Low-Cost Improvements to

Express-Highway Bottleneck Locations

Low-Cost Improvements to ExpressHighway Bottleneck Locations

Project Managers
Seth Asante and Chen-Yuan Wang
Project Principal
Mark Abbott
Data Analysts
Benjamin Erban
Kathy Jacob
Graphics
Ken Dumas

Cover Design
Jane Gillis

Editor

Meghan Connolly

The preparation of this document was supported by Federal Highway Administration through
MPO 3CPL FFY2019 Contract \#105757

Central Transportation Planning Staff
Directed by the Boston Region Metropolitan
Planning Organization. The MPO is composed of state and regional agencies and authorities, and local governments.

February 2020

To request additional copies of this document or copies in an accessible format, contact:

Central Transportation Planning Staff
State Transportation Building
Ten Park Plaza, Suite 2150
Boston, Massachusetts 02116
(857) 702-3700
(617) 570-9192 (fax)
(617) 570-9193 (TTY)
ctps@ctps.org
www.bostonmpo.org

Abstract

The purpose of the Low-Cost Improvements to Express-Highway Bottleneck Locations study is to identify low-cost improvements that will help reduce congestion at freeway bottleneck locations in the Boston Metropolitan Planning Organization (MPO) region. Bottlenecks in the freeway network can occur where geometric elements, such as ramps or lane drops, restrict traffic flow and are a major contributor to recurring congestion. This study was done in cooperation with the Massachusetts Department of Transportation (MassDOT) Highway Division and the Federal Highway Administration Massachusetts Division.

Candidate locations were selected based on input from the MassDOT Highway Division and Congestion Management Process data. The screening process yielded two locations that had the potential to respond to low-cost improvement measures. These locations included:

- Interstate 93 (I-93) northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington
- l-93 southbound at the end of the high occupancy zipper lane exit between Exit 7 (Route 3) and Exit 8 (Furnace Brook Parkway) in Braintree and Quincy

Both locations regularly experience poor level of service (LOS) because of one or more freeway bottlenecks during peak travel periods. MPO staff developed lowcost improvement proposals to address each bottleneck. If implemented, the modifications would result in capacity and safety improvements on these two high-volume facilities.

This report summarizes the analyses and recommendations from the study. The report is divided into multiple chapters, with two chapters covering each study location. Each location chapter summarizes existing conditions, proposes various low-cost measures to address the bottlenecks, and evaluates the efficacy of the proposed alternatives using methodology from the Highway Capacity Manual. The report concludes with a summary of the recommendations, followed by figures that illustrate features of the proposed improvements. As an addendum, the report includes technical appendices that cite the methods used and the data applied.
TABLE OF CONTENTS PAGE
Chapter 1-Introduction 9
1.1 Introduction 9
1.2 Background 9
1.3 Purpose of Study 10
Chapter 2—Selection of Study Locations 13
2.1 Screening Criteria 14
2.2 Study Locations 14
2.2.1 Location 1: I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington 15
2.2.2 Location 2: I-93 Southbound at the End of the High Occupancy Vehicle (HOV) Zipper Lane in Quincy and Braintree 15
Chapter 3-Data Collection and Uses 17
3.1 Traffic Volume Data 17
3.2 Crash Data 17
3.3 Speed Data 17
3.4 Level of service Criteria 17
Chapter 4—Location 1: I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington 21
4.1 Existing Freeway Characteristics 21
4.1.1 Basic Freeway Section 21
4.1.2 Entrance Ramp 21
4.1.3 Exit Ramp 22
4.1.4 I-93/Route 125 Interchange 22
4.2 Problems 23
4.3 Causes 23
4.3.1 High Traffic Volume 23
4.3.2 Short Acceleration Lane 23
4.3.3 Short Deceleration Lane 24
4.3.4 Traffic Congestion from l-93 Northbound Downstream Bottleneck 24
4.4 Impacts 24
4.4.1 Crashes 24
4.4.2 Travel Speed 26
4.4.3 Level of Service 27
4.5 Improvement Alternatives 28
4.5.1 Alternative 1: Create an Auxiliary Lane for Merging and Diverging Traffic 29
4.5.2 Alternative 2: Examine Potential Improvements at the Downstream Lane Drop Location 30
4.6 Effectiveness and Cost of the Improvements 30
4.7 Recommendations 32
Chapter 5—Location 2: I-93 Southbound Segment at the End of the HOV Zipper Lane in Quincy and Braintree 33
5.1 Existing Freeway Characteristics 33
5.1.1 Basic Freeway Section 33
5.1.2 Entrance Ramps 33
5.1.3 Exit Connector 33
5.2 Problems 34
5.3 Causes 34
5.4 Previous Configuration 35
5.5 Impacts 35
5.5.1 Crashes 35
5.5.2 Travel Speed 37
5.5.3 Level of Service 37
5.6 Improvement Alternatives 39
5.6.1 Alternative 1: Lengthen the Distance for the HOV Merge 39
5.6.2 Alternative 2: Lengthen Acceleration Distance for Furnace Brook Parkway On-Ramp 39
5.6.3 Alternative 3: Alternatives 1 and 2 Combined 39
5.7 Effectiveness and Cost of the Improvements 39
5.7.1 HCS Analysis Results 39
5.7.2 VISSIM Simulation Results 42
5.7.3 Costs 42
5.8 Recommendations 43
Chapter 6-Conclusion and Next Steps 45
TABLES
Table 1 Inventory of Express-Highway Locations for Screening 13
Table 2 LOS Criteria for Basic Freeway, Merging/Diverging, and Weaving Segments 19
Table 3 Crash Summary (2012-16): Location 1-l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) 25
Table 4 LOS Analysis-Existing Conditions: Location 1-l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125). 28
Table 52030 LOS Analysis-No-Build and Improvement Alternative 1 for Location 1-I- 93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) 31
Table 6 Location 2_l-93 Southbound at the End of the HOV Zipper Lane: Five-Year Crash Summary (2012-16) 36
Table 7 Location 2_l-93 Southbound at the End of the HOV Zipper Lane: Existing Conditions LOS Analysis 38
Table 8 Location 2_-l-93 Southbound at the End of the HOV Zipper Lane: 2030 Future LOS Analysis 41
Table 9 Location 2_l-93 Southbound at the End of the HOV Zipper Lane: Traffic Simulation Analysis 42
FIGURES
Figure 1 Regional Map of Study Areas 46
Figure 2 Location 1-l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125): Peak Period Traffic Volumes 47
Figure 3 Location 1-l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125): Location and Number of Crashes 48
Figure 4 Location 1-l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125): Congestion Scan 49
Figure 5 Location 1—l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125): Alternative 1—Create Auxiliary Lane 50
Figure 6 Location 2-I-93 Southbound at the End of the HOV Zipper Lane: 51
Figure 7 Location 2-l-93 Southbound at the End of the HOV Zipper Lane: Location andNumber of Crashes52
Figure 8 Location 2-l-93 Southbound at the End of the HOV Zipper Lane: Five-Year(2012-16) Crashes when the HOV Lane is in Operation (3:00 PM to 7:00 PM)53Figure 9 Location 2-l-93 Southbound at the End of the HOV Zipper Lane: CongestionScan54
Figure 10 Location 2-l-93 Southbound at the End of the HOV Zipper Lane: Alternative 1-Lengthen the HOV Lane Merge Distance 55
Figure 11 Location 2-l-93 Southbound at the End of the HOV Zipper Lane: Alternative2—Lengthen the Acceleration Distance for Furnace Brook Parkway On-Ramp56

APPENDICES

Appendix A: Review Comments and Selection Process
Appendix B: ATR and Classification Data
Appendix C: Crash Tables
Appendix D: HCS Printouts

Chapter 1-Introduction

1.1 INTRODUCTION

This report summarizes the results of the analyses and improvement alternatives considered in the federal fiscal year 2019 study, Low-Cost Improvements to Express-Highway Bottleneck Locations. The report begins with background information and describes the purpose of the study, followed by the selection of study locations, an assessment of the safety and operational problems, and a discussion of the potential improvement strategies. The final section presents the study recommendations. The report concludes with technical appendices, which cite the study methods, describe how the data and analyses were applied, including detailed reports from the freeway merge and diverge analyses. If implemented, the report's recommendations would not only result in improvements on the freeway facilities; they would improve traffic safety, make traffic operations more efficient, and reduce congestion at the bottlenecks.

1.2 BACKGROUND

According to the Federal Highway Administration (FHWA),
Much of the recurring congestion is due to physical bottleneckspotentially correctible points on the highway system where traffic flow is restricted. While many of the nation's bottlenecks can only be addressed through costly major construction projects, there is a significant opportunity for the application of operational and low-cost infrastructure solutions to bring about relief at these chokepoints. ${ }^{1}$

To be consistent with this guidance, the FHWA Massachusetts Division has recommended, as part of its comments on the Unified Planning Work Program process, that the Boston Region Metropolitan Planning Organization (MPO) identify the worst bottlenecks in the region that can be mitigated with low-cost countermeasures and develop recommendations for such countermeasures at these locations.

In general, recurring bottlenecks are influenced by the design or operation present at the point where the bottleneck begins; for example, at merge locations, diverges, lane drops, traffic weaving, and abrupt changes in highway alignment. In previous years, MPO staff analyzed several express-highway bottleneck locations in four consecutive studies, which were well received by the

[^0]Massachusetts Department of Transportation (MassDOT) and the FHWA. ${ }^{2,3,4,5}$ Study locations included sections of Interstate 95 (I-95) in Burlington, Lexington, and Weston; sections of Interstate 93 (I-93) in Woburn; sections of Route 3 in Braintree; and sections of Route 24 in Canton and Randolph.

The MassDOT Highway Division has implemented many of the recommendations from those studies, and the FHWA has interviewed MPO staff about these successful implementations, including

- restriping lanes to serve traffic demand better on I-95 northbound at Interchange 24 in Weston;
- restriping lanes to serve traffic demand better on I-95 southbound at Interchange 24 in Weston;
- providing two-lane exits for traffic exiting l-95 northbound to Route 3 northbound and the Middlesex Turnpike at Interchange 32 in Lexington and Burlington; and
- providing two-lane exits for traffic exiting l-95 southbound to Route 3 northbound and the Middlesex Turnpike at Interchange 32 in Burlington.

1.3 PURPOSE OF STUDY

The purpose of this study is twofold. First, the study aims to identify two bottleneck segments or points where low-cost mitigation improvements seem applicable. Second, the study aims to recommend low-cost mitigation improvements based on analysis of geometric design, traffic volumes and other data, and projected service performance associated with the improvements at each location.

Since 2011, the MPO has conducted four bottleneck studies in the Boston region to identify low-cost methods to reduce congestion, increase safety, and improve traffic operations. In the current study, MPO staff will rely on technical expertise regarding the nature of bottlenecks and will seek input from the MassDOT Highway Division staff, who are familiar with the region's express-highway

[^1]system operations, to develop and evaluate a comprehensive list of potential improvements at the bottleneck locations.

Chapter 2-Selection of Study Locations

To select the study locations, MPO staff had to first inventory and screen all candidate locations. ${ }^{6}$ MPO staff developed an initial list of candidate locations in the MPO region based on the following parameters:

- Consultations with the MassDOT Highway Division
- Review of Congestion Management Process (CMP) monitoring data and recent MPO and other planning studies
- Staff knowledge of bottleneck locations in the Boston Region MPO area

Table 1 presents the inventory process, which yielded nine bottleneck locations in the Boston Region MPO area for screening.

Table 1
Inventory of Express-Highway Locations for Screening

Location Number	City/Town	MassDOT District	Express-Highwa	Problem
1	Wilmington	4	I-93 northbound between Exit 40 (Route 62) and Exit 41 (Route 125)	Merge and diverge
2	Quincy and Braintree	6	I-93 southbound at the end of the HOV zipper lane	Merge and weave during the PM commute
3	Medford	4	I-93 southbound between Route 16 on-ramp and Exit 31 (Route 16 off-ramp)	Weave
4	Reading	4	I-95 northbound between Exit 37 (I-93) and Exit 38 (Route 28)	Weave
5	Boston	6	I-93 northbound at the end of the HOV zipper lane in Savin Hill	Merge during the AM commute
6	Boston	6	I-90 westbound and eastbound (just west of Ted Williams Tunnel Portal)	Westbound-diverge; Eastbound-merge
7	Canton and Randolph	6	I-93 northbound between Exit 1 (I-95) and Exit 4 (Route 24)	Merge, diverge, and weave
8	Canton and Randolph	6	I-93 southbound between Exit 1 (l-95) and Exit 4 (Route 24)	Merge, diverge, and weave
9	Newton	6	I-90 eastbound in Newton between Exit 16 and Exit 17	Merge, diverge, and weave

Note: Shading indicates locations selected for study
HOV = high occupancy vehicle. I-93 = Interstate 93. I-95 = Interstate 95. MassDOT = Massachusetts Department of Transportation.
Source: Central Transportation Planning Staff

[^2]
2.1 SCREENING CRITERIA

MPO staff used the following three criteria to screen the bottleneck locations:

1. Does the location qualify as a bottleneck?

A repetitive, long-traffic queue upstream trailing free-flowing traffic downstream usually characterizes the location as a bottleneck. In other words, the location experiences routine and predictable congestion because traffic volume exceeds the available capacity at that location.
2. Is a physical design constraint or operational conflict inherent in the location the cause of the bottleneck?
Examples of these include the following constraints or conflicts:
a. Lane drop: One or more travel lanes end, requiring traffic to merge
b. Weaving area: Drivers must merge across one or more lanes to access an entry or exit ramp
c. Merge area: On-ramp traffic merges with mainline traffic to enter the freeway
d. Major interchanges: High-volume traffic is directed from one freeway to another
3. Can low-cost operational and geometric improvements fix the bottleneck? These exclude costly long-term solutions such as expansion or widening of the roadway. Examples of low-cost operational and geometric improvements include the following:
a. Using a short section of shoulder as an additional travel lane or for lengthening an acceleration or deceleration lane
b. Restriping merge and diverge areas to better serve traffic demand
c. Providing all-purpose reversible lanes
d. Changing or adding signs and striping

Locations selected for study must meet these criteria and the number of locations selected for the study is dependent on allocated funding.

2.2 STUDY LOCATIONS

Based on the screening criteria and consultations with the MassDOT Highway Division officials, MPO staff selected location numbers 1 and 2 for study. Figure 1 shows the study locations. ${ }^{7}$ Although locations $3,4,5,6,7$, and 8 met the screening criteria, MPO staff did not select them for this study due to funding

[^3]concerns. However, MPO staff would consider these locations in a future bottleneck study. In addition, MassDOT is currently developing a project to address the bottleneck at Location 9. Appendix A contains comments about the study from the MassDOT Highway Division and a memorandum to the MPO that describes the selection process in detail.

2.2.1 Location 1: I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington

This mile-long segment of highway (with four travel lanes) is a bottleneck because of merging and diverging activities, which causes congestion, especially during the PM peak periods. In the segment, there are two exit ramps and three entry ramps connecting Routes 62 and 125 to I-93. The ramps also carry high volumes of traffic because of office and industrial parks located off Route 125.
At both exits, the northbound ramps have approximately 500 vehicles per hour (vph) and 700 vph exiting l-93 northbound to Route 62 and Route 125 during the AM peak period, respectively, and about 700 vph and $1,000 \mathrm{vph}$ during the PM peak period. During the same periods, the on-ramps from Route 62 and Route 125 to $\mathrm{I}-93$ northbound receive about 500 vph and 300 vph during the AM period, respectively, and about 400 vph and 600 vph during the PM peak period.
This entering and exiting of traffic interacts with approximately 4,000 to $5,500 \mathrm{vph}$ on the mainline during the AM peak period and approximately 7,000 to $7,500 \mathrm{vph}$ during the PM peak period. The merging and diverging maneuvers in the vicinity creates a bottleneck that backs up traffic on the mainline.

2.2.2 Location 2: l-93 Southbound at the End of the High Occupancy Vehicle (HOV) Zipper Lane in Quincy and Braintree

This bottleneck is located on I-93 southbound at the end of the HOV zipper lane, where traffic exits the southbound HOV lane and then merges with the traffic on the mainline. The bottleneck occurs only during PM peak periods when the southbound HOV lane is in operation. Traffic from six lanes is forced onto a fourlane freeway segment. The reduction in the number of lanes, merging, diverging, and weaving of traffic, and the high number of lane-changing maneuvers to disperse traffic to continue on I-93 southbound or head to Route 3 southbound, dramatically reduces capacity in the segment, creating a bottleneck. During PM peak periods, about 5,100 to 5,500 vph pass through the bottleneck- 600 vph from the Furnace Brook Parkway on-ramp, 3,500 vph in the four general-purpose lanes, and $1,000 \mathrm{vph}$ in the HOV lane. Given an upstream traffic demand of $8,000 \mathrm{vph}$, which is far greater than the capacity of the bottleneck, a long traffic queue forms on the mainline, which extends five miles to Columbia Road in Dorchester.

Chapter 3-Data Collection and Uses

3.1 TRAFFIC VOLUME DATA

The MassDOT Highway Division's Traffic Data Collection Program conducted automatic traffic recorder (ATR) counts for the ramps, freeways, and arterial roadways at the locations selected for study. The ATR counts traffic continuously for at least 48 hours. MPO staff used these counts to determine the average weekday traffic of a highway and operations performance. The traffic volume data are included in Appendix B. In addition, MassDOT collected turning movement counts (TMCs) for the signalized intersections at the ramp-arterial junction on Route 125. MassDOT performed TMCs during the weekday AM peak travel period (6:00 AM to 9:00 AM) and weekday PM peak travel period (3:00 PM to 6:00 PM).

3.2 CRASH DATA

MPO staff used crash data from January 2012 to December 2016 from the MassDOT's Registry of Motor Vehicles database to evaluate safety for motorists. Crash data are included in Appendix C.

3.3 SPEED DATA

The CMP maintains average speed data on express-highway systems in the MPO region with use of the INRIX historical traffic speed data. ${ }^{8}$ MPO staff used the current speed data from the CMP (spring 2015 and fall 2015) to determine the average weekday travel speeds through the bottlenecks.

3.4 LEVEL OF SERVICE CRITERIA

Level of service (LOS) is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Factors influencing LOS are volume, lane width, lateral obstructions, traffic composition, grade, and speed. The Highway Capacity Manual (HCM) methodology demonstrates driving conditions on freeways in terms of LOS ratings from A through F. ${ }^{9}$ The LOS criteria characterize freeway performance measures in terms of density (passenger cars per lane mile, [pc/lane mile]). The LOS criteria has been developed for each freeway component-basic freeway, ramp merge/diverge, and weaving segments. The

[^4]locations and traffic flow characteristics at each of the components are described below.

- Basic freeway segments are outside of the influence area of ramps or weaving areas of the freeway. The flow in such segments occurs more smoothly than segments with merging, diverging, or weaving. The exact point at which basic freeway segments begin or end depends on local conditions, particularly the LOS operating at the time. If traffic flow is light, the influence may be negligible, whereas under congested conditions, queues may be extensive.
- Freeway merging segments are ramp junction areas where two separate traffic streams (mainline and on-ramp) join to form one stream on the mainline. The influence areas of merging segments depend on local traffic conditions.
- Freeway diverging segments are ramp junction areas where one traffic stream diverge to form two separate streams (mainline and off-ramp). The influence areas of merging segments depend on local traffic conditions.
- Weaving segments are areas of the freeway where two or more vehicle flows must cross paths along a length of the freeway in order to continue. They are usually formed when merge areas are closely followed by diverge areas.
- A major merge occurs when two multilane freeway segments combine to form a single freeway segment with three or more lanes. Likewise, a major diverge occurs when a freeway segment with three or more lanes splits into two multilane basic freeway segments. While these locations can create turbulence in the traffic flow, they are less restrictive than freeway ramps because speed differences are smaller and lane changes are often unnecessary.

Table 2 shows the LOS criteria for basic freeway, merge/diverge, and weaving segments.

Table 2
LOS Criteria for Basic Freeway, Merging/Diverging, and Weaving Segments Basic Freeway Ramp Merge/Diverge and Weaving

Segment Segments

LOS	Density (pc/lane mile)	Density (pc/lane mile)
A	$0-11$	$0-10$
B	$11-18$	$10-20$
C	$18-26$	$20-28$
D	$26-35$	$28-35$
E	$35-45$	>35
F	>45	Demand exceeds capacity $(\mathrm{V} / \mathrm{C}>1)$

LOS = level of service. $\mathrm{pc} / l a n e$ mile $=$ passenger cars per lane mile $\mathrm{V} / \mathrm{C}=$ volume-to-capacity ratio. Source: Highway Capacity Manual 2010.

LOS A represents the best operating conditions (unrestricted operations) while LOS F represents the worst operating conditions. LOS A through LOS D represent acceptable operating conditions. LOS E represents operating conditions at capacity. LOS F represents failing conditions (demand exceeds capacity).

The traffic operations analyses conducted by MPO staff were consistent with HCM methodologies. Using the data collected, MPO staff then built traffic analysis networks for the AM and PM peak hours using the 2010 Highway Capacity Software (HCS) to assess the capacity and quality of traffic flow at the two bottleneck areas.

Chapter 4-Location 1: I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington

Study location 1 is a stretch of I-93 northbound in Wilmington. Figure 1 shows the location of the bottleneck within the MPO region. The northbound off- and onramps connect to and from Route 62 (Salem Street) and Route 125 (Ballardvale Street), and a service plaza. The bottleneck conditions form primarily during the PM peak period, when high volumes of rush hour traffic heads northbound on I93. This interchange and the roadways are under the jurisdiction of the MassDOT Highway Division, located in District 4.

4.1 EXISTING FREEWAY CHARACTERISTICS

Operations at this bottleneck are associated with the following freeway components.

4.1.1 Basic Freeway Section

The basic freeway section of l-93 northbound has four 12-foot travel lanes, a 12foot right shoulder, and a 6 -foot left shoulder. This section carries approximately 4,000 to $5,500 \mathrm{vph}$ during the AM peak period and 7,000 to 7,500 vph during the PM peak period. ${ }^{10}$ The posted speed limit is 65 miles per hour (mph). Freeway exit signs are posted at one-mile and one-half-mile intervals to guide drivers to Routes 62 and 125.

4.1.2 Entrance Ramp

The entrance ramp from Route 62 to l-93 northbound is a one-lane, one-way roadway. It carries about 250 to 450 vph during the AM peak period and 250 to 400 vph during the PM peak period. The length of the acceleration lane for traffic entering the section from Route 62 westbound is approximately 300 feet long, and the design speed of the entrance ramp is presumed to be 25 mph (no posted speed limits observed). ${ }^{11}$ Based on highway design and entrance ramp curve design speeds, the length of the acceleration lane does not meet MassDOT standards. The MassDOT Highway Division's current Project Development and Design Guide specifies a minimum acceleration lane of 1,220 feet for a freeway

[^5]facility with a design speed of 65 mph , an entrance ramp curve design speed of 25 mph , and a grade of two percent or less. ${ }^{12}$

4.1.3 Exit Ramp

The exit ramp from l-93 northbound to Route 125 is a one-way, one-lane roadway that gradually widens and splits into two approaches to connect Route 125 eastbound and westbound at the end of the ramp. The Route 125 eastbound (right-turn) approach has two lanes and the Route 125 westbound (left-turn) approach has only one lane, and the intersection is signalized. The ramp carries about 500 to 850 vph during the AM peak period and about 750 to $1,050 \mathrm{vph}$ during the PM peak hour.

The length of the deceleration lane is approximately 400 feet long and the posted speed limit on the exit ramp is 30 mph . Based on highway design and exit ramp curve design speeds, the length of the deceleration lane is insufficient to meet the MassDOT design standards. The MassDOT Project Development and Design Guide specifies a minimum deceleration length of 440 feet for a freeway facility with a design speed of 65 mph , an exit ramp curve design speed of 35 mph , and a grade of two percent or less. The deceleration lane is the parallel type (at least half the length of the deceleration lane is parallel with the mainline) as recommended by the MassDOT design guide.

