: Construction The construction process is initiated including public notification and any anticipated public involvement. Construction continues to project completion. & The duration for this step is entirely dependent upon project complexity and phasing. & 3 to 60+ months \\
\hline Step VIII: Project Assessment The construction period is complete and project elements and processes are evaluated on a voluntary basis. & The duration for this step is dependent upon the proponent's approach to this step and any follow-up required. & 1 month \\
\hline
\end{tabular}

Source: MassDOT Highway Division Project Development and Design Guide```


[^0]:    ${ }^{1}$ An HSIP crash cluster is a location in which the number and severity of crashes-as measured on the Equivalent Property Damage Only (EPDO) index-ranks the location among the top five percent of crash clusters in the region. The EPDO method assigns weighted values to each crash based on whether the crash resulted in property damage (unweighted), injury (weighted by 5), or a fatality (weighted by 10).

[^1]:    ${ }^{2}$ Boston Region Metropolitan Planning Organization, Charting Progress to 2040: The New Long-Range Transportation Plan of the Boston Region Metropolitan Planning Organization, endorsed by the Boston Region MPO on July 30, 2015.
    ${ }^{3}$ Boston Region Metropolitan Planning Organization, Unified Planning Work Program, Federal Fiscal Year 2017, endorsed by the Boston Region Metropolitan Planning Organization on July 28, 2016.

[^2]:    ${ }^{4}$ Safety Conditions: The location has a higher-than-average crash rate for its functional class; contains a crash cluster that makes it eligible for Highway Safety Improvement Program (HSIP) funding; contains a crash location on MassDOT Highway Division's Top High Crash Locations Report; or has a significant number of pedestrian and bicycle crashes (two or more per mile).
    ${ }^{5}$ Congested Conditions: The travel time index is at least 1.3. The travel time index is the ratio of the peak-period travel time to the free-flow travel time.
    ${ }^{6}$ Multimodal Significance: The roadway carries one or more bus routes or is adjacent to a transit stop or station; the roadway supports bicycle or pedestrian activities or there is a project planned that will support these activities; there is a need to accommodate pedestrians and bicyclists and improve transit on the roadway; or there is a significant amount of truck traffic on the roadway serving regional commerce.
    ${ }^{7}$ Regional Significance: The roadway is on the National Highway System; carries a significant portion of regional traffic (Average Daily Traffic of 20,000 vehicles or more); lies within 0.5 miles of environmental-justice transportation analysis areas or zones; or is essential for the region's economic, cultural, or recreational development.
    ${ }^{8}$ Reginal Equity: To ensure that, over time, all subregions in the MPO's planning area receive support from the MPO in the form of Unified Planning Work Program planning studies, during each funding cycle MPO staff select no more than one location per subregion to study, and choose a location in a different subregion from the location studied in the preceding cycle.
    ${ }^{9}$ Implementation Potential: The study location is proposed by the jurisdictional agency or agencies for the roadway; proposed or prioritized by a Subregional group; or identified as a priority for improvement by other stakeholders.
    ${ }^{10}$ Technical Memorandum, dated May 18, 2017, to the Boston Region Metropolitan Planning Organization, Federal Fiscal Year (FFY) 2017 Priority Corridors for Long-Range Transportation Plan (LRTP) Needs Assessment: Selection of Study Locations.

[^3]:    ${ }^{11}$ This vision aligns with the aims of the Healthy Transportation Compact, a key requirement of the landmark transportation reform legislation, signed into law in June 2009, which aims to facilitate transportation decisions that balance the needs of all transportation users, expand mobility, improve public health, support a cleaner environment, and create stronger communities.

[^4]:    ${ }^{12}$ Right-of-way is defined as the land, or interest therein, acquired for or devoted to a highway.
    ${ }^{13}$ The minimum width for a sidewalk is five feet excluding the width of the curb. The measurement of a sidewalk sometimes includes the width of the curb. If this method of measurement is used, the minimum width of a sidewalk is 5.5 feet. In addition, sidewalks must have the necessary access features to comply with the federal Americans with Disabilities Act.

[^5]:    ${ }^{14}$ Data queried on MassDOT Highway Division's Project Information Database on December 26, 2017. https://www.mass.gov/service-details/massdot-project-info.
    ${ }^{15}$ Road Safety Audit, Blue Hill Avenue (Route 138) at Atherton Street/Bradlee Road and Blue Hill Avenue (Route 138) at Milton Street/Dollar Lane, MassDOT Project \#607763, prepared for Massachusetts Department of Transportation, July 7, 2015.
    ${ }^{16}$ An HSIP crash cluster is a location in which the number and severity of crashes-as measured on the Equivalent Property Damage Only (EPDO) index—ranks the location among the top five percent of crash clusters in the region. The EPDO method assigns weighted values to each crash based on whether the crash resulted in property damage (unweighted), injury (weighted by 5), or a fatality (weighted by 10 ).