4.1.4 I-93/Route 125 Interchange

The exit ramp at Route 125 is signalized as part of a coordinated system that includes the traffic signals at I-93 southbound exit ramp and at Ballardvale Street. It is essential to ensure that traffic operations at the interchange would not cause traffic backup on the off-ramp into the I-93 northbound mainline, especially in the PM peak period when the ramp carries a high volume of traffic.

MPO staff conducted intersection capacity analyses and traffic simulations for the three intersections on Route 125 by using the Synchro traffic analysis and simulation program. ${ }^{13}$ The PM peak hour analyses indicate that both intersections at the interchange operate at a desirable LOS A, and the

[^6]intersection of Route 125 at Ballardvale Street operates at an acceptable LOS D. At the I-93 northbound off-ramp and Route 125 intersection, the off-ramp is evaluated to operate at LOS C, with an average queue length of about 100 feet and an estimated 95 th percentile queue length of about 150 feet 14. Traffic simulation runs showed no traffic queues from the ramp backing up into the l-93 northbound travel lanes.

4.2 PROBLEMS

The existing bottleneck creates an intense interruption of traffic flow primarily during PM peak travel periods, experienced by virtually all drivers in this section. Meanwhile, traffic on l-93 northbound is already congested during the same travel periods, due to a lane-drop bottleneck on the I-93 mainline about 1.2 miles downstream from this location. ${ }^{15}$ Travel speeds on the freeway mainline in this section usually reduce to under 55 mph during the PM peak period. In addition, staff identified a number of crashes on I-93 northbound from Exit 40 to Exit 41, especially in the diverge area of the exit ramp to Route 125.

4.3 CAUSES

The following factors contribute to traffic congestion in this I-93 northbound section:

- A high volume of traffic during the PM peak hours
- A short acceleration lane at the ramp from Route 62
- A short deceleration lane at the ramp to Route 125
- Traffic congestion from l-93 northbound downstream bottleneck

4.3.1 High Traffic Volume

Figure 2 shows the traffic flows during the AM and PM peak periods. In the AM peak period (6:00-10:00), the l-93 mainline and the entrance and exit ramps generally carry moderate traffic volumes and do not cause serious traffic congestion. However, in the PM peak period (3:00-7:00), the I-93 mainline and the exit ramp carry high traffic volumes, causing traffic congestion at this bottleneck location.

4.3.2 Short Acceleration Lane

The short acceleration lane for the traffic entering I-93 northbound from Route 62 forces drivers to merge quickly and does not give them the distance needed to reach safe freeway speeds. Meanwhile, the merging maneuver is difficult during

[^7]the PM peak period due to the congested conditions on the freeway mainline. The merging operation slows down I-93 mainline traffic, affecting traffic flow upstream from the merge location.

4.3.3 Short Deceleration Lane

Although the acceleration lane for the exit ramp to Route 125 is just short of MassDOT design standards, it carries a high volume of traffic during the PM peak hours. Under the congested conditions, drivers usually experience delays in reaching the exit ramp and occasionally some drivers would use the breakdown lane to access the ramp.

4.3.4 Traffic Congestion from I-93 Northbound Downstream Bottleneck

I-93 northbound reduces from four to three travel lanes about 1.2 miles downstream from this section. During the PM peak travel periods, traffic queues from the downstream bottleneck location frequently spill back into this section, increasing difficulties for the merging and diverging operations.

4.4 IMPACTS

4.4.1 Crashes

Table 3 presents a summary of the crashes in this segment. There were 102 crashes in this area based on MassDOT crash data from 2012-16. Figure 3 shows the location of these crashes. The majority of crashes (69 crashes to be exact) occurred near the off-ramp at Exit 41.

Table 3
Crash Summary (2012-16): Location 1-I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125)

Crash Variable	Number of Crashes
Crash severity	

Property damage only (none injured)69
Non-fatal injury 31
Not reported 2
Fatal injury 0Manner of collision
Rear-end 57
Single vehicle crash 25
Angle 9
Sideswipe, same direction 11
Sideswipe, opposite direction 0
Head-on 0
Not reported 0
Road surface conditions
Dry 89
Wet 9
Snow/Ice 4
Unknown 0
Ambient light conditions
Daylight 79
Dark—roadway not lighted 17
Dark—lighted roadway 4
Dusk 2
Dawn 0
Not reported 0
Weather conditions
Clear 66
Cloudy 17
Unknown 11
Rain 5
Snow 3
Travel period
Weekday evening peak period 38
Other 64
Total crashes 102

[^8] Source: Central Transportation Planning Staff.

A summary of the crashes in this segment are as follows:

- 30 percent of the crashes resulted in injury
- 56 percent of the crashes were rear-end collisions
- 25 percent of the crashes were single vehicle collisions
- 37 percent of the crashes occurred during the PM peak travel periods
- 77 percent of the crashes occurred under daylight conditions
- 87 percent of the crashes occurred under dry roadway conditions

4.4.2 Travel Speed

Figure 4 is a congestion scan that covers the I-93 northbound stretch about three miles upstream and downstream of this study location. It shows the average travel speeds on I-93 northbound from the Concord Road interchange (Exit 39) to the Dascomb Road interchange (Exit 42). The 2015 spring and fall midweek Tuesday to Thursday travel time data (provided by INRIX) were used for this analysis. ${ }^{16}$

Travel speeds at the study location, in most cases, reduce to under 55 mph from 2:45 PM to 3:15 PM and from 4:30 PM to 6:00 PM. Travel speeds during the AM peak are less affected, and remain greater than 55 mph . The congestion scan shows that the downstream lane drop location (approximately at the 36.5-mile marker) is actually a more severe bottleneck than this study location. Travel speeds generally reduce to under 45 mph from 2:30 PM to 3:30 PM and from 4:30 PM to 6:00 PM. Field observations indicate that I-93 northbound traffic queues frequently extend from this location to the vicinity of the Route 62 interchange. The congestion scan also shows an interesting dual-peak phenomenon (2:30-3:30 PM and 4:30-6:00 PM) at the lane-drop bottleneck location. It is a combined effect of the lane drop bottleneck and the travel demand management strategy (use of the shoulder as a travel lane during the PM peak period), currently applied to the I-93 sections downstream use of the breakdown lane.

During the weekday PM period from 3:00 to 7:00, travel in the I-93 northbound breakdown lane is permitted beginning approximately a quarter mile north of the lane drop all the way to the north side of Merrimack River before Exit 46. The first wave of congestion begins around 2:30 PM when I-93 traffic gradually increases but travel in the breakdown lane is prohibited. After 3:00 PM, when travel in the breakdown lane is permitted, traffic congestion gradually dissipates. The severe congestion begins after 4:00 PM, and peaks around 5:30 PM. The congestion

[^9]gradually dissipates after 6:00 PM, when the l-93 northbound sections carry most commuter traffic heading home in the north.

4.4.3 Level of Service

MPO staff conducted traffic operations analyses consistent with HCM methodologies. Using data from MassDOT, MPO staff built traffic analysis networks for the AM and PM peak hours with the HCS suite to assess the capacity and quality of traffic flow at the bottleneck area. ${ }^{17}$ Full HCS reports are included in Appendix D.

Table 4 presents the results of the LOS analyses for existing conditions at Location 1. It contains the HCM merging and diverging analyses. The section between the merge area and diverge area was not analyzed as a basic freeway section because it is shorter than 1,000 feet and it is entirely within the merge and diverge influence areas. ${ }^{18}$

[^10]Table 4

LOS Analysis-Existing Conditions: Location 1—l-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125)

Location	Peak Hour	Density (pc/lane mile)	Speed $(\mathrm{mph})^{\mathrm{a}}$	VIC Ratio ${ }^{\text {b }}$	LOS ${ }^{\text {c }}$
HCM Analysis Type: Merge Area ${ }^{\text {d }}$	--	--	--	--	--
Ramp from Route 62	AM	24.4	62.1	0.64	C
Ramp from Route 62	PM	30.8	59.9	0.88	D
HCM Analysis Type: Diverge Area	--	--	--	--	--
Exit 41 to Route 125	AM	27.1	55.3	0.64	C
Exit 41 to Route 125	PM	36.9	54.4	0.88	E

${ }^{\text {a }}$ Refers to ramp influence area speed for merge/diverge areas.
${ }^{\mathrm{b}}$ Refers to the freeway section's volume-to-capacity ratio.
${ }^{c}$ LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity).
${ }^{d}$ In HCM merge and diverge analyses, acceleration and deceleration lanes are measured from the tip of the painted gore to the end of the taper. This may differ from the AASHTO length. AASHTO, or The American Association of State Highway Transportation Officials, is a nonprofit, nonpartisan association representing highway and transportation departments in the 50 states, the District of Columbia, and Puerto Rico. It represents all transportation modes, including air, highways, public transportation, active transportation, rail, and water. Its primary goal is to foster the development, operation, and maintenance of an integrated national transportation system.
HCM = Highway Capacity Manual. LOS = level of service. mph = miles per hour. pc/lane mile = passenger cars per lane mile. V/C = volume-to-capacity. vph = vehicles per hour.

Table 4 illustrates that both areas operate at LOS C during the AM peak hour, while the merge area operates at LOS D and the diverge area operates at LOS E during the PM peak hour. The PM peak-hour analysis shows that the diverge area has a high density of vehicles, causing delay for the traffic exiting to Route 125. Traffic congestion on I-93 northbound mainline frequently builds up from the downstream lane-drop location to the vicinity of this location, adding difficulties to the diverge operation. In addition, the estimated freeway speeds in the PM peak hour could be somewhat higher than the observed speeds (see Figure 4), as the downstream bottleneck congestion is not applicable to the HCM analyses.

4.5 IMPROVEMENT ALTERNATIVES

The analyses identified that the on-ramp acceleration length and the off-ramp deceleration length do not meet MassDOT standards. A simple solution could be to extend their lengths; however, it would not be suitable at this location. As the two ramps are located in close proximity (about 1,600 feet), further extending the acceleration or deceleration length and reducing the space in between would
potentially increase crash risk. ${ }^{19,20}$ The analyses also identified that one of the key problems at this location is the I-93 mainline congestion, causing difficulties for the merge and diverge maneuvers. However, this congestion is mainly due to the downstream lane drop bottleneck.

Under these conditions, there are not many applicable low-cost improvement alternatives. However, MPO staff developed two improvement alternatives to address safety and operational issues at this location. These improvements include:

- Alternative 1: Create an auxiliary lane for merging and diverging traffic
- Alternative 2: Examine potential improvements at the downstream lane drop location

4.5.1 Alternative 1: Create an Auxiliary Lane for Merging and Diverging Traffic

An auxiliary lane is defined as the portion of the roadway adjoining the traveled freeway for speed change, merging, diverging, weaving, and other purposes supplementary to through-traffic movement. Alternative 1 would create an auxiliary lane between the on-ramp at Exit 40 and the off-ramp at Exit 41. This lane would extend the distance available for merging or diverging traffic maneuvers and would provide sufficient distance to accommodate speed changes and vehicle weaving. The auxiliary lane would also upgrade the acceleration lane to meet MassDOT standards.

Figure 5 shows the improvements recommended in Alternative 1, including:

- Restriping I-93 northbound between Exit 40 and Exit 41 (about one-third of a mile) to accommodate a fifth 12-foot auxiliary lane on the right. This would bring the total lane width to 60 feet along this distance. Using the existing paved area on both the left and right shoulders would provide the required additional width. The highway alignment would also need to be shifted to the left by approximately two feet to accomplish this. It would reduce the left shoulder to approximately four feet and the right shoulder to a minimum of two feet.
- Relocating existing guide signs or installing new guide signs and pavement markings to direct drivers to merge onto the mainline or to use Exit 41.

[^11]- Modifying pavement markings to delineate the auxiliary lane from the mainline travel lanes.

Although improvements could be made, Alternative 1 does present some design difficulties. First, the less-than-minimal right shoulder areas would require a design exception report. When conditions warrant, a design exception may be granted for a project design that proposes one or more controlling substandard design elements if it can be documented that a lesser design is the best practical alternative. Second, while the paved shoulder along this stretch of highway is wide enough to accommodate an extra travel lane, it is not wide enough to fit an additional emergency pullover or stopping area. Any such area would require additional paving and grading work due to a moderate slope to the right of the roadway.

4.5.2 Alternative 2: Examine Potential Improvements at the Downstream Lane Drop Location

This study identified that traffic congestion at this bottleneck location is mainly caused by a downstream bottleneck where the l-93 northbound mainline reduces from four to three lanes. Traffic operations at this location would be improved if the congested conditions from the downstream bottleneck can be substantially decreased. One possible solution is to open up the breakdown lane for travel earlier downstream of the bottleneck. Based on observations throughout the region, it is acknowledged that the peak congestion periods are expanding, so opening the breakdown lane may help to alleviate this bottleneck. However, this solution is beyond the scope of the current study.

4.6 EFFECTIVENESS AND COST OF THE IMPROVEMENTS

Table 5 presents the 2030 future LOS analyses compiled using HCS software, and compares the results from the no-build scenario and Alternative 1, where modifications would affect system operations. Full HCS reports are included in Appendix D. All scenarios use a uniform four percent growth for 2030 traffic volumes estimated based on the MPO regional travel demand model for this study area. Alternative 2 is a proposed future study and therefore, not included in Table 5. Approximations made as part of the HCM analysis are provided when applicable.

Table 5
2030 LOS Analysis-No-Build and Improvement Alternative 1 for Location 1-I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125)

Scenario and HCM Analysis Type	Peak Hour	Density (pc/lane mile)	Speed $(\mathbf{m p h})^{\text {a }}$	VIC Ratio $^{\text {b }}$	LOS $^{\text {c }}$
No-Build:	--	--	--	--	--
Merge Area HCM Analysis	AM	25.3	61.9	0.67	C
Ramp from Route 62	PM	32.2	59.1	0.92	D
Ramp from Route 62	--	--	--	--	--
No-Build: Diverge Area	AM	28.3	55.1	0.67	D
HCM Analysis Exit 41 to Route 125	PM	38.5	54.3	0.92	E
Exit 41 to Route 125	--	--	--	--	--
Alternative 1: Weaving Segment HCM Analysis I-93 northbound between	AM	21.9	57.2	0.61	C
Exit 40 and Exit 41 I-93 northbound between Exit 40 and Exit 41	PM	32.3	53.6	0.83	D

${ }^{a}$ Refers to ramp influence area speed for merge/diverge areas and average of weaving and non-weaving speeds for the weaving segment.
${ }^{\mathrm{b}}$ Refers to the freeway section's volume-to-capacity ratio.
${ }^{\text {c }}$ LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity).
HCM = Highway Capacity Manual. LOS = level of service. $\mathrm{mph}=$ miles per hour. pc/lane mile = passenger cars per lane mile. V/C = volume-to-capacity. vph = vehicles per hour.

A crash modification factor (CMF) is an estimate of the change in crashes expected after the implementation of a countermeasure. Using CMFs from the HSM and the CMF Clearinghouse show that adding continuous auxiliary lanes for weaving between the entrance ramp and the exit ramp would reduce crashes by 20 to 25 percent. ${ }^{21,22}$ In addition, the LOS for Exit 41 would improve from D to C during the $A M$ peak and from E to D during the PM peak by lengthening the acceleration lane. However, the merge from Route 62 would remain at LOS C in the AM peak and LOS D in the PM peak.

Implementing the changes in Alternative 1 would require pavement restriping to shift the northbound highway alignment to the left by approximately two feet, beginning at Exit 40 and extending to Exit 41 . No right-of-way acquisition, pavement widening, or alignment changes should be required, other than providing an emergency pullover, if needed. Alternative 1 is estimated to cost

[^12]between $\$ 50,000$ and $\$ 75,000$ to construct and would require realignment of the lanes, pavement restriping, relocating existing guide signs or installing new guide signs, and adding pavement markings.

4.7 RECOMMENDATIONS

MPO staff recommends Alternative 1 because of the beneficial effects on safety and operational efficiency. Alternative 1 provides more space for entering and exiting traffic to move to and from the mainline travel lanes and would potentially reduce crashes in this l-93 northbound section. In addition, staff recommends studying possible alternatives, similar to those presented in Alternative 2, as a proposed future study for the l-93 northbound lane drop bottleneck about 1.2 miles downstream from this location. Traffic operations and crash risk at this location would be greatly improved if the congested conditions from the downstream bottleneck could be substantially decreased.

Chapter 5-Location 2: I-93 Southbound Segment at the End of the HOV Zipper Lane in Quincy and Braintree

The affected segment, approximately 0.8 miles long, extends from the beginning of Furnace Brook Parkway on-ramp at Exit 7 to the Route 3 diverge at Exit 8. The interchange and freeway, which are located in District 6, are under the jurisdiction of the MassDOT Highway Division. Figure 1 shows the location of the bottleneck within the MPO region. It is located on the I-93 southbound barrel at the end of the HOV zipper lane. The bottleneck occurs during PM peak southbound HOV lane operations, which begins at 3:00 PM and ends at 7:00 PM. This bottleneck is where traffic merges and weaves in order to continue onto I-93 southbound or Route 3 southbound. It is also where the on-ramp from Furnace Brook Parkway merges onto I-93 southbound. Just 0.4 miles north of the end of the HOV zipper lane exit, traffic heading to Route 3 southbound diverges off l-93.

5.1 EXISTING FREEWAY CHARACTERISTICS

5.1.1 Basic Freeway Section

The basic freeway section is about 1,000 feet long when the HOV lane is in operation. It has four 12-foot travel lanes, and an 11- to 12-foot right shoulder. There is no left shoulder at this section because of HOV lane operations during peak travel periods and storage of the zipper barriers during off-peak travel periods.

5.1.2 Entrance Ramps

There are two ramp merge areas relevant to this bottleneck location: the on-ramp from Furnace Brook Parkway and the HOV lane exit. Furnace Brook Parkway is a one-lane, on-ramp with an 800 -foot acceleration lane. ${ }^{23}$ Traffic in the HOV lane exits and merges with the mainline traffic about 200 feet north of Furnace Brook Parkway. The exit and merge area of the HOV is about 1,000 feet long.

5.1.3 Exit Connector

The Exit 7 connector to Route 3 southbound is a two-lane major diverge with design speed similar to that of the freeway. It is important to note that

[^13]downstream bottlenecks on Route 3 southbound during the PM peak travel period create a traffic queue that extends into the subject bottleneck and exacerbates traffic conditions.

5.2 PROBLEMS

The existing bottleneck creates a recurring long traffic queue on the mainline, which extends five miles northerly to Columbia Road in Dorchester. It reduces traffic flow to stop-and-go conditions with average travel speeds of less than 25 mph , even though the posted speed limit is 55 mph . In addition, the congested conditions lead to many crashes, pollution, and high person-hours of delay.

5.3 CAUSES

Physical design constraints and operational conflicts inherent in the location create the bottleneck, including the following:

- Lane drop: One or more travel lanes end, requiring traffic to merge onto the mainline.
- Weaving areas: Drivers must change lanes or cross each other's path along a length of the freeway in order to continue on l-93 southbound or Route 3 southbound.
- Merge areas: Furnace Brook Parkway on-ramp traffic merges with mainline traffic to enter the freeway and then, shortly ahead, traffic in the HOV lane exits and merges with the mainline traffic.
- Major diverge: High-volume traffic from the freeway diverges to Route 3 southbound at Exit 8.

At the bottleneck, traffic from six lanes (four on the mainline and one each on the HOV lane and the on-ramp from Furnace Brook Parkway) are forced onto four travel lanes in a short segment about 1,500-2,000 feet long. In addition, a high number of lane-changing maneuvers (merging, weaving, and diverging) take place within the segment to disperse traffic to continue on l-93 southbound or head to Route 3 southbound. These factors along with the close proximities of the merge and diverge areas dramatically reduce capacity in the segment.

Figure 6 shows the PM peak-period traffic volumes. During this period, when the HOV lane is in operation, the entry ramp from Furnace Brook Parkway serves about 600 vph while the HOV lane serves an average of $1,200 \mathrm{vph}$. The mainline serves about 3,500 vph. Traffic data are included in Appendix B.

In all, the bottleneck serves between 5,200 vph and 5,400 vph while the traffic demand is around 8,000 vph during PM peak periods. This suggests that traffic
demand at the bottleneck greatly exceeds the capacity and results in a long traffic queue trailing the bottleneck for over five miles to Columbia Road in Dorchester. Interestingly, between 2:00 PM and 3:00 PM when the HOV is not in operation, the four l-93 southbound lanes carry around $6,000 \mathrm{vph}$, which is even greater than the volume when the HOV lane is operation. ${ }^{24}$

5.4 PREVIOUS CONFIGURATION

Over the years, there have been several lane reconfigurations at the bottleneck to address safety operations and safety issues. The current configuration started in 2014. Before that, the mainline had the same four lanes; however, about 1,000 feet to the diverge to Route 3 southbound, the lane next to the rightmost lane widened to about 22 feet, which was used as a shared lane for traffic heading to either Route 3 southbound or continuing on I-93 southbound. In effect, three lanes headed to Route 3 southbound and two lanes went to l-93 southbound.

Assessment of the current configuration indicates that it reduces the lane changing maneuvers at the bottleneck and streamlines traffic heading to Route 3 southbound in anticipation of downstream bottlenecks. While the current configuration has safety benefits, a tradeoff to this may be reduced traffic flow.

5.5 IMPACTS

5.5.1 Crashes

Table 6 presents a summary of the crashes at the bottleneck. There were 132 crashes in this section between 2012 and 2016 (Appendix C). Figure 7 shows the location of these crashes. The majority, 108 of the crashes, occurred near the diverge area at Exit 7. Interestingly, the number of crashes between 2012 and 2016 (132 crashes) represent a 10 percent reduction to the five-year total between 2005 and 2009 (146 crashes). This suggests that the change in lane configuration around 2013 significantly influenced crash frequency. Figure 8 shows the location of the 31 crashes that occurred in the same period when the HOV lane is in operation, which represents 23 percent of the crashes.

[^14]Table 6
Location 2-I-93 Southbound at the End of the HOV Zipper Lane: Five-Year Crash Summary (2012-16)

Crash Variable	All Crashes	Peak-Period Crashes
Crash severity	-	
Non-fatal injury	37	4
Property damage only (none injured)	90	26
Not reported	5	1
Manner of collision	-	
Rear-end	71	22
Single vehicle crash	24	2
Sideswipe, same direction	22	4
Angle	13	2
Not reported	2	1
Road surface conditions	-	
Dry	109	27
Wet	18	3
Snow/lce	4	0
Unknown	1	1
Ambient light conditions	-	
Daylight	85	25
Dark-lighted roadway	45	5
Not reported	1	1
Dark-roadway not lighted	1	0
Weather conditions	-	
Clear	91	24
Cloudy	15	1
Unknown	11	4
Rain	11	2
Snow	4	0
Travel period	-	
Weekday evening peak period	31	31
Other	101	0
Total crashes	132	31

Note: Weekday evening peak period is 3:00 PM to 7:00 PM Monday through Friday. Source: Central Transportation Planning Staff.

A summary of the crashes in this segment are as follows:

- Twenty-eight percent of the crashes resulted in injury
- The largest share of crashes (54 percent) were rear-end crashes
- Many of the rear-end and sideswipe crashes were caused by drivers changing lanes, merging or diverging
- Forty-seven crashes (36 percent) occurred outside of daylight conditions, including the one unreported crash
- Eighty-three percent of the crashes occurred on dry roadway conditions
- Sixty-four percent of the crashes occurred outside daylight conditions

5.5.2 Travel Speed

Figure 9 is a congestion scan that shows the average travel speeds on l-93 southbound at the bottleneck. Based on these data, the bottleneck reduces travel speeds to less than 25 mph between the hours of 3:00 PM and 7:00 PM. Vehicle speeds this far below free-flow speed correlate with LOS F conditions on the freeway. In addition, speeds at this bottleneck can fall to less than 25 mph and stay that low for two to three hours. The congestion scan also shows severe slowdowns (queue) trailing the bottleneck. The gradual relief after the bottleneck suggests that the HOV lane merge and Furnace Brook Parkway on-ramp merge are not the only causes of congestion, and that more issues are present further downstream on I-93 southbound and Route 3 southbound.

5.5.3 Level of Service

Traffic operations at the bottleneck are complex as merging, diverging, and weaving maneuvers all take place within the segment at the same time. MPO staff conducted traffic operations analyses consistent with HCM methodologies. Using the MassDOT data, MPO staff built traffic analysis networks for the PM peak hours with the HCS suite to assess the capacity and quality of traffic flow at the bottleneck area. ${ }^{25}$ The analyses included

- merge analysis of the HOV lane;
- merge analyses of the on-ramp from Furnace Brook Parkway;
- weave analysis of the traffic from HOV lane to I-93 southbound; and
- weave analysis of the traffic from the Furnace Brook Parkway on-ramp to Route 3 southbound.

The HCM methodology has some limitations concerning weaving analysis, as it does not address the following conditions, which exist at the bottleneck, such as:

- Special lanes, for example, HOV lanes within weaving segments
- Specific operating conditions when oversaturated conditions exist
- Effects of downstream or upstream congestion
- Multiple weaving segments

[^15]Some simplifications were necessary to align the HCS model with observed conditions, such as the breaking up of multiple weave segments into merge and simple weave segments for analysis.

Table 7 presents the results of the LOS analyses for existing conditions. The results indicate that traffic in the HOV lane and Furnace Brook Parkway on-ramp operate at LOS D when they merge with the mainline traffic. In addition, the analyses indicate that traffic operating conditions at the weaving segment (where traffic weaves from the HOV lane, Furnace Brook Parkway on-ramp, and the freeway onto Route 3 southbound and I-93 southbound) is LOS F. Full HCS reports are included in Appendix D.

Based on these analyses, the primary cause of the bottleneck is intense weaving due to a lack of lane balance rather than merging or diverging conditions. The volume-to-capacity (v/c) ratios for the weaving segment was 1.4 , meaning that the traffic demand is higher than maximum throughput of the weave segment with the given features. HCS suite does not provide density and speed data for scenarios that result in LOS F or have a v/c greater than 1.0.

Table 7

Location 2-I-93 Southbound at the End of the HOV Zipper Lane: Existing Conditions LOS Analysis Density ${ }^{\text {a }}$

Scenario	Analysis Type	Density ${ }^{\text {a }}$ (pc/lane mile)	Speed $^{\text {a }}$ (mph)f	$\begin{array}{r} \text { V/C } \\ \text { Ratio }^{\text {b }} \end{array}$	LOS ${ }^{\text {c }}$
HOV lane merge	Merge	38.4	48.7	0.84	D
Furnace Brook Parkway on-ramp merge	Merge	42.7	49	0.93	D
Weaving from HOV lane to Route 3 southbound (one-sided)	Weave	--	--	1.41	F
Weaving from Furnace Brook Parkway to l-93 southbound (one-sided)	Weave	--	--	1.21	F
Weaving from HOV lane to l-93 southbound (two-sided)	Weave	--	--	0.85	F
Weaving from Furnace Brook Parkway to Route southbound (two-sided)	Weave	36	47	0.78	E

${ }^{\text {a }}$ HCM does not provide density and speed data for scenarios that result in LOS F.
${ }^{\mathrm{b}}$ Refers to the freeway section's v/c ratio.
${ }^{\text {c }}$ LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity).
HCM = Highway Capacity Manual. HOV = high-occupancy vehicles. LOS = level of service. $\mathrm{mph}=$ miles per hour. pc/lane mile = passenger cars per lane mile. $\mathrm{v} / \mathrm{c}=$ volume-to-capacity. $\mathrm{vph}=$ vehicles per hour. Source: Central Transportation Planning Staff.

5.6 IMPROVEMENT ALTERNATIVES

MPO staff developed the following improvements to address safety and operational issues at the bottleneck. These improvements include:

- Alternative 1: Lengthen the distance of the HOV lane merge
- Alternative 2: Lengthen the acceleration lane distance for Furnace Brook Parkway on-ramp
- Alternative 3: Alternatives 1 and 2 combined

All three alternatives have the objective of lengthening the merging and weaving segments to give drivers more space to carry out their intended maneuvers.

5.6.1 Alternative 1: Lengthen the Distance for the HOV Merge

Alternative 1 would move the HOV exit about 600 feet further north to lengthen the distance in which HOV traffic merges with the mainline traffic. The extension is expected to provide HOV lane drivers with ample distance for merging and weaving safely and comfortably to continue on I-93 southbound and Route 3 southbound. Figure 10 shows the improvements recommended in Alternative 1.

5.6.2 Alternative 2: Lengthen Acceleration Distance for Furnace Brook Parkway On-Ramp

Figure 11 shows the improvements recommended in Alternative 2. Alternative 2 would extend the acceleration lane distance for the Furnace Brook Parkway onramp about 600 feet using the existing right shoulder. An 11- to 12 -foot right shoulder exists along the entire length of the bottleneck.

5.6.3 Alternative 3: Alternatives 1 and 2 Combined

Alternative 3 combines the improvement recommendations of both Alternatives 1 and 2 for added benefits.

5.7 EFFECTIVENESS AND COST OF THE IMPROVEMENTS

The improvement alternatives were analyzed using a total growth factor of five percent over the existing traffic demand to project short-term traffic volumes in 2030. Because the traffic operations at the bottleneck are at capacity for the entire four-hour PM peak period, it is likely that any growth in traffic demand would worsen the queue trailing the bottleneck.

5.7.1 HCS Analysis Results

Table 8 presents the results of the 2030 LOS analyses compiled using the HCS suite. The HCS analyses results show marginal benefits with the recommended
improvements but does not appear to reduce the impacts of intense weaving at the bottleneck, resulting in a LOS F for all weaving analyses.

Table 8
Location 2-I-93 Southbound at the End of the HOV Zipper Lane: 2030 Future LOS Analysis

Scenario	Analysis Type	Density ${ }^{\text {a }}$ (pc/lane mile)	Speed a (mph)f	$\text { Ratio }{ }^{\text {b }}$	$L^{\text {LOS }}$
HOV lane merge	-	--	--	--	
Existing	Merge	38.4	48.7	0.84	D
Alternative 1	Merge	38.6	49.7	0.86	D
Alternative 2	Merge	39.2	48.6	0.86	D
Alternative 3	Merge	38.6	49.7	0.86	D
Furnace Brook Parkway onramp merge					
Existing	Merge	42.7	49	0.93	D
Alternative 1	Merge	43.4	49	0.94	D
Alternative 2	Merge	43.2	50	0.94	C
Alternative 3	Merge	43.2	50	0.94	C
Weaving from HOV lane to					
Route 3 southbound (one-sided)					
Existing	Weave	--	--	1.41	F
Alternative 1	Weave	--	--	1.42	F
Alternative 2	Weave	--	--	1.42	F
Alternative 3	Weave	--	--	1.41	F
Weaving from Furnace Brook Parkway on-ramp to I-93 southbound (one-sided)					
Existing	Weave	--	--	1.21	F
Alternative 1	Weave	--	--	1.27	F
Alternative 2	Weave	--	--	1.27	F
Alternative 3	Weave	--	--	1.27	F
Weaving from HOV lane to l-93 southbound (two-sided)					
Existing	Weave	--	--	0.85	F
Alternative 1	Weave	--	--	0.83	F
Alternative 2	Weave	--	--	0.87	F
Alternative 3	Weave	--	--	0.83	F
Weaving from HOV lane to l-93 southbound (two-sided)					
Existing	Weave	36.0	47	0.78	E
Alternative 1	Weave	37.6	40	0.78	E
Alternative 2	Weave	37.6	40	0.78	E
Alternative 3	Weave	37.6	40	0.78	E

${ }^{a}$ HCM does not provide density and speed data for scenarios that result in LOS F.
${ }^{\mathrm{b}}$ Refers to the freeway section's volume-to-capacity ratio.
${ }^{c}$ LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity).
HCM = Highway Capacity Manual. HOV = heavy-occupancy vehicle. LOS = level of service. $\mathrm{mph}=$ miles per hour. pc/lane mile = passenger cars per lane mile. v/c = volume-to-capacity. vph = vehicles per hour. Source: Central Transportation Planning Staff.

5.7.2 VISSIM Simulation Results

In addition to the HCS suite, MPO staff used VISSIM traffic simulation software to analyze future traffic operations at the bottleneck. ${ }^{26}$ Due to the complex nature of the bottleneck and limitations of the HCS analyses, VISSIM was used to account for all the maneuvers at the bottleneck simultaneously. Table 9 presents the results of the VISSIM analyses for the existing conditions and improvement alternatives. The primary performance measure in the simulation analysis was the total volume of traffic simulated through the bottleneck-the higher the total volume, the more effective the alternative. The results show that separately, Alternatives 1 and 2 would have minimal effect on the bottleneck and the trailing queue. VISSIM simulations show that while Alternative 3 may improve traffic operations at the bottleneck to some extent, it would not be able to reduce the trailing traffic queue significantly.

Table 9
Location 2-I-93 Southbound at the End of the HOV Zipper Lane: Traffic Simulation Analysis

Scenario	Total Volume Simulated (vph)	Average Speed (mph)
Existing	5,300	19
Alternative 1	5,500	22
Alternative 2	5,400	20
Alternative 3	5,900	23

HOV = high-occupancy vehicle. $\mathrm{mph}=$ miles per hour. $\mathrm{vph}=$ vehicles per hour.
Source: Central Transportation Planning Staff.

5.7.3 Costs

Alternative 1 is estimated to cost between $\$ 300,000$ and $\$ 500,000$ to construct. This estimate includes the relocation of existing median barriers, preparing the median area for staging HOV operations, restriping travel lanes, and the relocation and installation of signs and pavement markings.

Alternative 2 is estimated to cost between \$100,000 and 300,000 to construct, and would require restriping travel lanes, possibly repaving, relocating rumble strips, creating an emergency pullover lane, and drainage systems.

Alternative 3 is estimated to cost about $\$ 1.0$ million to construct, and includes all of the same items listed for Alternatives 1 and 2.

[^16]
5.8 RECOMMENDATIONS

MPO staff recommends Alternative 1, as it produces safety and operational benefits.

The HOV lane is a contra-flow reversible lane meaning that a lane is borrowed from the off-peak direction to serve the peak direction. The HOV lane heads northbound in the morning peak period using a lane borrowed from the southbound direction, and in the afternoon peak period, that operation is reversed. Both the morning and afternoon HOV operations share a common space for staging and operations. Because of the shared space, the space requirements for the proposed improvements would need further evaluation regarding HOV staging and operations for the morning northbound HOV operations. MPO staff advises further consultation with personnel involved with HOV lane operations and maintenance.

Alternative 2 would have operational improvements during the PM peak period; however, it would also eliminate the existing shoulder for disabled vehicles. Another concern with Alternative 2 is that drivers would choose to enter the longer acceleration lane to "bypass" slow traffic in the general travel lanes. For these concerns, MPO staff cannot recommend Alternatives 2 and 3 without further assessment of safety and operational effects.

Chapter 6-Conclusion and Next Steps

MPO staff, working in conjunction with the MassDOT Highway staff, identified, developed, and evaluated improvements for two bottleneck locations in the MPO region. The study provides the MassDOT Highway Division with an opportunity to assess the most critical needs at the two bottleneck locations and to start planning design and engineering efforts. If implemented, these low-cost, shortterm improvements would increase traffic safety, make traffic operations more efficient, and reduce congestion at the bottlenecks. The study aligns with the MPO's goals of managing capacity and improving mobility, and increasing safety on the region's highway system.

Figure 1
Regional Map of Study Areas

Low-Cost Improvements to Express-Highway Bottleneck Locations

| BOSTON
 REGION
 MPO | Figure 4
 4 |
| :--- | :---: | :---: |

Location 2-l-93 Southbound at the End of the HOV Zipper Lane:
Low-Cost Improvements to Express-Highway Bottleneck Locations

RPO
Location 2-I-93 Southbound at the End of the HOV Zipper Lane:

Figure 11

APPENDIX A

1. Review comments
 2. Selection process

From:

Sent:
To:
Cc:

Subject:

Lipton, Amitai I. (DOT) amitai.lipton@state.ma.us on behalf of Lipton, Amitai I. (DOT) Wednesday, November 13, 2019 1:03 PM
Seth Asante
Chen-Yuan Wang; Mark Abbott; Lavallee, Carrie E. (DOT); Worhunsky, Courtney (DOT); Kulen, Raj (DOT)
RE: FFY 2019 Low-Cost Improvements to Express-Highway Bottleneck Locations

Good afternoon Seth,
D6 Traffic section has reviewed the Draft report and submits the following comments for Chapter 5 (I-93 SB Braintree location):

- Alternative 1 (lengthen HOV/zipper lane merge): We note that a project has been initiated to replace the HOV/zipper systems; it may be possible to incorporate the proposed modifications into that project to avoid duplicated efforts/expenses.
- Alternative 2 (restripe shoulder to lengthen the acceleration lane): While lengthening the Furnace Brook Pkwy acceleration lane past Exit 7 (the split) might have some operational improvements during the PM peak period, we would want to evaluate any safety trade-offs involved with removing a shoulder, as there would not be any space left on the roadway for disabled vehicles. Some drivers might also choose to enter the long acceleration lane to "bypass" slow traffic in the general travel lanes. We would want to evaluate more thoroughly the safety and operational effects of having an unusually long acceleration lane that is less than 12 feet wide.
- Table 8 should include a baseline/no-build condition to compare with the 3 identified alternatives, similar to Table 9.
- Costs -- We feel Alternative 1 would be more expensive than estimated (to account for changes to the zipper barrier operations and any castings in the median area) while Alternative 2 would be less expensive than estimated (since extensive repaving should not be necessary).

Thank you,
Amitai

From: Seth Asante sasante@ctps.org
Sent: Wednesday, November 13, 2019 09:20
To: Lipton, Amitai I. (DOT) Amitai.Lipton@dot.state.ma.us; Vatan, Geraldine T. (DOT)
Geraldine.Vatan@dot.state.ma.us; Raphael, Connie J. (DOT) Connie.Raphael@dot.state.ma.us; Timoner, Sara (DOT) Sara.Timoner@dot.state.ma.us
Cc: Chen-Yuan Wang cwang@ctps.org; Mark Abbott mabbott@ctps.org
Subject: FFY 2019 Low-Cost Improvements to Express-Highway Bottleneck Locations
Good morning,
This is a friendly reminder to send in your comments on the attached low-cost express-highway bottlenecks study. They were due on November 8.

MPO staff analyzed two bottleneck locations in the study:

- Location 1-I-93 Northbound between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington
- Location 2-I-93 Southbound at the end of the HOV Zipper Lane in Quincy and Braintree

The study results for Locations 1 , which is in MassDOT Highway District 4, is presented in Chapter 4 of the report. The study results for Locations 2, which is in MassDOT Highway District 6, is presented in Chapter 5.

Your comments are welcomed; please send them to me by November 20.
Thank you,
Seth

Seth A. Asante, P.E. | Chief Transportation Planner CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org
www.ctps.org/bostonmpo

Please be advised that the Massachusetts Secretary of State considers e-mail to be a public record, and therefore subject to the Massachusetts Public Records Law, M.G.L. c. 66 § 10.

TECHNICAL MEMORANDUM

DATE: December 20, 2018
 TO: Boston Region Metropolitan Planning Organization (MPO)
 FROM: Seth Asante, MPO Staff
 RE: Federal Fiscal Year 2019 Express-Highway Bottleneck Study Locations

This memorandum presents the process used to select the bottleneck study locations. MPO staff will submit this proposal to the MPO for discussion and approval

1 BACKGROUND

In Task 2 of the work program for the "Low-Cost Improvements to ExpressHighway Bottleneck Locations: FFY 2019," MPO staff indicated in Task 2— screen bottleneck locations and select locations for analysis-that staff will present the results to the MPO for discussion. ${ }^{1}$

According to the Federal Highway Administration (FHWA), "Much of recurring congestion is due to physical bottlenecks—potentially correctible points on the highway system where traffic flow is restricted. While many of the nation's bottlenecks can only be addressed through costly major construction projects, there is a significant opportunity for the application of operational and low-cost infrastructure solutions to bring about relief at these chokepoints." ${ }^{2}$

The cause and duration of highway bottlenecks vary. In general, recurring bottlenecks, the subject of this study, are influenced by the design or operation present at the point where the bottleneck begins, for example, merges, diverges, lane drops, traffic weaving, abrupt changes in highway alignment, low-clearance structures, lane narrowing, intended disruption of traffic for management purposes, and less-than-optimal express-highway design.

[^17]MPO staff analyzed several express-highway bottleneck locations in four previous studies; they were very well received by the Massachusetts Department of Transportation (MassDOT) and the FHWA. ${ }^{3,4,5,6}$ Previous study locations included sections of Interstate 95 (I-95) in Burlington, Lexington, Waltham, and Weston; I-93 in Reading and Woburn; and sections of Route 24 in Randolph and Canton. Some of the recommendations from those studies have been implemented, and FHWA consultants have interviewed MPO staff about these successful implementations. Cost estimates for low-cost bottleneck improvements that have been implemented by the MassDOT Highway Division, or currently are in design status, range between $\$ 10,000$ and $\$ 1$ million.

2 SELECTION OF STUDY LOCATIONS

Selection of study locations was a two-stage process that comprised inventorying and screening candidate locations.

2.1 Inventorying Candidate Locations

MPO staff developed an initial list of candidate locations in the MPO region based on the following parameters:

- Consultations with MassDOT Highway Division
- Staff knowledge of bottleneck locations in the Boston MPO region
- Review of congestion management process (CMP) monitoring data, and recent MPO and other planning studies
The inventory process yielded nine bottleneck locations for screening, which are presented in the following table. All nine of the locations are in the Boston Region MPO area.

2.2 Screening Candidate Locations

MPO staff selected two bottleneck locations for analysis in federal fiscal year (FFY) 2019. After consulting with the MassDOT Highway Division, staff determined that these two locations likely could be corrected with low-cost mitigation strategies. The other bottlenecks in the Boston Region MPO area also

[^18]could be corrected in a low-cost manner, but were not selected because of funding resources-these locations would be considered in future bottleneck studies.

Table 1
Inventory of Express-Highway Locations for Screening

Location	MassDOT			
Number	City/Town	District	Express-Highway Section	Problem
1	Wilmington	4	I-93 northbound between Exit 40 (Route 62) and Exit 41 (Route 125)	Merge and diverge

HOV = High occupancy vehicle. MassDOT = Massachusetts Department of Transportation.
Note: Shading indicates locations selected for study
Source: Central Transportation Planning Staff
MPO staff used the following criteria to screen the bottleneck locations:

- Does the location qualify as a bottleneck? A long traffic queue upstream trailing free-flowing traffic downstream usually characterizes the location as a bottleneck. In addition, the upstream congestion must be recurringin other words, the location experiences routine and predictable congestion because traffic volume exceeds the available capacity at that location.
- Is a physical design constraint or operational conflict that is inherent in the location the cause of the bottleneck? Examples of these may include the following situations:
o Lane drop-one or more travel lanes are lost, requiring traffic to merge
o Weaving area—drivers must merge across one or more lanes in order to access an entry or exit ramp
o Merge area—on-ramp traffic merges with mainline traffic in order to enter the freeway
o Major interchanges-high-volume traffic is directed from one freeway to another
o Horizontal curves-abrupt changes in highway alignment force drivers to slow down because of safety concerns
- Can the bottleneck be fixed with low-cost operational and geometric improvements? These would exclude costly long-term solutions such as expansion and major transit investments that alter drivers' mode choice. Examples of low-cost operational and geometric improvements may include the following:
o Using a short section of shoulder as an additional travel lane, an auxiliary lane, or for lengthening an acceleration or deceleration lane
o Restriping merge and diverge areas to better serve traffic demand
o Providing better traveler information to allow drivers to respond to temporary changes in lane assignment, such as using a shoulder as an additional travel lane during peak periods
o Providing all-purpose reversible lanes
o Changing or adding signs and striping
Based on the screening criteria and consultations with MassDOT Highway Division officials, MPO staff selected locations one and two for study. Below is staff's rationale for not selecting locations three through nine.

Locations 3, 4, 5, 6, 7, and 8

These bottleneck locations may be correctible with low-cost improvements but were not selected because of funding. While the work program for this study assumed that "as many as three" locations would be selected, the MPO staff does not propose studying a third location because the two locations are complex and would require considerable resources for evaluating low-cost improvement plans. MPO staff may consider these locations in the next round of bottleneck studies.

Location 9

This bottleneck location was screened but was not considered in the selection process because a proposed project would address the bottleneck. MassDOT is
initiating a project to make improvements to traffic signals, signage, and pavement markings on the rotary around Newton Corner in order to improve traffic flow and safety, and to reduce the likelihood of the ramps backing up onto I-90. The project would also look at the feasibility of either restriping, or restriping with minor widening, the eastbound off-ramp in order to facilitate a second lane on the exit. These improvements would have positive impacts on the bottleneck.

3 SELECTED BOTTLENECK LOCATIONS FOR STUDY

3.1 Location 1: I-93 Northbound Between Exit 40 (Route 62) and Exit 41 (Route 125) in Wilmington

This segment of highway, about two miles long, with four travel lanes, frequently is congested because of merging and diverging activities, especially during the AM and PM peak periods. In the segment, there are two exit ramps and three entry ramps connecting Routes 62 and 125 to I-93. The ramps are heavily used because of office and industrial parks located off of Route 125. As a result, weekday rush hour congestion at the ramp-arterial junctions and queuing on the exit ramps are not uncommon.

At both exits, the northbound ramps have approximately 1,000 vehicles per hour (vph) exiting I-93 northbound to Routes 62 and 125 during the AM peak period and $1,500 \mathrm{vph}$ during the PM peak period. During the same time periods, the entry ramps from Routes 62 and 125 to l-93 northbound receive about 700 vph during the AM period and 1,300 vph during the PM peak period.
This entering and exiting traffic interacts with about $5,700 \mathrm{vph}$ on the mainline during the AM peak period and $7,600 \mathrm{vph}$ during the PM peak period. The merging and diverging maneuvers in the vicinity creates a bottleneck that backs up traffic on the mainline.

3.2 Location 2: I-93 Southbound at the End of the High Occupancy Vehicle (HOV) Zipper Lane in Quincy and Braintree

This bottleneck is located on I-93 southbound at the end of the Zipper lane, where traffic diverges, merges, and weaves in order to continue onto I-93 southbound or Route 3 southbound. The bottleneck occurs only during PM peak periods when the southbound HOV lane is in operation.
At the bottleneck, traffic from six lanes (four on the mainline, one on the temporary HOV lane, and one from high-volume entry ramp from Furnace Brook Parkway) is forced onto four travel lanes in a short segment, about 0.5 miles long. The reduction in number of lanes dramatically reduces capacity in the segment creating a bottleneck. In addition, a significant amount of lane-changing maneuvers (weaving and diverging) and merging take place within the segment
to disperse traffic to continue on I-93 southbound or head to Route 3 southbound.

During the PM peak period, the entry ramp from Furnace Brook Parkway carries about 800 vph , and upstream of the bottleneck, the mainline and HOV lane carry $5,500 \mathrm{vph}$ and 700 vph , respectively. Consequently, the traffic demand at the bottleneck greatly exceeds the capacity at the bottleneck. As a result, there are long traffic queues on the mainline and in the HOV lane, which extend five miles to Columbia Avenue in Dorchester.

4 SUMMARY

By identifying and evaluating a comprehensive list of potential improvements at the two locations, MPO staff will rely on their technical expertise and judgment regarding the nature of bottlenecks. In addition, MPO staff will seek input from MassDOT Highway Division staff that are familiar with the operations of the region's express-highway system.