[^6]:    ${ }^{17}$ Ryan Hicks and Casey-Marie Claude, Pedestrian Level-of-Service Memorandum, Technical Memorandum to the Boston Region Metropolitan Planning Organization, January 19, 2017.

[^7]:    ${ }^{18}$ Highway Safety Manual 2010, American Association of State Highway and Transportation Officials, Washington, DC, December 2010.
    ${ }^{19}$ Yuanchang Xie and Chen (Julian) Chen, Calibration of Safety Performance Functions for Massachusetts Urban and Suburban Intersections. Report prepared for Massachusetts Department of Transportation Office of Transportation Planning, March 2016.

[^8]:    ${ }^{20}$ Technical Memorandum, dated January 1, 2018, to the Massachusetts Department of Transportation, MassDOT Average Comprehensive Crash Costs.

[^9]:    ${ }^{21}$ Highway Capacity Manual 2010, Transportation Research Board of the National Academies, Washington, DC, December 2010.

[^10]:    ${ }^{22}$ Trafficware Inc., Synchro Studio 9, Synchro plus SimTraffic, Build 914, Sugar Land, Texas.

[^11]:    ${ }^{23}$ Chapter 4C: Traffic Control Signal Needs Studies, Manual on Uniform Traffic Control Devices, 2009 Edition with Revisions 1 and 2, Federal Highway Administration, US Department of Transportation, May 2012.
    ${ }^{24}$ Chapter 4F: Pedestrian Hybrid Beacons, Manual on Uniform Traffic Control Devices.

[^12]:    ${ }^{25}$ Milton Complete Streets Prioritization Plan. Retrieved March 1, 2018. http://wikimapping.com/wikimap/Milton.html.

[^13]:    ${ }^{26}$ Crash Modification Factors Clearinghouse, US Department of Transportation Federal Highway Administration, website, http://www.cmfclearinghouse.org/, August 14, 2018
    ${ }^{27}$ Chen, L., C. Chen, and R. Ewing. "The Relative Effectiveness of Pedestrian Safety Countermeasures at Urban Intersections - Lessons from a New York City Experience." Presented at the 91st Annual Meeting of the Transportation Research Board, January 22-26, Washington, DC, 2012.
    ${ }^{28}$ Alluri et al. "Statewide Analysis of Bicycle Crashes." Florida Department of Transportation (May 2017).

[^14]:    ${ }^{29}$ Elvik, R., Christensen, P., and Amundsen, A., "Speed and Road Accidents An Evaluation of the Power Model." Oslo, Norway, Transportokonomisk Institutt, (2004)
    ${ }^{30}$ Appiah et al. "Safety Effect of Dilemma-Zone Protection Using Actuated Advance Warning Systems." Transportation Research Record: Journal of the Transportation Research Board, No. 2250, Transportation Research Board of the National Academies, Washington, D.C., 2011, pp. 19-24. DOI: 10.3141/2250-03.

[^15]:    This email has been scanned for spam and viruses by Proofpoint Essentials. Click here<https://gdsprotect.cloud-protect.net/index01.php?mod_id=11\&mod_option=logitem\&mail_id=1537467000-
    dBgaTX4fy3_h\&r_address=wclark\%40townofmilton.org\&report=1> to report this email as spam.
    <image001.png>

[^16]:    ${ }^{1}$ Boston Region Metropolitan Planning Organization, Charting Progress to 2040: The New Long-Range Transportation Plan of the Boston Region Metropolitan Planning Organization, endorsed by the Boston Region MPO on July 30, 2015.

[^17]:    ${ }^{2}$ Boston Region Metropolitan Planning Organization, Unified Planning Work Program, Federal Fiscal Year 2018, endorsed by the Boston Region Metropolitan Planning Organization on June 15, 2017 and was approved by our federal partners and took effect on October 1, 2017.
    ${ }^{3}$ Karl H. Quackenbush, CTPS Executive Director, memorandum of a work program to the Boston Region Metropolitan Planning Organization, "Addressing Priority Corridors from the Long-Range Transportation Plan Needs Assessment: Federal Fiscal Year (FFY) 2017," October 19, 2017.

[^18]:    ${ }^{4}$ Ryan Hicks and Casey-Marie Claude, Boston Region Metropolitan Organization, Pedestrian Level-of-Service Memorandum, January 19, 2017.