This study addresses the MPO's goal of increasing safety on the region's highway system, capacity management and mobility, and system preservation. MPO staff will submit this proposal to the MPO for discussion. If the MPO approves this selection, staff will meet with officials from MassDOT and discuss the study specifics, conduct field visits, collect data, and perform various analyses.

SA/sa

APPENDIX B

1. ATR data

2. Classification data

I-93 Northbound between
Exit 40 (Route 62) and Exit 41 (Route 125)

I-93 Northbound between
Exit 40 (Route 62) and Exit 41 (Route 125)

TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC

Wed Jan 16, 2019
Full Length (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided by: Precision Data Industries, LLC (PDI)
All Movements
ID: 609037, Location: 42.585518, -71.156976
46 Morton Street,
Framingham, MA, MA, 01702, US

Leg Direction	Ballardvale Street (Route 125) Southbound					I-93 NB Onramp/Offramp Westbound						Ballardvale Street (Route 125) Northbound						I-93 NB Onramp Eastbound						Int
Time	R	T	L U	U App		R	T	L		U App	ed*	R	T	L	U	App		R		L				
2019-01-16 6:00AM	19	150	00	0169	0	63	1	2	0	66	0	5	101	0	0	106	0	0	0	0	0	0	0	341
6:15AM	30	170	0 0	0200	0	87	0	2	0	89	0	12	136	0	0	148	0	0	0	0	0	0	0	437
6:30AM	29	165	$0 \quad 0$	0194	0	132	0		10	133	0	9	144	0	0	153	0	0	0	0	0	0	0	480
6:45AM	29	204	0	0233	0	152	0	3	0	155	0	11	162	0	0	173	0	0	0	0	0	0	0	561
Hourly Total	107	689	0	0796	0	434	1	8	0	443	0	37	543	0	0	580	0	0	0	0	0	0	0	1819
7:00AM	39	208	0	0247	0	170	0	0	0	170	0	11	177	0	0	188	0	0	0	0	0	0	0	605
7:15AM	41	246	0 0	0287	0	167	0	1	0	168	0	14	196	0	0	210	0	0	0	0	0	0	0	665
7:30AM	60	245	0	0305	0	203	0	7	0	210	0	17	220	0	0	237	0	0	0	0	0	0	0	752
7:45AM	42	246	0 0	0288	0	242	0	3	0	245	0	15	195	0	0	210	0	0	0	0	0	0	0	743
Hourly Total	182	945	$0 \quad 0$	$0 \quad 1127$	0	782	0	11	10	793	0	57	788	0	0	845	0	0	0	0	0	0	0	2765
8:00AM	61	235	$0 \quad 0$	0296	0	212	0	0	0	212	0	15	189	0	0	204		0	0	0	0	0	0	712
8:15AM	46	236	$0 \quad 0$	0282	0	222	0	0	0	222	0	9	170	0	0	179		0	0	0	0	0	0	683
8:30AM	41	206	0	0247	0	187	0	4	0	191	0	11	156	0	0	167		0	0	0	0	0	0	605
8:45AM	63	228	0	0291	0	171	0	1	0	172	0	12	189	0	0	201	0	0	0	0	0	0	0	664
Hourly Total	211	905	$0 \quad 0$	$0 \quad 1116$	0	792	0	5	0	797	0	47	704	0	0	751	0	0	0	0	0	0	0	2664
3:00PM	112	209	0 0	0321	0	148	0	28	0	176	0	11	78	0	0	89	0	0	0	0	0	0	0	586
3:15PM	106	186	$0 \quad 0$	0292	0	159	0	43	0	202	0	6	76	0	0	82	0	0	0	0	0	0	0	576
3:30PM	150	258	0 0	0408	0	186	0	27	0	213	0	2	57	0	0	59	0	0	0	0	0	0	0	680
3:45PM	102	208	0	0	0	199	0	37	0	236	0	5	73	0	0	78	0	0	0	0	0	0	0	624
Hourly Total	470	861	0 0	$0 \quad 1331$	0	692	0	135	0	827	0	24	284	0	0	308	0	0	0	0	0	0	0	2466
4:00PM	168	250	0	$0 \quad 418$	0	164	0	24	4	188	0	7	63	0	0	70	0	2	0	0	0	2	0	678
4:15PM	122	281	0	0403	0	179	0	41	0	220	0	6	80	0	0	86	0	0	0	0	0	0	0	709
4:30PM	184	326	0 0	0510	0	215	0	38	0	253	0	9	99	0	0	108	0	0	0	0	0	0	0	871
4:45PM	155	338	00	0493	0	216	0	37	0	253	0	2	80	0	0	82	0	0	0	0	0	0	0	828
Hourly Total	629	1195	$0 \quad 0$	01824	0	774	0	140	0	914	0	24	322	0	0	346	0	2	0	0	0	2	0	3086
5:00PM	210	402	0	0612	0	192	0	44	0	236	0	11	70	0	0	81	0	0	0	0	0	0	0	929
5:15PM	156	411	0	0567	0	223	0	43	0	266	0	6	89	1	0	96	0	0	0	0	0	0	0	929
5:30PM	142	341	0	0483	0	237	0	56	0	293	0	12	67	0	0	79	0	0	0	0	0	0	0	855
5:45PM	131	219	00	0350	0	241	0	41	0	282	0	12	50	0	0	62	0	0	0	0	0	0	0	694
Hourly Total	639	1373	0 0	02012	0	893	0	184	0	1077	0	41	276	1	0	318	0	0	0	0	0	0	0	3407
Total	2238	5968	$0 \quad 0$	08206	0	4367	1	483	0	4851	0	230	2917	1	0	3148	0	2	0	0	0	2	0	16207
\% Approach	27.3\%	72.7\%	0\% 0\%	\%		90.0\%	0\%	10.0\%	0\%	-		7.3\%	92.7\%	0\% 0\%		-		100\% 0		0\% 0\%		-		-
\% Total	13.8\%	36.8\%	0\% 0\%	50.6\%		26.9\%	0\%	3.0\%		29.9\%		1.4\%	18.0\%	0\% 0\%		19.4 \%			0\% 0	0\% 0\%		0 \%		
Motorcycles	0	0	$0 \quad 0$	$0 \quad 0$		1	0	0	0	1		1	0	0	0	1		0	0	0	0	0		2
\% Motorcycles	0\%	0\%	0\% 0\%	\% \%	-	0\%	0\%	0\%	0\%	0 \%		0.4\%	0\%	0\% 0\%		0 \%		0\% 0	0\% 0	0\% 0\%		0 \%		0\%
Lights	2075	5671	$0 \quad 0$	07746		4095	0	476	0	4571		224	2734	1	0	2959		2	0	0	0	2		15278
\% Lights	92.7\%	95.0\%	0\% 0\%	\% 94.4 \%		93.8\%	0\%	98.6\%	0\%	94.2\%		97.4\%	93.7\%	100\% 0\%	\%	94.0\%		100\% 0	0\% 0	0\% 0\%	\%	00\%		94.3\%
S ingle-Unit Trucks	86	215	$0 \quad 0$	$0 \quad 301$		175	1		0	180		2	96	0	0	98		0	0	0	0	0		579
\% S ingle-Unit Trucks	3.8\%	3.6\%	0\% 0\%	\% 3.7\%		4.0\%	100\%	0.8\%	0\%	3.7\%		0.9\%	3.3\%	0\% 0\%		3.1\%		0\% 0	0\% 0	0\% 0\%		0 \%		3.6\%
Articulated Trucks	76	74	$0 \quad 0$	$0 \quad 150$		91	0	3	0	94		3	85	0	0	88		0	0	0	0	0		332
\% Articulated Trucks	3.4\%	1.2\%	0\% 0\%	\% 1.8\%		2.1\%	0\%	0.6\%	0\%	1.9\%		1.3\%	2.9\%	0\% 0\%		2.8\%		0\% 0	0\% 0	0\% 0\%		0 \%		2.0\%
Buses	1	8	$0 \quad 0$	$0 \quad 9$	-	5	0	0	0	5		0	2	0	0	2		0	0	0	0	0		16
\% Buses	0\%	0.1\%	0\% 0\%	0.1\%		0.1\%	0\%	0\%	0\%	0.1\%		0\%	0.1\%	0\% 0\%		0.1\%		0\% 0	0\% 0	0\% 0\%		0 \%		0.1\%
Bicycles on Road	0	0	$0 \quad 0$	0 0	-	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0
\% Bicycles on Road	0\%	0\%	0\% 0\%	0\%		0\%	0\%	0\%	0\%	0 \%		0\%	0\%	0\% 0\%		0 \%		0\% 0	0\% 0	0\% 0\%	\%	0 \%		0\%
Pedestrians	-	-	- -	- -	0	-	-	- -	- -	- -	0	-	-	-	-	-	0	-	-	-	-	-	0	
\% Pedestrians	-	-	-	- -		-	-	- -	- -	- -		-	-	-	-	-		- -	-	-	-	-		
Bicycles on Crosswalk	-	-	- -			-					0	-	-	-	-		0	-	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	- -	- -		-	-	-	- -	- -		-	-	-	-	-		- -	-	-	-	-		

[^19]TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC
Wed Jan 16, 2019
Full Length (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609037, Location: 42.585518, -71.156976

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)
Total: 15490
In: $8206 \quad$ Out: 7284

Out: $6453 \quad \ln : 3148$
Total: 9601
[S] Ballardvale Street (Route 125)

TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC
Wed Jan 16, 2019
AM Peak (7:30 AM - 8:30 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians,
Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609037, Location: 42.585518, -71.156976

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street,
Framingham, MA, MA, 01702, US

Leg Direction	Ballardvale Street (Route 125) Southbound						I-93 NB Onramp/Offramp Westbound						Ballardvale Street (Route 125) Northbound						I-93 NB Onramp Eastbound						Int
Time	R	T	L	U	App			T	L	U	App		R	T	L		App		R	T	L				
2019-01-16 7:30 AM	60	245	0	0	305	0	203	0	7	0	210	0	17	220	0	0	237	0	0	0	0	0	0	0	752
7:45AM	42	246	0	0	288	0	242	0	3	0	245	0	15	195	0	0	210	0	0	0	0	0	0	0	743
8:00AM	61	235	0	0	296	0	212	0	0	0	212	0	15	189	0	0	204	0	0	0	0	0	0	0	712
8:15AM	46	236	0	0	282	0	222	0	0	0	222	0	9	170	0	0	179	0	0	0	0	0	0	0	683
Total	209	962	0	0	1171	0	879	0		0	889	0	56	774	0	0	830	0	0	0	0	0	0	0	2890
\% Approach	17.8\%	82.2\% 0	0\% 0				98.9\% 0	0\%	1.1\% 0\%		-		6.7\% 9	93.3\% 0	0\% 0		-		0\%	0\% 0	0\% 0		-		
\% Total	7.2\%	33.3\% 0	0\% 0	0\% 4	40.5 \%		30.4\% 0	0\%	0.3\% 0\%	\%	30.8\%		1.9\% 2	26.8\% 0	0\% 0	0\%	28.7\%			0\% 0	0\% 0\%		\%		
PHF	0.857	0.978	-	-	0.960		0.908	-	0.357		0.907		0.824	0.880	-		0.876			-	-	-	-		0.961
Motorcycles	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0
\% Motorcycles	0\%	0\% 0	0\% 0		0 \%		0\% 0		0\% 0\%		0 \%		0\%	0\% 0	0\% 0		0 \%		0\%	0\% 0	0\% 0\%		-		0\%
Lights	165	885	0	0	1050		828	0	9	0	837		55	735	0	0	790		0	0	0	0	0		2677
\% Lights	78.9\%	92.0\% 0	0\% 0	0\%	89.7\%		-94.2\% 0	0\% 9	90.0\% 0\%	\% 9	94.2\%		98.2\%	95.0\% 0	0\% 0	0\%	95.2\%			0\% 0	0\% 0\%		-		92.6\%
Single -Unit Trucks	25	65	0	0	90		38	0	0	0	38		1	21	0	0	22		0	0	0	0	0		150
\% Single-Unit Trucks	12.0\%	6.8\% 0	0\% 0		7.7\%		4.3\% 0		0\% 0\%		4.3\%		1.8\%	2.7\% 0	0\% 0		2.7 \%		0\%	0\% 0	0\% 0		-		5.2\%
Articulated Trucks	19	11	0	0	30		13	0	1	0	14		0	18	0	0	18		0	0	0	0	0		62
\% Articulated Trucks	9.1\%	1.1\% 0	0\% 0	0\%	2.6\%		1.5\% 0	0\%	10.0\% 0\%	\%	1.6\%		0\%	2.3\% 0	0\% 0	0\%	2.2\%		0\%	0\% 0	0\% 0\%		-		2.1\%
Buses	0	1	0	0	1		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		1
\% Buses	0\%	0.1\% 0	0\% 0		0.1\%		0\% 0		0\% 0\%		0 \%		0\%	0\% 0	0\% 0		0 \%		0\%	0\% 0	0\% 0		-		0\%
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0
\% Bicycles on Road	0\%	0\% 0	0\% 0	0\%	0 \%		0\% 0		0\% 0\%		0 \%		0\%	0\% 0	0\% 0		0 \%		0\%	0\% 0	0\% 0		-		0\%
Pedestrians	-	-	-	-	-	0	-		-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
\% Pedestrians	-	-	-	-	-		-		-	-	-		-	-	-	-	-		-	-	-	-	-		
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	-		-		- -		-	-	-		-	-	-	-	-		- -	-	-	-	-	-	

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T:Thru, U: U-Turn

TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC
Wed Jan 16, 2019
AM Peak (7:30 AM - 8:30 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609037, Location: 42.585518, -71.156976

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)
Total: 2824
In: $1171 \quad$ Out: 1653

Out: 972 In: 830
Total: 1802
[S] Ballardvale Street (Route 125)

TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC
Wed Jan 16, 2019
PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians,
Bicycles on Road, Bicycles on Crosswalk)
All Movements
Provided by: Precision Data Industries,
LLC (PDI)
ID: 609037, Location: 42.585518, -71.156976
46 Morton Street,
Framingham, MA, MA, 01702, US

Leg Direction	Ballardvale Street (Route 125) Southbound						I-93 NB Onramp/Offramp Westbound							Ballardvale Street (Route 125) Northbound							I-93 NB Onramp Eastbound						Int
Time	R	T	L	U	App			R		L	U	App			R	T	L	U	App		R	T	L		App		
2019-01-16 4:30PM	184	326	0	0	510	0		215	0	38	0	253	0		9	99	0	0	108	0	0	0	0	0	0	0	871
4:45PM	155	338	0	0	493	0		216	0	37	0	253	0		2	80	0	0	82	0	0	0	0	0	0	0	828
5:00PM	210	402	0	0	612	0		192	0	44	0	236	0		11	70	0	0	81	0	0	0	0	0	0	0	929
5:15PM	156	411	0	0	567	0		223	0	43	0	266	0		6	89	1	0	96	0	0	0	0	0	0	0	929
Total	705	1477	0	0	2182	0		846	0	162	0	1008	0		28	338	1	0	367	0	0	0	0	0	0	0	3557
\% Approach	32.3\% 6	67.7\% 0	0\% 0\%		-			83.9\% 0	0\%	16.1\% 0					7.6\%	92.1\%	0.3\% 0\%		-		0\%	0\% 0	0\% 0\%		-		-
\% Total	19.8\%	41.5\% 0	0\% 0\%	\%	61.3\%			23.8\% 0		4.6\% 0	0\%	28.3\%			0.8\%	9.5\%	0\% 0\%	\%	10.3\%		0\%	0\% 0	0\% 0\%		\% \%		
PHF	0.839	0.898	-	-	0.891			0.948	-	0.920		0.947			0.636	0.854	0.250		0.850		-	-	-	-	-		0.957
Motorcycles	0	0	0	0	0			1	0	0	0	1			0	0	0	0	0		0	0	0	0	0		1
\% Motorcycles	0\%	0\% 0	0\% 0\%	\%	0 \%			0.1\% 0	0\%	0\% 0	0\%	0.1\%			0\%	0\%	0\% 0\%		0 \%		0\%	0\% 0	0\% 0\%		-		0\%
Lights	691	1461	0	0	2152			813	0	161	0	974			28	319	1	0	348		0	0	0	0	0		3474
\% Lights	98.0\% 9	98.9\% 0	0\% 0\%	\% 9	98.6\%			96.1\% 0	0\%	99.4\% 0	0\%	96.6\%			100\%	94.4\%	100\% 0\%	\%	94.8\%		0\%	0\% 0	0\% 0\%		-		97.7\%
Single -Unit Trucks	7	8	0	0	15			27	0	1	0	28			0	13	0	0	13		0	0	0	0	0		56
\% Single-Unit Trucks	1.0\%	0.5\% 0	0\% 0\%		0.7\%			3.2\% 0		0.6\% 0		2.8\%			0\%	3.8\%	0\% 0\%		3.5\%		0\%	0\% 0	0\% 0\%		-		1.6\%
Articulated Trucks	7	7	0	0	14			5		0	0	5			0	5	0	0	5		0	0	0	0	0		24
\% Articulated Trucks	1.0\%	0.5\% 0	0\% 0\%		0.6\%	-		0.6\% 0		0\% 0		0.5\%			0\%	1.5\%	0\% 0\%		1.4 \%		0\%	0\% 0	0\% 0\%		-		0.7\%
Buses	0	1	0	0	1	-		0	0	0	0	0	-		0	1	0	0	1		0	0	0	0	0		2
\% Buses	0\%	0.1\% 0	0\% 0\%		0 \%			0\% 0		0\% 0		0 \%			0\%	0.3\%	0\% 0\%	\%	0.3\%		0\%	0\% 0	0\% 0\%		-		0.1\%
Bicycles on Road	0	0	0	0	0			0	0	0	0	0			0	0	0	0	0		0	0	0	0	0		0
\% Bicycles on Road	0\%	0\% 0	0\% 0\%		0 \%			0\% 0	0\%	0\% 0		0 \%	-		0\%	0\%	0\% 0\%		0 \%		0\%	0\% 0	0\% 0\%		-		0\%
Pedestrians	-	-	-	-	-	0		-		- -	-	-	0		-	-	-	-	-	0	-	-	-	-	-	0	
\% Pedestrians	-	-	-	-	-			-		- -	-	-			-	- -	-	-	-		-	-	-	-	-		-
Bicycles on Crosswalk	-	-	-	-	-	0		-	-	- -	-	-	0		-	-	-	-	-	0	-	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	-	-	-			-		-		-			-	-	-	-	-		-	-	-	-	-	-	-

[^20]TM-1 Ballardvale Street (Route 125) @ I-93 N... - TMC
Wed Jan 16, 2019
PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609037, Location: 42.585518, -71.156976

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)
Total: 3366
In: $2182 \quad$ Out: 1184
$\stackrel{\diamond}{\circ} \underset{\underset{\sim}{*}}{ }$

Out: $1639 \quad \ln : 367$
Total: 2006
[S] Ballardvale Street (Route 125)

TM-2 Ballardville Street (Route 125) @ I-93 ... - TMC
Wed Jan 16, 2019
Full Leng th (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609038, Location: 42.582744, -71.158304

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street, Framingham, MA, MA, 01702, US

Leg Direction	Ballardvale Street (Route 125) Southbound	Ballardvale Street (Route 125) Northbound	I-93 SB Onramp/Offramp Eastbound

| Time | R | T | U | App Ped* | T | L | U | App Ped* $^{\prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Full Length (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609038, Location: 42.582744, -71.158304

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street, Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)

Out: 2284 In: 1463
Total: 3747
[S] Ballardvale Street (Route 125)

TM-2 Ballardville Street (Route 125) @ I-93 ... - TMC
Wed Jan 16, 2019
AM Peak (7:15 AM - 8:15 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided by: Precision Data Industries, LLC (PDI)

46 Morton Street,
ID: 609038, Location: 42.582744, -71.158304
MA, MA, 01702, US

$\begin{array}{\|l} \hline \text { Leg } \\ \text { Dire ction } \end{array}$	Ballardvale Street (Route 125) Southbound					Ballardvale Street (Route 125) Northbound					I-93 SB Onramp/OfframpEastbound					
Time	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	Int
2019-01-16 7:15AM	218	31	0	249	0	85	12	0	97	0	18	123	0	141	0	487
7:30AM	207	33	0	240	0	101	24	0	125	0	16	139	0	155	0	520
7:45AM	217	44	0	261	0	81	27	0	108	0	15	128	0	143	0	512
8:00AM	204	40	0	244	0	65	22	0	87	0	6	123	0	129	0	460
Total	846	148	0	994	0	332	85	0	417	0	55	513	0	568	0	1979
\% Approach	85.1\%	14.9\%	0\%	-		79.6\%	20.4\%	0\%	-		9.7\%	90.3\%	0\%			
\% Total	42.7\%	7.5\%	0\%	50.2\%		16.8\%	4.3\%	0\%	21.1\%		2.8\%	25.9\%	0\%	28.7\%		
PHF	0.970	0.841	-	0.952		0.822	0.787	-	0.834		0.764	0.923	-	0.916		0.951
Motorcycles	0	0	0	0		0	0	0	0		0	0	0	0		0
\% Motorcycles	0\%	0\%	0\%	0 \%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0%		0\%
Lights	782	139	0	921		327	85	0	412		53	483	0	536		1869
\% Lights	92.4\%	93.9\%	0\%	92.7\%		98.5\%	100\%	0\%	98.8\%		96.4\%	94.2\%	0\%	94.4\%		94.4\%
Single -Unit Trucks	53	7	0	60		4	0	0	4		2	15	0	17		81
\% Single-Unit Trucks	6.3\%	4.7\%	0\%	6.0\%		1.2\%	0\%	0\%	1.0\%		3.6\%	2.9\%	0\%	3.0\%		4.1\%
Articulated Trucks	10	2	0	12		1	0	0	1		0	15	0	15		28
\% Articulated Trucks	1.2\%	1.4\%	0\%	1.2\%		0.3\%	0\%	0\%	0.2\%		0\%	2.9\%	0\%	2.6%		1.4\%
Buses	1	0	0	1		0	0	0	0		0	0	0	0		1
\% Buses	0.1\%	0\%	0\%	0.1\%		0\%	0\%	0\%	0 \%		0\%	0\%	0\%	0\%		0.1\%
Bicycles on Road	0	0	0	0		0	0	0	0		0	0	0	0		0
\% Bic ycles on Road	0\%	0\%	0\%	0 \%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%
Pedestrians	-	-	-	-	0	-	-	- -	-	0	-	-	-	-	0	
\% Pedestrians	-	-	-	-		-	-	- -	-		-	-	-	-		
Bicycles on Crosswalk	-	-	-	-	0	-	-	- -	-	0	-	-	-	-	0	
\% Bicycles on Crosswalk	-		-	-		-	-	- -	-		-	-	-	-		

[^21]AM Peak (7:15 AM - 8:15 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609038, Location: 42.582744, -71.158304

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)
In: 994 Out: 845

Out: $203 \quad \ln : 417$
Total: 620
[S] Ballardvale Street (Route 125)

TM-2 Ballardville Street (Route 125) @ I-93 ... - TMC
Wed Jan 16, 2019
PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided by: Precision Data Industries, LLC (PDI)

46 Morton Street,
ID: 609038, Location: 42.582744, -71.158304
Framingham, MA, MA, 01702, US

$\begin{array}{\|l} \hline \text { Leg } \\ \text { Dire ction } \end{array}$	Ballardvale Street (Route 125) Southbound					Ballardvale Street (Route 125) Northbound						I-93 SB Onramp/Offramp Eastbound					
Time	R	T	U	App	Ped*	T	L	U		App	Ped*	R	L	U	App	Ped*	Int
2019-01-16 4:30PM	220	147	0	367	0	51	7	0		58	0	36	57	1	94	0	519
4:45PM	268	128	0	396	0	41	7	0		48	0	29	45	0	74	0	518
5:00PM	267	171	0	438	0	42	7	0		49	0	21	28	0	49	0	536
5:15PM	327	122	0	449	0	54	7	0		61	0	28	46	0	74	0	584
Total	1082	568	0	1650	0	188	28	0		216	0	114	176	1	291	0	2157
\% Approach	65.6\%	34.4\%	0\%	-		87.0\%	13.0\%	0\%		-		39.2\%	60.5\%	0.3\%	-		
\% Total	50.2\%	26.3\%	0\%	76.5\%		8.7\%	1.3\%	0\%		10.0\%		5.3\%	8.2\%	0\%	13.5\%		
PHF	0.827	0.830	-	0.919		0.870	1.000	-		0.885		0.792	0.772	0.250	0.774		0.923
Motorcycles	0	0	0	0		0	0	0		0		0	0	0	0		0
\% Motorcycles	0\%	0\%	0\%	0\%		0\%	0\%	0\%		0\%		0\%	0\%	0\%	0 \%		0\%
Lights	1071	565	0	1636		186	28	0		214		114	159	1	274		2124
\% Lights	99.0\%	99.5\%	0\%	99.2\%		98.9\%	100\%	0\%		99.1\%		100\%	90.3\%	100\%	94.2\%		98.5\%
Single-Unit Trucks	3	2	0	5		2	0	0		2		0	13	0	13		20
\% Single-Unit Trucks	0.3\%	0.4\%	0\%	0.3\%		1.1\%	0\%	0\%		0.9\%		0\%	7.4\%	0\%	4.5\%		0.9\%
Articulated Trucks	7	0	0	7		0	0	0		0		0	3	0	3		10
\% Articulated Trucks	0.6\%	0\%	0\%	0.4 \%		0\%	0\%	0\%		0\%	-	0\%	1.7\%	0\%	1.0\%		0.5\%
Buses	1	1	0	2		0	0	0		0		0	1	0	1		3
\% Buses	0.1\%	0.2\%	0\%	0.1\%		0\%	0\%	0\%		0 \%		0\%	0.6\%	0\%	0.3\%		0.1\%
Bicycles on Road	0	0	0	0		0	0	0		0		0	0	0	0		0
\% Bicycles on Road	0\%	0\%	0\%	0\%		0\%	0\%	0\%		0\%		0\%	0\%	0\%	0%		0\%
Pedestrians	-	-	-	-	0	-	-	-		-	0	-	-	-	-	0	
\% Pedestrians	-	-	-	-		-	-	-		-	-	-	-	-	-		
Bicycles on Crosswalk	-	-	-	-	0	-	-	-		-	0	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	-	-		-	-	-		-		-	-	-	-		

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609038, Location: 42.582744, -71.158304

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street, Framingham, MA, MA, 01702, US
[N] Ballardvale Street (Route 125)
Total: 2014
In: $1650 \quad$ Out: 364
$\stackrel{\infty}{\infty} \stackrel{\infty}{\circ}$

Out: $682 \quad \ln : 216$
Total: 898
[S] Ballardvale Street (Route 125)

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
Full Length (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses,
Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609040, Location: 42.587497, -71.155562

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street, Framingham, MA, MA, 01702, US

Leg	Route 125 Solirection	Ballardvale Street (Route 125) Sorthbound
Northbound		

Time

Time	R	T	U	App		T	L	U	App Ped*	
2019-01-16 6:00AM	17	128	0	145	0	52	115	0	167	0
6:15AM	30	151	0	181	0	91	138	0	229	0
6:30 AM	39	144	0	183	0	98	180	0	278	0
6:45AM	40	185	0	225	0	118	194	0	312	0

H:45AM	40	185	0	$\mathbf{2 2 5}$	0	118	194	0	$\mathbf{3 1 2}$	0	
Hourly Total	126	608	0	$\mathbf{7 3 4}$	0	359	627	0	$\mathbf{9 8 6}$	0	1
$7: 00 \mathrm{AM}$	40	189	0	$\mathbf{2 2 9}$	0	135	203	0	$\mathbf{3 3 8}$	0	

Hourly

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
Full Length (6 AM-9 AM, 3 PM-6 PM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609040, Location: 42.587497, -71.155562

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Route 125
Total: 10378
In: 5439 Out: 4939

Out: 8257 In: 7335
Total: 15592
[S] Ballardvale Street (Route 125)

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
AM Peak (7:30 AM - 8:30 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided by: Precision Data Industries, LLC (PDI)

46 Morton Street,
ID: 609040, Location: 42.587497, -71.155562
MA, MA, 01702, US

Leg Direction	Route 125 Southbound					Ballardvale Street (Route 125) Northbound					Ballardvale Street Eastbound					
Time	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	Int
2019-01-16 7:30AM	78	223	0	301	0	169	250	0	419	0	80	16	0	96	0	816
7:45AM	88	230	0	318	0	161	314	0	475	0	66	13	0	79	0	872
8:00 AM	92	209	0	301	0	130	261	1	392	0	87	12	0	99	0	792
8:15AM	107	214	0	321	0	122	265	0	387	0	77	18	0	95	0	803
Total	365	876	0	1241	0	582	1090	1	1673	0	310	59	0	369	0	3283
\% Approach	29.4\%	70.6\%	0\%	-	-	34.8\%	65.2\%	0.1\%	-	-	84.0\%	16.0\%		-		-
\% Total	11.1\%	26.7\%	0\%	37.8 \%	-	17.7\%	33.2\%	0\%	51.0\%	-	9.4\%	1.8\%	0\%	11.2\%	-	-
PHF	0.850	0.952	-	0.966	-	0.861	0.868	0.250	0.881	-	0.891	0.819	-	0.932	-	0.941
Motorcycles	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0
\% Motorcycles	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%
Lights	349	833	0	1182	-	550	1029	1	1580	-	230	47	0	277		3039
\% Lights	95.6\%	95.1\%	0\%	95.2\%	-	94.5\%	94.4\%	100\%	94.4 \%	-	74.2\%	79.7\%	0\%	75.1\%		92.6\%
Single -Unit Trucks	12	31	0	43	-	26	36	0	62	-	64	10	0	74	-	179
\% Single-Unit Trucks	3.3\%	3.5\%	0\%	3.5 \%	-	4.5\%	3.3\%	0\%	3.7 \%	-	20.6\%	16.9\%	0\%	20.1\%	-	5.5\%
Articulated Trucks	3	10	0	13	-	6	25	0	31	-	16	2	0	18	-	62
\% Articulated Trucks	0.8\%	1.1\%	0\%	1.0 \%	-	1.0\%	2.3\%	0\%	1.9 \%	-	5.2\%	3.4\%	0\%	4.9 \%	-	1.9\%
Buses	0	2	0	2	-	0	0	0	0	-	0	0	0	0	-	2
\% Buses	0\%	0.2\%	0\%	0.2 \%	-	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0.1\%
Bicycles on Road	1	0	0	1	-	0	0	0	0	-	0	0	0	0	-	1
\% Bicycles on Road	0.3\%	0\%	0\%	0.1\%	-	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%
Pedestrians	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
AM Peak (7:30 AM - 8:30 AM)
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609040, Location: 42.587497, -71.155562

Provided by: Precision Data
Industries, LLC (PDI)
46 Morton Street,
Framingham, MA, MA, 01702, US
[N] Route 125
Total: 1882
In: $1241 \quad$ Out: 641

Out: 1187
In: 1673
Total: 2860
[S] Ballardvale Street (Route 125)

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided by: Precision Data Industries, LLC (PDI)

46 Morton Street,
ID: 609040, Location: 42.587497, -71.155562 MA, MA, 01702, US

Leg Direction	Route 125 Southbound					Ballardvale Street (Route 125) Northbound					Ballardvale Street Eastbound					
Time	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	Int
2019-01-16 4:30PM	19	198	0	217	0	226	74	0	300	0	292	84	0	376	0	893
4:45PM	22	213	0	235	0	243	68	0	311	0	281	75	0	356	0	902
5:00PM	18	222	0	240	0	213	52	0	265	0	405	117	0	522	0	1027
5:15PM	11	205	0	216	0	254	54	0	308	0	365	98	0	463	0	987
Total	70	838	0	908	0	936	248	0	1184	0	1343	374	0	1717	0	3809
\% Approach	7.7\%	92.3\%	0\%	-	-	79.1\%	20.9\%	0\%	-	-	78.2\%	21.8\%		-	-	-
\% Total	1.8\%	22.0\%	0\%	23.8\%	-	24.6\%	6.5\%	0\%	31.1\%	-	35.3\%	9.8\%	0\%	45.1\%	-	-
PHF	0.795	0.944	-	0.946	-	0.921	0.838	-	0.952	-	0.829	0.804	-	0.823	-	0.928
Motorcycles	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0
\% Motorcycles	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%
Lights	64	827	0	891	-	920	209	0	1129	-	1327	368	0	1695	-	3715
\% Lights	91.4\%	98.7\%	0\%	98.1\%	-	98.3\%	84.3\%	0\%	95.4 \%	-	98.8\%	98.4\%	0\%	98.7\%	-	97.5\%
S ingle-Unit Trucks	4	4	0	8	-	9	34	0	43	-	8	4	0	12	-	63
\% Single-Unit Trucks	5.7\%	0.5\%	0\%	0.9 \%	-	1.0\%	13.7\%	0\%	3.6 \%	-	0.6\%	1.1\%	0\%	0.7 \%	-	1.7\%
Articulated Trucks	2	6	0	8	-	5	5	0	10	-	8	1	0	9	-	27
\% Articulated Trucks	2.9\%	0.7\%	0\%	0.9 \%	-	0.5\%	2.0\%	0\%	0.8 \%	-	0.6\%	0.3\%	0\%	0.5 \%	-	0.7\%
Buses	0	1	0	1	-	2	0	0	2	-	0	0	0	0	-	3
\% Buses	0\%	0.1\%	0\%	0.1\%	-	0.2\%	0\%	0\%	0.2 \%	-	0\%	0\%	0\%	0 \%	-	0.1\%
Bicycles on Road	0	0	0	0	-	0	0	0	0	-	0	1	0	1	-	1
\% Bicycles on Road	0\%	0\%	0\%	0 \%	-	0\%	0\%	0\%	0 \%	-	0\%	0.3\%	0\%	0.1\%	-	0\%
Pedestrians	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	
\% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

TM-3 Ballardvale Street (Route 125) @ Ballar... - TMC
Wed Jan 16, 2019
PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour
All Classes (Motorcycles, Lights, Single-Unit Trucks, Articulated Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 609040, Location: 42.587497, -71.155562

Provided by: Precision Data Industries, LLC (PDI) 46 Morton Street, Framingham, MA, MA, 01702, US
[N] Route 125
Total: 2218
In: 908 Out: 1310

Out: 2181
In: 1184
Total: 3365
[S] Ballardvale Street (Route 125)

Massachusetts Highway Department S18-055-342-01 Weekly Volume Report - Mon 01/14/2019 - Sun 01/20/2019

Location ID:	S18-055-342-01
Located On:	ON-RAMP FROM RTE. 62 TO I-93NB
	Direction
RAMP	
Community:	WILMINGTON

Massachusetts Highway Department R12208 Weekly Volume Report - Mon 01/28/2019 - Sun 02/03/2019

Location ID:	R12208
Located On:	RAMP-RT 93 NB TO RT 125
Direction	RAMP
	Community:
	Wilmington

$$
\text { STA. } 6
$$

Massachusetts Highway Department

 S18-055-342-03 Weekly Volume Report - Mon 01/14/2019 - Sun 01/20/2019

I-93 Southbound between Exit 7 (Furnace Brook Parkway) and Exit 8 (Route 3 Southbound)


```
MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 1
Page: 1
Starting: 6/16/2019
STA,1
```

File: 1.prn
City: Quincy
County: Ramp ID \# 12076

Site Reference: 190020000141
Site ID: Station 1
Location: Furnace Brook Pkwy. on-ramp to I-93 SB Direction: SOUTH
Direction soUTH

| TIME | MON | TUE | WED | THU | FRI | WKDAY | SAT | SUN | WEEK | TOTAL |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 17 | 18 | 19 | 20 | 21 | AVG | 22 | 16 | AVG | |

$$
\begin{aligned}
& \text { STA. } 2 \\
& \text { TOTAL }
\end{aligned}
$$

File: comb..prn
City: Quincy County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL

| TIME | MON | TUE | WED | THU | FRI | WKDAY | SAT | SUN | WEEK | TOTAL |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 17 | 18 | 19 | 20 | 21 | AVG | 22 | 16 | AVG | |

Direction: SOUTH

TIME	MON	TUE	WED	THU	FRI	WKDAY	SAT	SUN	WEEK	TOTAL
	17	18	19	20	21	AVG	22	16	AVG	
01:00	334	399	350	572	511	433	685	667	502	3518
02:00	226	242	262	355	348	286	475	505	344	2413
03:00	147	186	186	220	294	206	395	399	261	1827
04:00	125	145	153	164	177	152	265	245	182	1274
05:00	288	359	324	358	300	325	239	199	295	2067
06:00	696	695	677	724	647	687	354	218	573	4011
07:00	1233	1203	1204	1181	1109	1186	674	351	993	6955
08:00	1367	1431	1446	1365	1351	1392	982	616	1222	8558
09:00	1397	1404	1360	1321	1343	1365	1285	737	1263	8847
10:00	1376	1418	1388	1373	1215	1354	1355	1076	1314	9201
11:00	1334	1330	1353	1357	1362	1347	1596	1437	1395	9769
12:00	1495	1476	1487	1418	1567	1488	1701	1629	1539	10773
13:00	1509	1415	1618	1529	1582	1530	1710	1694	1579	11057
14:00	1581	1279	1685	1468	1465	1495	1568	1659	1529	10705
15:00	1616	1282	1589	1524	1349	1472	1638	1433	1490	10431
16:00	1385	1105	1327	1087	1218	1224	1500	1330	1278	8952
17:00	1359	1169	1423	875	1128	1190	1501	1591	1292	9046
18:00	1444	1371	1451	1488	1095	1369	1354	1394	1371	9597
19:00	1522	1531	1606	1520	1452	1526	1509	1344	1497	10484
20:00	1574	1635	1618	1496	1471	1558	1580	1275	1521	10649
21:00	1207	1270	1514	1390	1178	1311	1423	1139	1303	9121
22:00	1067	1079	1149	1032	1180	1101	1320	1006	1119	7833
23:00	865	738	864	897	1176	908	1241	727	929	6508
24:00	681	660	954	835	1098	845	1221	563	858	6012
TOTALS	25828	24822	26988	25549	25616	25750	27571	23234	25649	179608
\% AVG WKDY	100.3	96.3	104.8	99.2	99.4		107	90.2		
\% AVG WEEK	100.6	96.7	105.2	99.6	99.8		107.4	90.5		
AM Times	12:00	12:00	12:00	12:00	12:00	12:00	12:00	12:00	12:00	
AM Peaks	1495	1476	1487	1418	1567	1488	1701	1629	1539	
PM Times	15:00	20:00	14:00	13:00	13:00	20:00	13:00	13:00	13:00	
PM Peaks	1616	1635	1685	1529	1582	1558	1710	1694	1579	

MassDOT Highway Division
WEEKLY SUMMARY FOR LANE 2
Page: 2
Starting: 6/16/2019

$$
\begin{aligned}
& \text { STA } \cdot 2 \\
& \text { LN. } 2
\end{aligned}
$$

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID; Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH

MassDOT Highway Division
 WEEKLY SUMMARY FOR LANE 1

Page: 1
Starting: 6/16/2019

Site Reference: 190020000042	STA. 3	
Site ID: Station 3	LN,	File: comb. .prn City: Quincy
Location: I-93 SB ramp to Route 3 SB		County: Ramp ID \# 12032

Direction: SOUTH

	TIME	$\begin{array}{r} \text { MON } \\ 17 \end{array}$	$\begin{array}{r} \text { TUE } \\ 18 \end{array}$	$\begin{array}{r} \text { WED } \\ 19 \end{array}$	$\begin{array}{r} \text { THU } \\ 20 \end{array}$	$\begin{array}{r} \text { FRI } \\ 21 \end{array}$	$\begin{gathered} \text { WKDAY } \\ \text { AVG } \end{gathered}$	$\begin{array}{r} \text { SAT } \\ 22 \end{array}$	$\begin{array}{r} \text { SUN } \\ 16 \end{array}$	WEEK AVG	TOTAL
	01:00	279	351	305	721	453	421	643	497	464	3249
	02:00	187	198	225	277	281	233	421	463	293	2052
	03:00	121	151	126	209	250	171	311	315	211	1483
	04:00	124	134	143	170	194	153	243	219	175	1227
	05:00	268	276	272	281	226	264	234	130	241	1687
	06:00	621	616	631	628	587	616	378	213	524	3674
	07:00	1054	1020	1047	981	966	1013	756	377	885	6201
	08:00	1238	1281	1274	11.97	1121	1222	1114	625	1121	7850
	09:00	1201	1174	1188	1211	1039	1162	1340	776	1132	7929
	10:00	1161	1180	1175	1213	1045	1154	1229	1091	1156	8094
	11:00	1106	1129	1148	1079	1279	1148	1285	1220	1178	8246
	12:00	1167	1248	1203	1146	1392	1231	1376	1245	1253	8777
	13:00	1147	1043	1277	1164	1338	1193	1357	1384	1244	8710
	14:00	1315	1068	1334	1270	1252	1247	1263	1166	1238	8668
	15:00	1470	1248	1569	1353	1316	1391	1304	1122	1340	9382
	16:00	1408	1207	1498	1166	1302	1316	1153	1026	1251	8760
	17:00	1406	1176	1402	1052	1325	1272	1120	1215	1242	8696
	18:00	1386	1398	1460	1499	1355	1419	983	1120	1314	9201
	19:00	1531	1502	1579	1583	1543	1547	1149	1057	1420	9944
	20:00	1313	1414	1414	1454	1262	1371	1120	1048	1289	9025
	21:00	1064	1094	1218	1192	1211	1155	1037	904	1102	7720
	22:00	901	843	987	1024	1029	956	1006	785	939	6575
	23:00	685	646	1063	892	940	845	945	604	825	5775
	24:00	553	513	1184	672	888	762	867	438	730	5115
	tals	22706	21910	24722	23434	23594	23262	22634	19040	22567	158040
	AVG WKDY	97.6	94.1	106.2	100.7	101.4		97.3	81.8		
\%	AVG WEEK	100.6	97	109.5	103.8	104.5		100.2	84.3		
AM	Times	08:00	08:00	08:00	10:00	12:00	12:00	12:00	12:00	12:00	
AM	Peaks	1238	1281	1274	1213	1392	1231	1376	1245	1253	
PM	Times	19:00	19:00	19:00	19:00	19:00	19:00	13:00	13:00	19:00	
	Peaks	1531	1502	1579	1583	1543	1547	1357	1384	1420	

$$
\begin{aligned}
& \text { STA. } 3 \\
& \text { LN. } 2
\end{aligned}
$$

NO DATA

TOTAL

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: ROAD TOTAL
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & T o t a l\end{array}$

01:00	1	0	3	22	91	423	512	360	116	40	13	2	1	1	1585
02:00	1	1	5	7	72	261	390	285	140	65	15	3	0	0	1245
03:00	1	0	2	9	42	115	281	263	161	74	23	3	1	5	980
04:00	2	1	3	9	23	88	155	150	104	57	11	1	1	2	607
05:00	0	0	1	2	35	87	124	105	62	19	9	0	1	0	445
06:00	1	0	1	2	6	45	127	141	135	79	20	6	0	0	563
07:00	3	1	0	14	36	60	126	285	224	130	48	12	3	1	943
08:00	2	0	1	1	14	106	293	476	325	196	60	11	7	2	1494
09:00	0	4	3	2	30	223	528	582	331	143	29	2	0	0	1877
10:00	18	4	2	14	154	637	785	645	274	89	17	1	0	1	2641
11:00	7	32	80	248	601	1058	798	362	135	39	7	3	0	0	3370
12:00	199	228	488	894	842	656	243	54	13	0	1	0	0	0	3618
13:00	262	145	333	938	1159	668	104	4	2	3	0	0	0	1	3619
14:00	871	671	662	701	400	188	23	2	0	0	0	2	0	2	3522
15:00	421	361	299	514	582	590	272	56	6	4	0	1	0	0	3106
16:00	494	238	267	352	350	477	359	213	45	16	3	0	0	1	2815
17:00	102	183	409	899	991	651	182	46	8	4	1	1	0	0	3477
18:00	4	2	110	305	687	1118	653	185	34	8	5	0	0	2	3113
19:00	34	48	143	416	702	984	502	156	28	6	3	1	0	0	3023
20:00	10	33	92	246	587	1099	576	189	43	14	1	0	0	1	2891
21:00	5	9	41	222	534	947	570	210	43	12	6	1	0	0	2600
22:00	4	0	16	113	383	831	647	264	71	12	0	0	0	2	2343
23:00	2	1	5	20	142	401	542	369	125	37	13	1	0	1	1659
24:00	2	0	1	26	72	317	434	330	146	37	10	1	0	0	1376

DAY TOTAL	2446	1962	2967	5976	8535	12030	9226	5732	2571	1084	295	52
PERCENTS	4.7%	3.8%	5.7%	11.3%	16.2%	22.8%	17.4%	10.8%	4.8%	2.0%	0.5%	0.0%

Statistical Information...

15th Percentile Speed 40.5 mph

Median Speed 51.9 mph

10 MPH Pace Speed 50 mph to 60 mph 21256 vehicles in pace Representing 40.1% of the total vehicles

85th Percentile Speed 61.6 mph

Average Speed 50.5 mph

Vehicles > 65 MPH 4038 7.6\%

MassDOT Highway Division
SPEED SUMMARY
Page: 1
Sun 6/16/2019

$$
\begin{aligned}
& S T A, 3 \\
& L N, I
\end{aligned}
$$

Site Reference: 190020000042
File: comb..prn

Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB
City: Quincy

$$
\text { County: Ramp ID \# } 12032
$$ Direction: SOUTH Lane: 1

| TIME | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | $86+$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$01: 00$	0	6	50	149	167	85	30	8	1	1	0	497
$02: 00$	1	16	44	139	145	88	14	14	2	0	0	463
$03: 00$	0	7	23	75	99	75	27	8	1	0	0	315
$04: 00$	1	7	21	46	67	50	19	8	0	0	0	219
$05: 00$	1	0	12	43	34	30	7	3	0	0	0	130
$06: 00$	0	4	9	43	55	68	27	7	0	0	0	213
$07: 00$	1	7	16	49	106	112	68	16	2	0	0	377
$08: 00$	0	2	5	80	193	200	103	34	5	2	1	625
$09: 00$	0	0	14	164	263	255	63	14	3	0	0	776
$10: 00$	1	18	43	283	443	223	61	16	3	0	0	1091
$11: 00$	2	37	177	488	338	133	33	9	1	2	0	1220
$12: 00$	6	108	383	526	180	33	9	0	0	0	0	1245
$13: 00$	12	136	516	556	137	24	3	0	0	0	0	1384
$14: 00$	37	218	400	394	92	18	6	1	0	0	0	1166
$15: 00$	12	136	390	445	106	27	5	1	0	0	0	1122
$16: 00$	15	147	306	311	164	71	11	1	0	0	0	1026
$17: 00$	5	126	424	478	136	34	10	2	0	0	0	1215
$18: 00$	0	33	178	530	299	63	13	3	1	0	0	1120
$19: 00$	3	26	194	546	233	48	6	1	0	0	0	1057
$20: 00$	18	34	212	505	226	40	11	2	0	0	0	1048
$21: 00$	0	27	138	418	230	73	17	0	1	0	0	904
$22: 00$	7	26	96	288	258	85	21	3	1	0	0	785
$23: 00$	0	15	46	181	198	133	27	4	0	0	0	604
$24: 00$	0	14	52	132	129	82	20	9	0	0	0	438

DAY TOTAL	122	1150	3749	6869	4298	2050	611	164	21	5	1	19040
PERCENTS	0.7%	6.1%	19.7%	36.1%	22.6%	10.7%	3.2%	0.8%	0.1%	0.0%	0.0%	100%

Statistical Information...
15th Percentile Speed
47.1 mph

Median Speed
53.3 mph

10 MPH Pace Speed
50 mph to 60 mph
11167 vehicles in pace
Representing 58.6% of the total vehicles
$\left.\begin{array}{c}\text { 85th Percentile Speed } \\ 60.0 \mathrm{mph}\end{array}\right] \begin{gathered}\text { Average } \begin{array}{c}\text { speed } \\ 53.6 \mathrm{mph}\end{array} \\ \text { Vehicles }>65 \mathrm{MPH} \\ 802 \\ 4.2 \%\end{gathered}$
53.6 mph

02
4. 2%

MassDOT Highway Division

SPEED SUMMARY
Page: 2
Mon 6/17/2019

Site Reference: 190020000042
File: comb..prn
City: Quincy
County: Ramp ID \# 12032
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllll}\text { TIME } & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 86+ & \text { Total }\end{array}$

$01: 00$	0	8	16	75	92	61	23	4	0	0	0	279
$02: 00$	0	4	13	42	57	49	19	3	0	0	0	187
$03: 00$	2	1	10	29	32	32	13	2	0	0	0	121
$04: 00$	0	1	7	22	31	39	14	10	0	0	0	124
$05: 00$	1	0	10	44	84	76	41	8	3	0	1	268
$06: 00$	0	0	5	60	199	207	100	42	8	0	0	621
$07: 00$	3	4	30	237	441	269	53	17	0	0	0	1054
$08: 00$	1	7	73	336	500	255	60	6	0	0	0	1238
$09: 00$	13	29	134	416	402	170	25	9	3	0	0	1201
$10: 00$	3	13	93	375	442	183	38	10	3	0	1	1161
$11: 00$	10	51	134	462	350	76	16	6	1	0	0	1106
$12: 00$	7	83	242	453	278	82	18	1	3	0	0	1167
$13: 00$	11	80	254	447	252	70	24	6	2	1	0	1147
$14: 00$	4	39	247	644	296	67	13	5	0	0	0	1315
$15: 00$	201	231	514	432	82	8	2	0	0	0	0	1470
$16: 00$	289	589	396	108	18	5	1	1	1	0	0	1408
$17: 00$	1361	28	12	3	2	0	0	0	0	0	0	1406
$18: 00$	1378	4	3	0	0	1	0	0	0	0	0	1386
$19: 00$	1359	104	53	13	2	0	0	0	0	0	0	1531
$20: 00$	97	110	213	444	322	101	24	2	0	0	0	1313
$21: 00$	0	5	94	418	375	138	23	10	0	0	1	1064
$22: 00$	8	28	109	359	290	88	11	5	3	0	0	901
$23: 00$	8	12	58	214	241	114	28	8	2	0	0	685
$24: 00$	0	4	23	138	211	125	32	16	3	1	0	553

DAY TOTAL	4756	1435	2743	5771	4999	2216	578	171	32	2	3
PERCENTS	21.0%	6.4%	12.1%	25.5%	22.0%	9.7%	2.5%	0.7%	0.1%	0.0%	0.0%

Statistical Information...

15th Percentile Speed
28.7 mph

Median Speed
52.1 mph

10 MPH Pace Speed
50 mph to 60 mph
10770 vehicles in pace
Representing 47.4% of the total vehicles.

85th Percentile Speed
59.6 mph

Average Speed
47.1 mph

Vehicles > 65 MPH
786
3.5\%

MassDOT Highway Division

SPEED SUMMARY
Page: 3
Tue 6/18/2019

Site Reference: 190020000042
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllll}\text { TIME } & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 86+ & \text { Total }\end{array}$

$01: 00$	0	4	13	93	122	69	30	16	4	0	0	351
$02: 00$	0	4	13	42	56	53	18	10	2	0	0	198
$03: 00$	1	5	6	32	42	45	12	7	1	0	0	151
$04: 00$	0	5	12	20	35	37	17	6	1	1	0	134
$05: 00$	3	3	7	56	81	73	37	16	0	0	0	276
$06: 00$	0	4	8	71	198	204	91	31	7	1	1	616
$07: 00$	1	10	36	239	421	234	62	14	3	0	0	1020
$08: 00$	1	10	56	362	556	234	50	9	3	0	0	1281
$09: 00$	6	30	95	402	421	182	33	4	1	0	0	1174
$10: 00$	0	39	148	447	412	113	19	1	1	0	0	1180
$11: 00$	1	26	147	439	372	117	24	3	0	0	0	1129
$12: 00$	4	28	263	557	297	74	20	5	0	0	0	1248
$13: 00$	54	257	395	250	61	23	1	2	0	0	0	1043
$14: 00$	317	462	217	57	9	4	1	0	1	0	0	1068
$15: 00$	653	427	125	34	7	1	0	0	0	1	0	1248
$16: 00$	816	255	91	31	10	3	1	0	0	0	0	1207
$17: 00$	522	438	159	44	10	2	0	0	1	0	0	1176
$18: 00$	1389	4	1	4	0	0	0	0	0	0	0	1398
$19: 00$	1477	16	5	1	1	1	1	0	0	0	0	1502
$20: 00$	185	343	491	329	53	10	0	0	0	1	2	1414
$21: 00$	1	22	149	453	353	92	17	3	2	2	0	1094
$22: 00$	14	63	138	304	228	74	16	5	1	0	0	843
$23: 00$	1	11	38	253	231	81	25	5	0	0	1	646
$24: 00$	1	4	17	113	184	145	31	15	3	0	0	513

Statistical Information...

15th Percentile Speed
24.1 mph

Median Speed
50.5 mph

10 MPH Pace Speed 50 mph to 60 mph 8793 vehicles in pace Representing 40.1% of the total vehicles

85th Percentile Speed
59.1 mph

Average Speed 45.0 mph

Vehicles > 65 MPH 699
3. 2%

MassDOT Highway Division

SPEED SUMMARY
Page: 4
Wed 6/19/2019

Site Reference: 190020000042
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB
Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllll}\text { TIME } & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 86+ & \text { Total }\end{array}$

$01: 00$	6	0	13	67	94	75	30	17	2	1	0	305
$02: 00$	0	4	18	50	61	60	20	11	1	0	0	225
$03: 00$	0	7	13	24	33	37	6	6	0	0	0	126
$04: 00$	0	6	10	26	38	37	20	6	0	0	0	143
$05: 00$	0	0	10	43	58	78	56	23	4	0	0	272
$06: 00$	0	1	14	91	190	179	113	35	8	0	0	631
$07: 00$	0	12	41	232	416	260	66	16	4	0	0	1047
$08: 00$	2	42	155	383	447	192	42	10	0	1	0	1274
$09: 00$	5	31	127	425	402	142	48	8	0	0	0	1188
$10: 00$	0	7	105	462	381	197	21	1	1	0	0	1175
$11: 00$	1	15	128	460	399	123	18	3	1	0	0	1148
$12: 00$	9	134	263	501	231	53	8	3	0	0	1	1203
$13: 00$	2	56	232	551	326	94	10	5	1	0	0	1277
$14: 00$	10	79	291	611	276	52	10	5	0	0	0	1334
$15: 00$	810	267	267	184	34	3	1	1	1	0	1	1569
$16: 00$	1404	74	15	3	1	1	0	0	0	0	0	1498
$17: 00$	1398	4	0	0	0	0	0	0	0	0	0	1402
$18: 00$	1450	7	1	1	0	0	1	0	0	0	0	1460
$19: 00$	1325	93	114	41	6	0	0	0	0	0	0	1579
$20: 00$	34	324	578	368	82	23	1	2	0	0	2	1414
$21: 00$	14	60	246	571	272	41	11	2	1	0	0	1218
$22: 00$	6	25	144	431	268	90	16	6	1	0	0	987
$23: 00$	22	131	228	399	203	61	15	3	1	0	0	1063
$24: 00$	701	90	106	163	87	34	3	0	0	0	0	1184

DAY TOTAL	7199	1469	3119	6087	4305	1832	516	163	26	2
PERCENTS	29.2%	6.0%	12.7%	24.6%	17.4%	7.4%	2.0%	0.6%	0.1%	0.0%

Statistical Information...

15th Percentile Speed 20.6 mph

Median Speed 50.5 mph

10 MPH Pace Speed
50 mph to 60 mph 10392 vehicles in pace Representing 42.0% of the total vehicles

85th Percentile Speed
58.7 mph

Average Speed
43.9 mph

Vehicles > 65 MPH
711
2.9%

MassDOT Highway Division

SPEED SUMMARY
Thu 6/20/2019

Site Reference: 190020000042
File: comb..prn
City: Quincy
County: Ramp ID \# 12032
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB Direction: SOUTH
Lane: 1

TIME	40	45	50	55	60	65	70	75	80	85	$86+$	Total

$01: 00$	3	58	132	266	185	62	11	3	1	0	0	721
$02: 00$	0	0	9	81	92	68	21	6	0	0	0	277
$03: 00$	1	3	21	46	52	53	22	10	0	1	0	209
$04: 00$	0	4	8	32	47	49	23	5	2	0	0	170
$05: 00$	2	1	8	51	84	80	39	13	3	0	0	281
$06: 00$	0	3	13	70	177	203	111	45	6	0	0	628
$07: 00$	0	14	47	240	373	231	63	12	1	0	0	981
$08: 00$	2	35	155	445	388	150	18	3	1	0	0	1197
$09: 00$	5	56	234	480	324	92	17	2	0	0	1	1211
$10: 00$	10	141	378	491	169	20	3	1	0	0	0	1213
$11: 00$	10	87	263	496	174	41	7	0	1	0	0	1079
$12: 00$	47	204	498	324	57	11	4	1	0	0	0	1146
$13: 00$	45	308	478	275	41	12	3	1	1	0	0	1164
$14: 00$	131	436	442	215	38	7	0	0	0	0	1	1270
$15: 00$	250	360	469	215	44	12	3	0	0	0	0	1353
$16: 00$	1074	68	15	8	1	0	0	0	0	0	0	1166
$17: 00$	328	451	170	68	17	12	5	1	0	0	0	1052
$18: 00$	1409	72	13	2	2	0	0	1	0	0	0	1499
$19: 00$	1512	52	8	6	4	1	0	0	0	0	0	1583
$20: 00$	386	557	411	87	9	3	1	0	0	0	0	1454
$21: 00$	12	104	329	499	205	32	10	1	0	0	0	1192
$22: 00$	13	80	185	398	248	75	19	6	0	0	0	1024
$23: 00$	3	23	107	398	271	68	15	3	3	0	1	892
$24: 00$	3	3	26	147	280	149	47	10	3	1	3	672

DAY TOTAL	5246	3120	4419	5340	3282	1431	442	124	22	2	6	23434
PERCENTS	22.4%	13.4%	18.9%	22.8%	14.1%	6.1%	1.8%	0.5%	0.0%	0.0%	0.0%	100%

Statistical Information...
$\left.\begin{array}{lc}\text { 15th Percentile Speed } \\ 26.8 \mathrm{mph} & \text { 85th Percentile Speed } \\ 57.7 \mathrm{mph}\end{array}\right)$

MassDOT Highway Division

SPEED SUMMARY
Page: 6
Fri 6/21/2019

```
File: comb..prn
City: Quincy
County: Ramp ID # 12032
File: comb. .prn
City: Quincy
County: Ramp ID \# 12032
```

Site Reference: 190020000042
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB Direction: SOUTH
Lane: 1
$\begin{array}{lllllllllllll}\text { TIME } & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 86+ & \text { Total }\end{array}$

$01: 00$	5	4	21	109	153	108	34	13	0	0	6	453
$02: 00$	1	5	20	50	81	72	26	21	3	1	1	281
$03: 00$	2	4	14	66	75	55	23	8	0	2	1	250
$04: 00$	3	6	17	38	69	43	14	2	1	0	1	194
$05: 00$	3	10	40	74	51	34	12	1	0	0	1	226
$06: 00$	3	34	136	255	115	36	6	1	0	0	1	587
$07: 00$	2	35	172	436	251	61	5	1	0	1	2	966
$08: 00$	1	53	217	449	314	69	13	2	0	1	2	1121
$09: 00$	5	56	151	439	285	85	13	2	2	0	1	1039
$10: 00$	10	56	180	444	279	61	8	3	0	0	4	1045
$11: 00$	5	105	293	580	228	51	7	4	0	1	5	1279
$12: 00$	19	167	495	598	96	9	3	0	0	0	5	1392
$13: 00$	247	181	403	376	90	16	4	1	1	3	16	1338
$14: 00$	432	318	341	113	16	9	2	0	4	5	12	1252
$15: 00$	1009	217	64	13	3	4	0	1	0	2	3	1316
$16: 00$	1166	109	23	2	1	1	0	0	0	0	0	1302
$17: 00$	1294	26	4	1	0	0	0	0	0	0	0	1325
$18: 00$	1320	33	1	1	0	0	0	0	0	0	0	1355
$19: 00$	1196	198	105	38	4	1	0	0	0	0	1	1543
$20: 00$	189	261	376	329	84	17	4	2	0	0	0	1262
$21: 00$	1	57	202	544	318	70	11	5	2	0	1	1211
$22: 00$	3	12	139	392	361	96	17	8	0	0	1	1029
$23: 00$	4	21	104	328	320	128	29	4	0	1	1	940
$24: 00$	1	13	51	274	337	163	33	14	2	0	0	888

DAY TOTAL	6921	1981	3569	5949	3531	1189	264	93	15	17	65	23594
PERCENTS	29.4%	8.4%	15.2%	25.3%	15.0%	5.1%	1.1%	0.3%	0.0%	0.0%	0.2%	100%

Statistical Information...

15th Percentile Speed	85 th Percentile Speed 20.5 mph Median Speed 49.1 mph
57.3 mph	
10 MPH Pace Speed	Average Speed
45 mph to 55 mph	42.9 mph
9518 vehicles in pace	Vehicles $>65 \mathrm{MPH}$
Representing 40.3% of the total vehicles	454

MassDOT Highway Division

SPEED SUMMARY
Page: 7
Sat 6/22/2019

Site Reference: 190020000042
Site ID: Station 3
Location: I-93 SB ramp to Route 3 SB Direction: SOUTH
Lane: 1

TIME	40	45	50	55	60	65	70	75	80	85	$86+$	Total

$01: 00$	1	4	43	134	253	160	34	10	3	1	0	643
$02: 00$	1	3	16	95	141	117	37	9	2	0	0	421
$03: 00$	0	1	7	58	107	85	37	9	5	1	1	311
$04: 00$	0	1	5	37	79	68	32	17	4	0	0	243
$05: 00$	0	1	8	26	66	74	36	16	6	1	0	234
$06: 00$	0	0	6	26	106	126	75	28	11	0	0	378
$07: 00$	2	4	14	101	246	238	106	32	11	2	0	756
$08: 00$	2	7	63	246	449	266	54	20	6	0	1	1114
$09: 00$	3	27	98	399	547	212	44	9	1	0	0	1340
$10: 00$	1	21	89	416	490	183	22	5	2	0	0	1229
$11: 00$	6	132	367	532	190	45	12	0	1	0	0	1285
$12: 00$	19	135	479	584	138	18	3	0	0	0	0	1376
$13: 00$	15	141	413	625	139	16	4	4	0	0	0	1357
$14: 00$	2	80	378	555	214	29	5	0	0	0	0	1263
$15: 00$	5	111	372	557	210	36	10	3	0	0	0	1304
$16: 00$	34	293	473	278	53	13	8	0	1	0	0	1153
$17: 00$	38	220	398	357	86	14	5	2	0	0	0	1120
$18: 00$	106	206	303	247	67	33	18	2	1	0	0	983
$19: 00$	6	27	127	439	371	134	36	8	1	0	0	1149
$20: 00$	4	20	119	417	384	138	25	10	2	1	0	1120
$21: 00$	8	21	90	428	347	109	21	11	2	0	0	1037
$22: 00$	1	30	124	433	316	75	21	3	3	0	0	1006
$23: 00$	7	24	124	377	287	93	24	7	1	1	0	945
$24: 00$	7	8	79	315	306	103	38	9	1	1	0	867

DAY TOTAL	268	1517	4195	7682	5592	2385	707	214	64	8
PERCENTS	1.2%	6.8%	18.6%	34.0%	24.7%	10.5%	3.1%	0.9%	0.2%	0.0%

Statistical Information...

$$
\text { STA. } 3
$$

LN. 2
NO DATA

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: ROAD TOTAL

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	$T o t a l$

01:00	2	1	0	4	20	101	241	241	138	51	10	2	0	0	811
02:00	0	0	2	2	6	73	167	151	100	43	7	3	1	1	556
03:00	3	0	0	6	19	56	93	102	51	25	7	5	1	0	368
04:00	0	0	1	2	16	45	54	90	76	28	8	3	0	1	324
05:00	0	0	0	1	18	39	96	171	165	86	36	9	0	2	623
06:00	2	0	4	2	21	97	298	513	353	170	46	11	2	2	1521
07:00	6	1	0	10	94	564	890	658	263	76	17	0	1	0	2580
08:00	17	17	35	71	189	757	898	519	184	62	19	0	0	0	2768
09:00	360	144	81	182	353	728	597	315	82	12	1	0	0	2	2857
10:00	4	2	8	150	424	852	754	395	124	23	7	1	0	1	2745
11:00	72	55	109	216	493	956	635	259	68	18	1	0	0	3	2885
12:00	137	141	224	563	570	796	493	236	59	17	3	0	0	0	3239
13:00	187	207	330	620	756	704	355	160	70	11	1	1	1	0	3403
14:00	160	180	416	694	727	839	383	91	26	11	2	2	0	2	3533
15:00	1031	587	551	643	397	181	30	7	3	0	3	0	1	2	3436
16:00	1960	446	235	131	37	8	0	3	1	2	3	0	0	2	2828
17:00	767	235	297	602	430	216	52	9	3	0	3	1	1	2	2618
18:00	21	58	274	1060	803	340	73	20	2	2	2	0	0	0	2655
19:00	5	37	364	1287	802	355	61	10	1	0	3	0	0	0	2925
20:00	3	2	81	441	768	1134	725	277	63	17	2	1	0	0	3514
21:00	2	2	9	89	325	953	887	392	102	21	3	2	0	1	2788
22:00	6	2	14	105	318	871	784	276	84	18	8	0	0	1	2487
23:00	5	2	14	42	206	691	576	332	96	35	5	0	1	0	2005
24:00	5	0	0	29	91	358	517	415	175	63	11	1	0	2	1667

$\begin{array}{lllllllllllllllllll}\text { PERCENTS } & 8.7 \% & 3.9 \% & 5.6 \% & 12.7 \% & 14.3 \% & 21.3 \% & 17.5 \% & 10.2 \% & 4.1 \% & 1.4 \% & 0.3 \% & 0.0 \% & 0.0 \% & 0.0 \% & 100 \%\end{array}$
Statistical Information...

15th Percentile Speed 37.3 mph

Median Speed 51.2 mph

10 MPH Pace Speed
50 mph to 60 mph 21373 vehicles in pace Representing 38.7% of the total vehicles

85th Percentile Speed

 60.7 mphAverage Speed 48.6 mph

Vehicles > 65 MPH 3363
6.1\%

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	$T o t a l$

| | | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 1 | 0 | 1 | 6 | 29 | 169 | 265 | 271 | 109 | 52 | 11 | 0 | 0 | 1 | 915 | |
| $02: 00$ | 2 | 0 | 1 | 4 | 22 | 78 | 163 | 183 | 104 | 37 | 20 | 1 | 0 | 1 | 616 | |
| $03: 00$ | 0 | 0 | 1 | 0 | 19 | 61 | 110 | 129 | 78 | 32 | 10 | 2 | 0 | 1 | 443 | |
| $04: 00$ | 2 | 0 | 1 | 0 | 12 | 35 | 90 | 104 | 59 | 38 | 17 | 2 | 0 | 1 | 361 | |
| $05: 00$ | 0 | 0 | 5 | 8 | 22 | 73 | 162 | 206 | 141 | 73 | 28 | 7 | 3 | 0 | 728 | |
| $06: 00$ | 0 | 0 | 0 | 14 | 12 | 128 | 360 | 450 | 327 | 152 | 42 | 6 | 1 | 2 | 1494 | |
| $07: 00$ | 8 | 0 | 6 | 59 | 211 | 631 | 820 | 586 | 242 | 73 | 21 | 3 | 0 | 1 | 2661 | |
| $08: 00$ | 11 | 0 | 1 | 38 | 252 | 1003 | 987 | 521 | 146 | 36 | 7 | 1 | 0 | 0 | 3003 | |
| $09: 00$ | 12 | 3 | 21 | 128 | 457 | 990 | 854 | 353 | 98 | 20 | 2 | 0 | 0 | 0 | 2938 | |
| $10: 00$ | 9 | 12 | 34 | 190 | 458 | 1025 | 714 | 333 | 88 | 21 | 1 | 1 | 0 | 1 | 2887 | |
| $11: 00$ | 10 | 0 | 8 | 148 | 542 | 1041 | 739 | 276 | 79 | 9 | 2 | 0 | 0 | 1 | 2855 | |
| $12: 00$ | 11 | 18 | 130 | 468 | 881 | 983 | 549 | 229 | 31 | 12 | 1 | 0 | 0 | 0 | 3313 | |
| $13: 00$ | 1441 | 710 | 386 | 244 | 89 | 58 | 42 | 22 | 5 | 2 | 0 | 0 | 0 | 5 | 3004 | |
| $14: 00$ | 1956 | 278 | 259 | 152 | 44 | 7 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 2 | 2702 | |
| $15: 00$ | 2347 | 189 | 69 | 16 | 2 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 2631 | |
| $16: 00$ | 2174 | 76 | 25 | 4 | 2 | 1 | 3 | 1 | 0 | 0 | 1 | 3 | 1 | 0 | 2291 | |
| $17: 00$ | 2234 | 93 | 29 | 27 | 9 | 8 | 4 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 2409 | |
| $18: 00$ | 668 | 187 | 562 | 809 | 306 | 83 | 8 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2625 | |
| $19: 00$ | 24 | 190 | 896 | 1417 | 446 | 118 | 15 | 1 | 2 | 0 | 1 | 1 | 1 | 0 | 3112 | |
| $20: 00$ | 8 | 64 | 587 | 1460 | 824 | 503 | 119 | 18 | 9 | 4 | 1 | 2 | 0 | 1 | 3600 | |
| $21: 00$ | 7 | 7 | 34 | 197 | 583 | 1142 | 676 | 254 | 74 | 8 | 2 | 0 | 0 | 0 | 2984 | |
| $22: 00$ | 8 | 5 | 162 | 454 | 386 | 674 | 511 | 227 | 46 | 16 | 1 | 0 | 0 | 2 | 2492 | |
| $23: 00$ | 4 | 4 | 2 | 8 | 47 | 209 | 614 | 587 | 295 | 77 | 20 | 8 | 0 | 0 | 0 | 1871 |
| $24: 00$ | 3 | 1 | 10 | 17 | 75 | 347 | 538 | 454 | 167 | 71 | 13 | 4 | 0 | 0 | 1700 | |

DAY TOTAL	10940	1835	3236	5907	5892	9775	8317	4917	1885	678	190	35	8
PERCENTS	20.4%	3.5%	6.1%	11.1%	11.0%	18.3%	15.5%	9.1%	3.5%	1.2%	0.3%	0.0%	0.0%

15th Percentile Speed 22.1 mph	85th Percentile Speed 59.8 mph
Median Speed	Average Speed
49.2 mph	44.2 mph
10 MPH Pace Speed	Vehicles > 65 MPH
50 mph to 60 mph	2816
18092 vehicles in pace	5.3\%
Representing 33.7% of the total vehicles	

Page: 18

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034 Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL

MassDOT Highway Division

SPEED SUMMARY
Wed 6/19/2019

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	91+	Total
01:00	1	0	0	0	36	137	274	258	139	68	17	2	1	0	933
02:00	0	1	2	2	19	122	191	201	106	45	14	5	1	0	709
03:00	0	0	0	4	20	57	112	124	69	31	14	1	0	2	434
04:00	0	0	2	5	13	51	88	122	58	43	11	2	1	0	396
05:00	1	0	0	9	14	63	127	206	132	79	38	6	2	0	677
06:00	4	0	1	6	21	102	348	478	346	156	29	9	0	0	1500
07:00	0	0	0	16	107	614	944	617	209	57	15	2	0	0	2581
08:00	240	47	94	139	325	849	809	351	102	27	4	0	0	1	2988
09:00	449	105	117	197	329	747	591	203	53	10	4	2	1	4	2812
10:00	31	15	12	126	437	960	779	306	79	20	2	0	0	1	2768
11:00	54	46	54	233	474	1045	711	262	73	15	3	1	0	1	2972
12:00	450	385	388	528	554	644	242	86	16	7	3	0	0	1	3304
13:00	163	166	233	633	825	983	452	121	33	3	2	1	0	4	3619
14:00	27	57	300	951	1020	989	260	65	14	2	1	2	1	0	3689
15:00	13	35	348	1102	1161	576	77	20	2	0	0	0	1	2	3337
16:00	932	97	345	729	381	169	26	10	2	2	0	0	2	0	2695
17:00	215	119	363	906	654	319	70	26	6	0	1	0	0	0	2679
18:00	13	20	205	895	910	484	126	30	7	3	0	0	0	0	2693
19:00	35	134	559	1380	844	259	49	10	2	0	3	0	1	1	3277
20:00	16	70	426	1332	1038	543	119	34	12	1	2	0	0	1	3594
21:00	38	91	143	513	990	1033	372	141	20	6	1	1	0	1	3350
22:00	2	6	34	221	511	979	592	266	68	20	3	1	0	2	2705
23:00	2	1	19	64	234	597	575	303	79	13	3	0	1	0	1891
24:00	6	4	34	153	356	654	438	211	47	14	1	0	1	1	1920

DAY TOTAL	2692	1399	3679	10144	11273	12976	8372	4451	1674	622	171	35
PERCENTS	4.7%	2.5%	6.4%	17.7%	19.6%	22.6%	14.6%	7.8%	2.9%	1.0%	0.2%	0.0%
		0.0%	0.0%	100%								

15th Percentile Speed	
40.4 mph	85th Percentile Speed
Median Speed	59.0 mph
49.8 mph	Average Speed
MPH Pace Speed	48.8 mph
45 mph to 55 mph	Vehicles $>65 \mathrm{MPH}$
24249 vehicles in pace	
Representing 42.1% of the total vehicles	2537

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	Total

01:00	1	0	0	4	45	300	400	310	112	34	6	1	0	0	1213
02:00	1	0	0	3	32	130	224	225	87	63	17	1	0	3	786
03:00	4	2	0	7	19	66	155	150	79	36	13	2	0	1	534
04:00	0	0	0	5	9	74	102	98	60	42	8	2	0	0	400
05:00	1.	0	3	6	20	85	155	200	147	86	35	5	1	0	744
06:00	1	1	4	13	31	183	372	418	337	156	56	9	1	1	1583
07:00	8	1	19	56	178	680	853	492	182	71	11	2	0	0	2553
08:00	2	0	7	88	396	1107	804	286	80	18	2	0	0	0	2790
09:00	147	29	122	334	545	833	482	172	33	5	0	0	0	1	2703
10:00	4	8	51	340	823	920	372	92	22	5	0	4	0	0	2641
11:00	10	11	78	433	829	989	362	100	23	4	0	0	0	1	2840
12:00	242	203	499	962	686	331	79	26	3	0	0	0	0	2	3033
13:00	801	696	638	679	307	99	13	2	0	1	1	0	0	1	3238
14:00	1470	638	407	335	153	69	12	2	0	2	0	1	0	3	3092
15:00	1427	583	417	408	236	93	20	4	0	0	0	1	0	0	. 3189
16:00	1562	178	213	152	40	13	1	1	0	1	2	0	1	1	. 2165
17:00	1603	92	34	31	2	1	1	0	1	0	0	0	0	0	1765
18:00	227	241	610	1153	513	159	21	4	1	0	0	1	0	2	2932
19:00	70	173	735	1337	564	165	23	3	1	0	0	1	0	2	3074
20:00	14	82	603	1331	840	263	27	12	0	1	0	1	0	0	3174
21:00	3	15	126	562	833	979	452	120	28	4	2	1	0	0	3125
22:00	165	34	94	360	488	674	419	192	64	9	2	0	0	1	2502
23:00	212	7	35	137	382	745	520	195	81	12	1	0	0	0	2327
24:00	82	2	9	23	135	454	628	449	132	45	10	1	0	1	1971

DAY TOTAL	8057	2996	4704	8759	8106	9412	6497	3553	1473	595	166	33
PERCENTS	14.9%	5.6%	8.7%	16.2%	14.9%	17.3%	11.9%	6.5%	2.7%	1.0%	0.3%	0.0%
0.0%	0.0%	100%										

15th Percentile Speed
30.2 mph

Median Speed 46.7 mph

10 MPH Pace Speed
45 mph to 55 mph 17518 vehicles in pace
Representing 32.2% of the total vehicles

$$
\begin{gathered}
\text { 85th Percentile Speed } \\
58.2 \mathrm{mph} \\
\text { Average } \begin{array}{c}
\text { speed } \\
44.2 \mathrm{mph} \\
\text { Vehicles }>65 \mathrm{MPH} \\
2290 \\
4.2 \%
\end{array}
\end{gathered}
$$

MassDOT Highway Division
SPEED SUMMARY
Page: 20
Fri 6/21/2019

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	91+	Total
01:00	15	0	3	9	54	225	406	276	147	51	13	2	0	2	1203
02:00	0	0	0	6	34	119	245	198	126	66	13	6	0	1	814
03:00	1	1	4	13	38	136	223	176	82	39	9	1	0	1	724
04:00	2	0	0	2	28	96	122	106	57	19	2	0	0	1	435
05:00	3	0	4	31	54	160	140	118	47	31	5	0	0	0	593
06:00	1	4	2	65	203	485	377	144	50	9	0	0	0	0	1340
07:00	15	18	51	115	489	891	532	166	47	11	1	2	0	0	2338
08:00	13	11	52	230	615	1091	543	183	26	4	0	0	0	1	2769
09:00	19	5	50	222	599	1095	572	148	26	15	3	0	0	2	2756
10:00	13	7	44	226	598	901	443	162	45	8	1	0	0	4	2452
11:00	15	10	91	576	930	870	379	87	20	1	1	0	0	0	2980
12:00	25	62	214	904	1160	772	200	22	4	1	1	0	0	0	3365
13:00	231	126	498	1067	845	520	132	17	3	0	1	1	0	0	3441
14:00	1760	562	396	169	49	26	6	1	2	1	2	0	0	1	2975
15:00	1782	338	329	231	80	16	6	1	0	0	0	1	0	2	2786
16:00	2296	165	21	7	1	1	1	0	1	0	0	2	1	1	2497
17:00	2233	51	12	6	2	4	2	0	1	1	1	1	0	0	2314
18:00	2041	104	42	17	4	3	2	0	1	0	1	0	0	0	2215
19:00	466	129	439	1091	642	189	30	6	0	0	2	2	0	0	2996
20:00	33	37	313	1000	962	732	164	32	3	1	1	1	0	1	3280
21:00	156	4	92	231	596	1033	551	197	48	17	0	0	0	3	2928
22:00	39	7	16	108	483	1127	639	269	69	12	0	0	0	1	2770
23:00	19	23	58	190	462	938	707	263	70	20	2	0	0	0	2752
24:00	5	0	7	76	272	887	880	367	139	31	3	1	0	0	2668

DAY TOTAL	11183	1664	2738	6592	9200	12317	7302	2939	1014	338	62	20	1	21	55391
PERCENTS	20.2%	3.1%	5.0%	12.0%	16.6%	22.2%	13.1%	5.3%	1.8%	0.6%	0.1%	0.0%	0.0%	0.0%	100%

Statistical Information...
$\left.\begin{array}{lc}\text { 15th Percentile Speed } \\ 22.3 \mathrm{mph} & \text { 85th Percentile speed } \\ 57.3 \mathrm{mph}\end{array}\right)$

File: comb. .prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: ROAD TOTAL
MassDOT Highway Division
SPEED SUMMARY
Sun $6 / 16 / 2019$

Sun 6/16/2019

Site Reference: 190020000034
Site ID: Station 2

File: comb..prn
City: Quincy
County: Ramp ID \# 12077
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 1
$\begin{array}{lllllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & T o t a l\end{array}$

DAY TOTAL	1147	979	1627	3310	4064	5323	3552	2046	795	306	59	13
PERCENTS	5.0%	4.3%	7.1%	14.3%	17.5%	22.9%	15.2%	8.8%	3.4%	1.3%	0.2%	0.0%

Statistical Information...

15th Percentile Speed
39.2 mph

Median Speed
50.5 mph

10 MPH Pace Speed
45 mph to 55 mph 9387 vehicles in pace Representing 40.4% of the total vehicles

85th Percentile Speed

 59.7 mphAverage Speed
49.0 mph

Vehicles > 65 MPH 1186 5.1\%

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 1
$\begin{array}{lllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+\end{array}$

| | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 1 | 0 | 0 | 3 | 10 | 58 | 108 | 86 | 45 | 18 | 3 | 2 | 0 | 0 | 334 |
| $02: 00$ | 0 | 0 | 2 | 2 | 5 | 39 | 73 | 56 | 38 | 10 | 0 | 0 | 1 | 0 | 226 |
| $03: 00$ | 3 | 0 | 0 | 1 | 12 | 31 | 41 | 34 | 12 | 9 | 2 | 2 | 0 | 0 | 147 |
| $04: 00$ | 0 | 0 | 1 | 1 | 12 | 26 | 25 | 24 | 23 | 10 | 2 | 1 | 0 | 0 | 125 |
| $05: 00$ | 0 | 0 | 0 | 1 | 14 | 23 | 54 | 83 | 67 | 37 | 8 | 1 | 0 | 0 | 288 |
| $06: 00$ | 2 | 0 | 4 | 2 | 16 | 75 | 183 | 239 | 123 | 45 | 4 | 2 | 0 | 1 | 696 |
| $07: 00$ | 6 | 1 | 0 | 9 | 71 | 362 | 463 | 225 | 79 | 14 | 2 | 0 | 1 | 0 | 1233 |
| $08: 00$ | 15 | 12 | 23 | 43 | 145 | 527 | 419 | 126 | 43 | 11 | 3 | 0 | 0 | 0 | 1367 |
| $09: 00$ | 184 | 78 | 37 | 122 | 251 | 416 | 234 | 59 | 11 | 3 | 1 | 0 | 0 | 1 | 1397 |
| $10: 00$ | 4 | 2 | 6 | 103 | 289 | 522 | 330 | 92 | 23 | 3 | 2 | 0 | 0 | 0 | 1376 |
| $11: 00$ | 36 | 30 | 75 | 153 | 298 | 475 | 192 | 65 | 9 | 0 | 0 | 0 | 0 | 1 | 1334 |
| $12: 00$ | 67 | 72 | 117 | 310 | 273 | 370 | 209 | 64 | 8 | 3 | 2 | 0 | 0 | 0 | 1495 |
| $13: 00$ | 91 | 78 | 182 | 378 | 384 | 230 | 109 | 36 | 18 | 3 | 0 | 0 | 0 | 0 | 1509 |
| $14: 00$ | 63 | 80 | 207 | 373 | 353 | 368 | 116 | 17 | 0 | 2 | 0 | 1 | 0 | 1 | 1581 |
| $15: 00$ | 494 | 299 | 308 | 296 | 161 | 48 | 3 | 3 | 0 | 0 | 1 | 0 | 1 | 2 | 1616 |
| $16: 00$ | 977 | 229 | 88 | 68 | 13 | 1 | 0 | 2 | 1 | 2 | 3 | 0 | 0 | 1 | 1385 |
| $17: 00$ | 411 | 97 | 167 | 379 | 218 | 71 | 9 | 1 | 1 | 0 | 3 | 0 | 1 | 1 | 1359 |
| $18: 00$ | 15 | 34 | 186 | 663 | 419 | 104 | 20 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1444 |
| $19: 00$ | 5 | 15 | 210 | 800 | 377 | 99 | 12 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1522 |
| $20: 00$ | 2 | 1 | 42 | 256 | 440 | 467 | 264 | 74 | 22 | 5 | 0 | 1 | 0 | 0 | 1574 |
| $21: 00$ | 1 | 0 | 2 | 41 | 175 | 472 | 328 | 138 | 46 | 4 | 0 | 0 | 0 | 0 | 1207 |
| $22: 00$ | 3 | 0 | 4 | 47 | 167 | 404 | 325 | 89 | 31 | 4 | 2 | 0 | 0 | 1 | 1067 |
| $23: 00$ | 2 | 0 | 6 | 20 | 111 | 306 | 257 | 115 | 31 | 14 | 3 | 0 | 0 | 0 | 865 |
| $24: 00$ | 4 | 0 | 0 | 15 | 52 | 165 | 209 | 157 | 58 | 15 | 4 | 1 | 0 | 1 | 681 |

DAY TOTAL	2386	1028	1667	4076	4266	5659	3983	1790	690	212	46	11	4
PERCENTS	9.3%	4.0%	6.5%	15.8%	16.6%	22.0%	15.4%	6.9%	2.6%	0.8%	0.1%	0.0%	0.0%

Statistical Information...

15th Percentile Speed	85th Percentile Speed
36.4 mph	58.6 mph
Median Speed	
49.4 mph	Average Speed
10 MPH Pace Speed	47.0 mph
45 mph to 55 mph	Vehicles $>65 \mathrm{MPH}$
9925 vehicles in pace	973
Representing 38.4% of the total vehicles	3.8%

Site Reference: 190020000034 Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & \text { Total }\end{array}$

| | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 1 | 0 | 0 | 2 | 17 | 90 | 111 | 120 | 36 | 20 | 2 | 0 | 0 | 0 | 399 |
| $02: 00$ | 2 | 0 | 0 | 3 | 12 | 38 | 66 | 66 | 33 | 17 | 5 | 0 | 0 | 0 | 242 |
| $03: 00$ | 0 | 0 | 1 | 0 | 13 | 33 | 44 | 57 | 27 | 7 | 2 | 1 | 0 | 1 | 186 |
| $04: 00$ | 1 | 0 | 0 | 0 | 10 | 21 | 39 | 37 | 22 | 11 | 4 | 0 | 0 | 0 | 145 |
| $05: 00$ | 0 | 0 | 5 | 7 | 16 | 55 | 81 | 95 | 68 | 22 | 8 | 2 | 0 | 0 | 359 |
| $06: 00$ | 0 | 0 | 0 | 13 | 12 | 91 | 234 | 198 | 103 | 34 | 10 | 0 | 0 | 0 | 695 |
| $07: 00$ | 8 | 0 | 6 | 49 | 149 | 374 | 360 | 196 | 50 | 7 | 4 | 0 | 0 | 0 | 1203 |
| $08: 00$ | 8 | 0 | 1 | 25 | 205 | 637 | 412 | 123 | 16 | 4 | 0 | 0 | 0 | 0 | 1431 |
| $09: 00$ | 12 | 1 | 13 | 97 | 366 | 535 | 284 | 82 | 13 | 1 | 0 | 0 | 0 | 0 | 1404 |
| $10: 00$ | 6 | 10 | 24 | 142 | 301 | 606 | 247 | 66 | 12 | 2 | 1 | 0 | 0 | 1 | 1418 |
| $11: 00$ | 10 | 0 | 5 | 96 | 362 | 537 | 252 | 54 | 11 | 2 | 0 | 0 | 0 | 1 | 1330 |
| $12: 00$ | 8 | 8 | 75 | 262 | 431 | 420 | 195 | 62 | 12 | 3 | 0 | 0 | 0 | 0 | 1476 |
| $13: 00$ | 696 | 332 | 209 | 98 | 33 | 16 | 14 | 10 | 1 | 1 | 0 | 0 | 0 | 5 | 1415 |
| $14: 00$ | 941 | 143 | 114 | 56 | 17 | 3 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 1279 |
| $15: 00$ | 1159 | 89 | 24 | 3 | 1 | 2 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 1282 |
| $16: 00$ | 1054 | 35 | 5 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 3 | 1 | 0 | 1105 |
| $17: 00$ | 1065 | 56 | 20 | 12 | 3 | 5 | 3 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 1169 |
| $18: 00$ | 343 | 90 | 327 | 440 | 145 | 24 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1371 |
| $19: 00$ | 7 | 121 | 538 | 688 | 141 | 30 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1531 |
| $20: 00$ | 3 | 36 | 271 | 750 | 343 | 179 | 41 | 6 | 2 | 1 | 1 | 1 | 0 | 1 | 1635 |
| $21: 00$ | 4 | 0 | 17 | 108 | 300 | 502 | 237 | 86 | 15 | 1 | 0 | 0 | 0 | 0 | 1270 |
| $22: 00$ | 1 | 4 | 72 | 214 | 186 | 286 | 208 | 88 | 13 | 5 | 0 | 0 | 0 | 2 | 1079 |
| $23: 00$ | 2 | 0 | 3 | 29 | 97 | 235 | 221 | 121 | 23 | 5 | 2 | 0 | 0 | 0 | 738 |
| $24: 00$ | 3 | 0 | 4 | 10 | 29 | 129 | 201 | 182 | 72 | 24 | 3 | 3 | 0 | 0 | 660 |

DAY TOTAL	5334	925	1734	3105	3190	4849	3256	1654	532	169	45	12	3	14
PERCENTS	21.5%	3.8%	7.0%	12.6%	12.9%	19.6%	13.2%	6.6%	2.1%	0.6%	0.1%	0.0%	0.0%	0.0%

Statistical Information...
15th Percentile Speed
21.0 mph

Median Speed 47.1 mph

10 MPH Pace Speed 50 mph to 60 mph 8105 vehicles in pace Representing 32.6% of the total vehicles

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & \text { Total }\end{array}$

| | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 0 | 0 | 0 | 0 | 11 | 66 | 107 | 95 | 47 | 19 | 5 | 0 | 0 | 0 | 350 |
| $02: 00$ | 0 | 1 | 2 | 0 | 16 | 56 | 60 | 70 | 37 | 15 | 4 | 1 | 0 | 0 | 262 |
| $03: 00$ | 0 | 0 | 0 | 2 | 16 | 33 | 47 | 50 | 23 | 12 | 3 | 0 | 0 | 0 | 186 |
| $04: 00$ | 0 | 0 | 2 | 3 | 3 | 24 | 45 | 45 | 14 | 13 | 4 | 0 | 0 | 0 | 153 |
| $05: 00$ | 1 | 0 | 0 | 9 | 10 | 45 | 65 | 100 | 58 | 29 | 7 | 0 | 0 | 0 | 324 |
| $06: 00$ | 3 | 0 | 1 | 4 | 18 | 78 | 208 | 212 | 107 | 38 | 6 | 2 | 0 | 0 | 677 |
| $07: 00$ | 0 | 0 | 0 | 7 | 75 | 370 | 481 | 211 | 50 | 7 | 3 | 0 | 0 | 0 | 1204 |
| $08: 00$ | 124 | 21 | 69 | 80 | 201 | 502 | 332 | 91 | 20 | 4 | 1 | 0 | 0 | 1 | 1446 |
| $09: 00$ | 224 | 46 | 70 | 118 | 230 | 448 | 180 | 32 | 9 | 1 | 1 | 0 | 0 | 1 | 1360 |
| $10: 00$ | 7 | 2 | 7 | 96 | 309 | 584 | 278 | 85 | 19 | 1 | 0 | 0 | 0 | 0 | 1388 |
| $11: 00$ | 30 | 19 | 23 | 158 | 292 | 509 | 239 | 63 | 15 | 4 | 0 | 0 | 0 | 1 | 1353 |
| $12: 00$ | 235 | 173 | 173 | 280 | 257 | 264 | 67 | 30 | 5 | 2 | 0 | 0 | 0 | 1 | 1487 |
| $13: 00$ | 76 | 32 | 115 | 337 | 446 | 430 | 140 | 30 | 8 | 0 | 0 | 0 | 0 | 4 | 1618 |
| $14: 00$ | 13 | 29 | 167 | 521 | 498 | 385 | 57 | 13 | 2 | 0 | 0 | 0 | 0 | 0 | 1685 |
| $15: 00$ | 13 | 22 | 214 | 656 | 505 | 161 | 11 | 4 | 1 | 0 | 0 | 0 | 0 | 2 | 1589 |
| $16: 00$ | 461 | 65 | 200 | 363 | 175 | 54 | 5 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1327 |
| $17: 00$ | 130 | 55 | 226 | 533 | 333 | 122 | 19 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1423 |
| $18: 00$ | 4 | 9 | 146 | 601 | 505 | 166 | 15 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1451 |
| $19: 00$ | 6 | 57 | 315 | 775 | 366 | 77 | 6 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 1606 |
| $20: 00$ | 6 | 27 | 223 | 726 | 412 | 185 | 26 | 8 | 2 | 0 | 2 | 0 | 0 | 1 | 1618 |
| $21: 00$ | 13 | 46 | 60 | 235 | 537 | 447 | 133 | 34 | 4 | 3 | 1 | 0 | 0 | 1 | 1514 |
| $22: 00$ | 2 | 5 | 18 | 95 | 237 | 421 | 247 | 101 | 19 | 3 | 0 | 0 | 0 | 1 | 1149 |
| $23: 00$ | 1 | 0 | 11 | 39 | 144 | 324 | 226 | 96 | 18 | 3 | 1 | 0 | 1 | 0 | 864 |
| $24: 00$ | 4 | 0 | 19 | 94 | 202 | 347 | 196 | 68 | 18 | 6 | 0 | 0 | 0 | 0 | 954 |

DAY TOTAL	1353	609	2061	5732	5798	6098	3190	1450	479	160	40	3
PERCENTS	5.1%	2.3%	7.7%	21.3%	21.5%	22.6%	11.9%	5.3%	1.7%	0.5%	0.1%	0.0%

Statistical Information...

15th Percentile Speed	85th Percentile Speed
40.0 mph	57.0 mph
Median Speed	Average Speed
48.2 mph	47.4 mph
10 MPH pace speed	A
45 mph to 55 mph	Vehicles $>65 \mathrm{MPH}$
11896 vehicles in pace	
Representing 44.0% of the total vehicles	697

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & \text { Total }\end{array}$

$01: 00$	0	0	0	4	35	173	181	132	39	7	1	0	0	0	572
$02: 00$	1	0	0	2	21	79	100	103	24	17	6	0	0	2	355
$03: 00$	1	0	0	6	10	42	75	54	18	9	5	0	0	0	220
$04: 00$	0	0	0	3	6	44	43	32	19	13	3	1	0	0	164
$05: 00$	1	0	3	6	14	63	95	87	51	28	9	1	0	0	358
$06: 00$	0	1	3	11	18	128	235	194	95	32	5	2	0	0	724
$07: 00$	8	1	19	53	126	397	361	169	32	14	1	0	0	0	1181
$08: 00$	1	0	7	76	294	628	289	59	9	1	1	0	0	0	1365
$09: 00$	79	16	81	216	345	418	136	26	2	1	0	0	0	1	1321
$10: 00$	4	7	32	261	562	401	84	14	4	0	0	4	0	0	1373
$11: 00$	8	1	47	285	453	418	113	25	7	0	0	0	0	0	1357
$12: 00$	133	105	265	524	260	102	20	5	2	0	0	0	0	2	1418
$13: 00$	403	361	320	325	99	12	4	2	0	1	1	0	0	1	1529
$14: 00$	703	326	186	153	70	17	7	0	0	2	0	1	0	3	1468
$15: 00$	699	298	221	189	92	18	4	2	0	0	0	1	0	0	1524
$16: 00$	790	83	121	68	16	3	0	1	0	1	2	0	1	1	1087
$17: 00$	807	47	13	5	0	1	1	0	1	0	0	0	0	0	875
$18: 00$	132	123	385	608	192	41	3	0	1	0	0	1	0	2	1488
$19: 00$	38	100	457	676	201	41	4	0	0	0	0	1	0	2	1520
$20: 00$	9	35	366	731	288	58	7	2	0	0	0	0	0	0	1496
$21: 00$	1	6	60	292	400	422	152	42	11	2	2	0	0	0	1390
$22: 00$	159	6	52	154	189	257	134	57	21	2	0	0	0	1	1032
$23: 00$	209	4	7	36	142	239	163	59	34	4	0	0	0	0	897
$24: 00$	81	1	1	4	61	183	275	171	42	14	2	0	0	0	835

DAY TOTAL	4267	1521	2646	4688	3894	4185	2486	1236	412	148	38	12	1	15	25549
PERCENTS	16.8\%	6.0\%	10.4\%	18.4\%	15.3\%	16.4\%	9.7\%	4.8\%	1.6\%	0.5\%	0.1\%	0.0\%	0.0\%	0.0\%	100\%

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH Lane: 1
$\begin{array}{lllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+\end{array}$

| | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 13 | 0 | 0 | 7 | 33 | 112 | 178 | 110 | 42 | 14 | 1 | 0 | 0 | 1 | 511 |
| $02: 00$ | 0 | 0 | 0 | 5 | 15 | 66 | 117 | 69 | 51 | 19 | 2 | 4 | 0 | 0 | 348 |
| $03: 00$ | 1 | 0 | 2 | 6 | 19 | 58 | 103 | 54 | 36 | 14 | 0 | 1 | 0 | 0 | 294 |
| $04: 00$ | 2 | 0 | 0 | 2 | 17 | 47 | 48 | 40 | 17 | 3 | 1 | 0 | 0 | 0 | 177 |
| $05: 00$ | 3 | 0 | 3 | 17 | 35 | 97 | 68 | 52 | 15 | 10 | 0 | 0 | 0 | 0 | 300 |
| $06: 00$ | 1 | 4 | 2 | 40 | 134 | 255 | 159 | 40 | 11 | 1 | 0 | 0 | 0 | 0 | 647 |
| $07: 00$ | 13 | 12 | 30 | 74 | 317 | 426 | 175 | 43 | 16 | 2 | 0 | 1 | 0 | 0 | 1109 |
| $08: 00$ | 12 | 11 | 40 | 153 | 409 | 523 | 157 | 37 | 7 | 1 | 0 | 0 | 0 | 1 | 1351 |
| $09: 00$ | 18 | 5 | 45 | 179 | 411 | 511 | 140 | 24 | 5 | 2 | 3 | 0 | 0 | 0 | 1343 |
| $10: 00$ | 10 | 2 | 32 | 172 | 418 | 460 | 94 | 19 | 7 | 0 | 0 | 0 | 0 | 1 | 1215 |
| $11: 00$ | 12 | 2 | 40 | 357 | 503 | 354 | 76 | 15 | 2 | 0 | 1 | 0 | 0 | 0 | 1362 |
| $12: 00$ | 12 | 31 | 133 | 556 | 565 | 229 | 35 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 1567 |
| $13: 00$ | 133 | 75 | 261 | 554 | 381 | 151 | 22 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1582 |
| $14: 00$ | 865 | 300 | 183 | 79 | 16 | 10 | 5 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 1465 |
| $15: 00$ | 881 | 170 | 153 | 107 | 27 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1349 |
| $16: 00$ | 1141 | 59 | 6 | 5 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 1 | 1218 |
| $17: 00$ | 1095 | 17 | 5 | 2 | 2 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1128 |
| $18: 00$ | 1021 | 46 | 12 | 6 | 3 | 3 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1095 |
| $19: 00$ | 267 | 49 | 242 | 560 | 267 | 61 | 3 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 1452 |
| $20: 00$ | 31 | 22 | 173 | 525 | 439 | 231 | 41 | 6 | 1 | 0 | 0 | 1 | 0 | 1 | 1471 |
| $21: 00$ | 154 | 1 | 20 | 95 | 239 | 406 | 179 | 66 | 13 | 2 | 0 | 0 | 0 | 3 | 1178 |
| $22: 00$ | 29 | 2 | 5 | 60 | 239 | 488 | 235 | 101 | 19 | 2 | 0 | 0 | 0 | 0 | 1180 |
| $23: 00$ | 9 | 4 | 17 | 62 | 214 | 447 | 306 | 90 | 22 | 5 | 0 | 0 | 0 | 0 | 1176 |
| $24: 00$ | 3 | 0 | 4 | 25 | 119 | 380 | 344 | 164 | 53 | 6 | 0 | 0 | 0 | 0 | 1098 | Statistical Information...

15th Percentile Speed 20.1 mph	85th Percentile Speed 55.1 mph
Median Speed	Average Speed
46.3 mph	41.4 mph
10 MPH Pace Speed	Vehicles > 65 MPH
45 mph to 55 mph	447
10144 vehicles in pace	1.7\%
Representing 39.6% of the total vehicles	

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 1
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & \text { Total }\end{array}$

| | | | | | | | | | | | | | | | |
| ---: |
| $01: 00$ | 4 | 0 | 0 | 4 | 45 | 196 | 204 | 137 | 67 | 22 | 5 | 0 | 0 | 1 | 685 |
| $02: 00$ | 2 | 0 | 1 | 8 | 26 | 95 | 130 | 118 | 71 | 20 | 3 | 1 | 0 | 0 | 475 |
| $03: 00$ | 1 | 0 | 0 | 3 | 12 | 50 | 118 | 114 | 53 | 25 | 16 | 2 | 0 | 1 | 395 |
| $04: 00$ | 0 | 0 | 0 | 3 | 5 | 46 | 66 | 70 | 32 | 29 | 7 | 3 | 1 | 3 | 265 |
| $05: 00$ | 0 | 0 | 0 | 4 | 8 | 22 | 56 | 74 | 39 | 24 | 10 | 2 | 0 | 0 | 239 |
| $06: 00$ | 1 | 0 | 1 | 1 | 6 | 29 | 65 | 94 | 82 | 58 | 15 | 2 | 0 | 0 | 354 |
| $07: 00$ | 4 | 0 | 0 | 4 | 19 | 85 | 159 | 214 | 105 | 56 | 23 | 4 | 0 | 1 | 674 |
| $08: 00$ | 3 | 0 | 0 | 8 | 39 | 180 | 310 | 264 | 120 | 49 | 7 | 1 | 0 | 1 | 982 |
| $09: 00$ | 4 | 1 | 7 | 26 | 103 | 437 | 356 | 236 | 93 | 18 | 4 | 0 | 0 | 0 | 1285 |
| $10: 00$ | 2 | 2 | 3 | 39 | 138 | 490 | 457 | 175 | 40 | 7 | 1 | 0 | 0 | 1 | 1355 |
| $11: 00$ | 6 | 29 | 131 | 417 | 543 | 321 | 108 | 34 | 4 | 2 | 0 | 0 | 0 | 1 | 1596 |
| $12: 00$ | 9 | 24 | 150 | 598 | 637 | 260 | 15 | 5 | 0 | 2 | 0 | 1 | 0 | 0 | 1701 |
| $13: 00$ | 53 | 70 | 149 | 480 | 620 | 305 | 23 | 7 | 1 | 0 | 0 | 0 | 1 | 1 | 1710 |
| $14: 00$ | 16 | 43 | 108 | 436 | 496 | 387 | 71 | 8 | 2 | 1 | 0 | 0 | 0 | 0 | 1568 |
| $15: 00$ | 20 | 68 | 132 | 472 | 561 | 305 | 58 | 17 | 4 | 1 | 0 | 0 | 0 | 0 | 1638 |
| $16: 00$ | 706 | 435 | 229 | 100 | 20 | 4 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 1500 |
| $17: 00$ | 561 | 260 | 335 | 284 | 47 | 9 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1501 |
| $18: 00$ | 114 | 163 | 265 | 429 | 224 | 97 | 36 | 19 | 5 | 2 | 0 | 0 | 0 | 0 | 1354 |
| $19: 00$ | 4 | 11 | 31 | 180 | 374 | 558 | 277 | 65 | 7 | 1 | 1 | 0 | 0 | 0 | 1509 |
| $20: 00$ | 40 | 52 | 82 | 235 | 401 | 495 | 214 | 50 | 9 | 0 | 0 | 1 | 1 | 0 | 1580 |
| $21: 00$ | 3 | 3 | 21 | 111 | 348 | 539 | 265 | 93 | 28 | 11 | 1 | 0 | 0 | 0 | 1423 |
| $22: 00$ | 61 | 39 | 70 | 169 | 289 | 405 | 207 | 62 | 13 | 3 | 1 | 0 | 0 | 1 | 1320 |
| $23: 00$ | 4 | 0 | 3 | 84 | 302 | 473 | 260 | 83 | 26 | 3 | 0 | 1 | 1 | 1 | 1241 |
| $24: 00$ | 2 | 0 | 7 | 82 | 246 | 428 | 299 | 118 | 29 | 8 | 1 | 0 | 0 | 1 | 1221 |

Statistical Information...

$$
\begin{aligned}
& \text { STA. } 2 \\
& \text { LN. } 2
\end{aligned}
$$

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034 Site ID: Station 2 Location: I-93 SB ramp to I-95 Direction: SOUTH Lane: 2

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	$T o t a l$

 Statistical Information...

15th Percentile Speed 41.6 mph

Median Speed 53.1 mph

10 MPH Pace Speed 50 mph to 60 mph 12381 vehicles in pace Representing 41.7% of the total vehicles
85th Percentile Speed
62.8 mph

Average | Speed |
| :---: |
| 51.7 mph |
| Vehicles $>65 \mathrm{MPH}$ |
| 2852 |
| 9.6% |

Mon 6/17/2019

Site Reference: 190020000034 Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 2

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	Total

01:00	1	1	0	1	10	43	133	155	93	33	7	0	0	0	477
02:00	0	0	0	0	1	34	94	95	62	33	7	3	0	1	330
03:00	0	0	0	5	7	25	52	68	39	16	5	3	1	0	221
04:00	0	0	0	1	4	19	29	66	53	18	6	2	0	1	199
05:00	0	0	0	0	4	16	42	88	98	49	28	8	0	2	335
06:00	0	0	0	0	5	22	115	274	230	125	42	9	2	1	825
07:00	0	0	0	1	23	202	427	433	184	62	15	0	0	0	1347
08:00	2	5	12	28	44	230	479	393	141	51	16	0	0	0	1401
09:00	176	66	44	60	102	312	363	256	71	9	0	0	0	1	1460
10:00	0	0	2	47	135	330	424	303	101	20	5	1	0	1	1369
11:00	36	25	34	63	195	481	443	194	59	18	1	0	0	2	1551
12:00	70	69	107	253	297	426	284	172	51	14	1	0	0	0	1744
13:00	96	129	148	242	372	474	246	124	52	8	1	1	1	0	1894
14:00	97	100	209	321	374	471	267	74	26	9	2	1	0	1	1952
15:00	537	288	243	347	236	133	27	4	3	0	2	0	0	0	1820
16:00	983	217	147	63	24	7	0	1	0	0	0	0	0	1	1443
17:00	356	138	130	223	212	145	43	8	2	0	0	1	0	1	1259
18:00	. 6	24	88	397	384	236	53	17	2	2	2	0	0	0	1211
19:00	0	22	154	487	425	256	49	8	0	0	2	0	0	0	1403
20:00	1	1	39	185	328	667	461	203	41	12	2	0	0	0	1940
21:00	1	2	7	48	150	481	559	254	56	17	3	2	0	1	1581
22:00	3	2	10	68	151	467	459	187	53	14	6	0	0	0	1420
23:00	3	2	8	22	95	385	319	217	65	21	2	0	1	0	1140
24:00	1	0	0	14	39	193	308	258	117	48	7	0	0	1	986

Statistical Information...
$\left.\begin{array}{lc}\text { 15th Percentile Speed } \\ 38.4 \mathrm{mph} & \text { 85th Percentile Speed } \\ 62.4 \mathrm{mph}\end{array}\right)$

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 2
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & T o t a l\end{array}$

| | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $01: 00$ | 0 | 0 | 1 | 4 | 12 | 79 | 154 | 151 | 73 | 32 | 9 | 0 | 0 | 1 | 516 |
| $02: 00$ | 0 | 0 | 1 | 1 | 10 | 40 | 97 | 117 | 71 | 20 | 15 | 1 | 0 | 1 | 374 |
| $03: 00$ | 0 | 0 | 0 | 0 | 6 | 28 | 66 | 72 | 51 | 25 | 8 | 1 | 0 | 0 | 257 |
| $04: 00$ | 1 | 0 | 1 | 0 | 2 | 14 | 51 | 67 | 37 | 27 | 13 | 2 | 0 | 1 | 216 |
| $05: 00$ | 0 | 0 | 0 | 1 | 6 | 18 | 81 | 111 | 73 | 51 | 20 | 5 | 3 | 0 | 369 |
| $06: 00$ | 0 | 0 | 0 | 1 | 0 | 37 | 126 | 252 | 224 | 118 | 32 | 6 | 1 | 2 | 799 |
| $07: 00$ | 0 | 0 | 0 | 10 | 62 | 257 | 460 | 390 | 192 | 66 | 17 | 3 | 0 | 1 | 1458 |
| $08: 00$ | 3 | 0 | 0 | 13 | 47 | 366 | 575 | 398 | 130 | 32 | 7 | 1 | 0 | 0 | 1572 |
| $09: 00$ | 0 | 2 | 8 | 31 | 91 | 455 | 570 | 271 | 85 | 19 | 2 | 0 | 0 | 0 | 1534 |
| $10: 00$ | 3 | 2 | 10 | 48 | 157 | 419 | 467 | 267 | 76 | 19 | 0 | 1 | 0 | 0 | 1469 |
| $11: 00$ | 0 | 0 | 3 | 52 | 180 | 504 | 487 | 222 | 68 | 7 | 2 | 0 | 0 | 0 | 1525 |
| $12: 00$ | 3 | 10 | 55 | 206 | 450 | 563 | 354 | 167 | 19 | 9 | 1 | 0 | 0 | 0 | 1837 |
| $13: 00$ | 745 | 378 | 177 | 146 | 56 | 42 | 28 | 12 | 4 | 1 | 0 | 0 | 0 | 0 | 1589 |
| $14: 00$ | 1015 | 135 | 145 | 96 | 27 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1423 |
| $15: 00$ | 1188 | 100 | 45 | 13 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1349 |
| $16: 00$ | 1120 | 41 | 20 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1186 |
| $17: 00$ | 1169 | 37 | 9 | 15 | 6 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1240 |
| $18: 00$ | 325 | 97 | 235 | 369 | 161 | 59 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1254 |
| $19: 00$ | 17 | 69 | 358 | 729 | 305 | 88 | 12 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1581 |
| $20: 00$ | 5 | 28 | 316 | 710 | 481 | 324 | 78 | 12 | 7 | 3 | 0 | 1 | 0 | 0 | 1965 |
| $21: 00$ | 3 | 7 | 17 | 89 | 283 | 640 | 439 | 168 | 59 | 7 | 2 | 0 | 0 | 0 | 1714 |
| $22: 00$ | 7 | 1 | 90 | 240 | 200 | 388 | 303 | 139 | 33 | 11 | 1 | 0 | 0 | 0 | 1413 |
| $23: 00$ | 2 | 2 | 5 | 18 | 112 | 379 | 366 | 174 | 54 | 15 | 6 | 0 | 0 | 0 | 1133 |
| $24: 00$ | 0 | 1 | 6 | 7 | 46 | 218 | 337 | 272 | 95 | 47 | 10 | 1 | 0 | 0 | 1040 |

Statistical Information...

15th Percentile Speed 23.1 mph	85th Percentile Speed 61.5 mph
Median Speed	Average Speed
50.9 mph	45.6 mph
10 MPH Pace Speed	Vehicles > 65 MPH
50 mph to 60 mph	2041
9987 vehicles in pace	7.1\%
Representing 34.6% of the total vehicles	

MassDOT Highway Division

SPEED SUMMARY
Wed 6/19/2019
Page: 11

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95
Direction: SOUTH
Lane: 2
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & T o t a l\end{array}$

01:00	1	0	0	0	25	71	167	163	92	49	12	2	1	0	583
02:00	0	0	0	2	3	66	131	131	69	30	10	4	1	0	447
03:00	0	0	0	2	4	24	65	74	46	19	11	1	0	2	248
04:00	0	0	0	2	10	27	43	77	44	30	7	2	1	0	243
05:00	0	0	0	0	4	18	62	106	74	50	31	6	-2	0	353
06:00	1	0	0	2	3	24	140	266	239	118	23	7	0	0	823
07:00	0	0	0	9	32	244	463	406	159	50	12	2	0	0	1377
08:00	116	26	25	59	124	347	477	260	82	23	3	0	0	0	1542
09:00	225	59	47	79	99	299	411	171	44	9	3	2	1	3	1452
10:00	24	13	5	30	128	376	501	221	60	19	2	0	0	1	1380
11:00	24	27	31	75	182	536	472	199	58	11	3	1	0	0	1619
12:00	215	212	215	248	297	380	175	56	11	5	3	0	0	0	1817
13:00	87	134	118	296	379	553	312	91	25	3	2	1	0	0	2001
14:00	14	28	133	430	522	604	203	52	12	2	1	2	1	0	2004
15:00	0	13	134	446	656	415	66	16	1	0	0	0	1	0	1748
16:00	471	32	145	366	206	115	21	7	1	2	0	0	2	0	1368
17:00	85	64	137	373	321	197	51	24	4	0	0	0	0	0	1256
18:00	9	11	59	294	405	318	111	25	7	3	0	0	0	0	1242
19:00	29	77	244	605	478	182	43	8	2	0	2	0	0	1	1671
20:00	10	43	203	606	626	358	93	26	10	1	0	0	0	0	1976
21:00	25	45	83	278	453	586	239	107	16	3	0	1	0	0	1836
22:00	0	1	16	126	274	558	345	165	49	17	3	1	0	1	1556
23:00	1	1	8	25	90	273	349	207	61	10	2	0	0	0	1027
24:00	2	4	15	59	154	307	242	143	29	8	1	0	1	1	966

15th Percentile Speed 41.0 mph

Median Speed 51.2 mph

10 MPH Pace Speed 45 mph to 55 mph 12353 vehicles in pace Representing 40.4% of the total vehicles

85th Percentile Speed 60.4 mph

Average Speed 50.1 mph

Vehicles > 65 MPH 1840 6.0%

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 2
$\begin{array}{llllllllllllllll}\text { TIME } & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 91+ & \text { Total }\end{array}$

01:00	1	0	0	0	10	127	219	178	73	27	5	1	0	0	641
02:00	0	0	0	1	11	51	124	122	63	46	11	1	0	1	431
03:00	3	2	0	1	9	24	80	96	61	27	8	2	0	1	314
04:00	0	0	0	2	3	30	59	66	41	29	5	1	0	0	236
05:00	0	0	0	0	6	22	60	113	96	58	26	4	1	0	386
06:00	1	0	1	2	13	55	137	224	242	124	51	7	1	1	859
07:00	0	0	0	3	52	283	492	323	150	57	10	2	0	0	1372
08:00	1	0	0	12	102	479	515	227	71	17	1	0	0	0	1425
09:00	68	13	41	118	200	415	346	146	31	4	0	0	0	0	1382
10:00	0	1	19	79	261	519	288	78	18	5	0	0	0	0	1268
11:00	2	10	31	148	376	571	249	75	16	4	0	0	0	1	1483
12:00	109	98	234	438	426	229	59	21	1	0	0	0	0	0	1615
13:00	398	335	318	354	208	87	9	0	0	0	0	0	0	0	1709
14:00	767	312	221	182	83	52	5	2	0	0	0	0	0	0	1624
15:00	728	285	196	219	144	75	16	2	0	0	0	0	0	0	1665
16:00	772	95	92	84	24	10	1	0	0	0	0	0	0	0	1078
17:00	796	45	21	26	2	0	0	0	0	0	0	0	0	0	890
18:00	95	118	225	545	321	118	18	4	0	0	0	0	0	0	1444
19:00	32	73	278	661	363	124	19	3	1	0	0	0	0	0	1554
20:00	5	47	237	600	552	205	20	10	0	1	0	1	0	0	1678
21:00	2	9	66	270	433	557	300	78	17	2	0	1	0	0	1735
22:00	6	28	42	206	299	417	285	135	43	7	2	0	0	0	1470
23:00	3	3	28	101	240	506	357	136	47	8	1	0	0	0	1430
24:00	1	1	8	19	74	271	353	278	90	31	8	1	0	1	1136

DAY TOTAL	3790	1475	2058	4071	4212	5227	4011	2317	1061	447	128	21
PERCENTS	13.2%	5.2%	7.2%	14.2%	14.7%	18.1%	13.9%	8.0%	3.6%	1.5%	0.4%	0.0%

15th Percentile Speed
31.8 mph

Median Speed 48.6 mph

10 MPH Pace Speed
45 mph to 55 mph
9439 vehicles in pace
Representing 32.7% of the total vehicles

85th Percentile Speed 59.6 mph

Average Speed
45.8 mph

Vehicles > 65 MPH 1664
5.8\%

MassDOT Highway Division

SPEED SUMMARY
Fri 6/21/2019
Page: 13

Site Reference: 190020000034 Site ID: Station 2

File: comb..prn
City: Quincy
County; Ramp ID \# 12077
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 2

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	$T o t a l$

01:00	2	0	3	2	21	113	228	166	105	37	12	2	0	1	692
02:00	0	0	0	1	19	53	128	129	75	47	11	2	0	1	466
03:00	0	1	2	7	19	78	120	122	46	25	9	0	0	1	430
04:00	0	0	0	0	11	49	74	66	40	16	1	0	0	1	258
05:00	0	0	1	14	19	63	72	66	32	21	5	0	0	0	293
06:00	0	0	0	25	69	230	218	104	39	8	0	0	0	0	693
07:00	2	6	21	41	172	465	357	123	31	9	1	1	0	0	1229
08:00	1	0	12	77	206	568	386	146	19	3	0	0	0	0	1418
09:00	1	0	5	43	188	584	432	124	21	13	0	0	0	2	1413
10:00	3	5	12	54	180	441	349	143	38	8	1	0	0	3	1237
11:00	3	8	51	219	427	516	303	72	18	1	0	0	0	0	1618
12:00	13	31	81	348	595	543	165	18	2	1	1	0	0	0	1798
13:00	98	51	237	513	464	369	110	15	2	0	0	0	0	0	1859
14:00	895	262	213	90	33	16	1	0	0	0	0	0	0	0	1510
15:00	901	168	176	124	53	12	2	1	0	0	0	0	0	0	1437
16:00	1155	106	15	2	0	1	0	0	0	0	0	0	0	0	1279
17:00	1138	34	7	4	0	2	1	0	0	0	0	0	0	0	1186
18:00	1020	58	30	11	1	0	0	0	0	0	0	0	0	0	1120
19:00	199	80	197	531	375	128	27	5	0	0	2	0	0	0	1544
20:00	2	15	140	475	523	501	123	26	2	1	1	0	0	0	1809
21:00	2	3	72	136	357	627	372	131	35	15	0	0	0	0	1750
22:00	10	5	11	48	244	639	404	168	50	10	0	0	0	1	1590
23:00	10	19	41	128	248	491	401	173	48	15	2	0	0	0	1576
24:00	2	0	3	51	153	507	536	203	86	25	3	1	0	0	1570

DAY TOTAL	5457	852	1330	2944	4377	6996	4809	2001	689	255	49	6	0
PERCENTS	18.4%	2.9%	4.5%	9.9%	14.8%	23.5%	16.1%	6.7%	2.3%	0.8%	0.1%	0.0%	0.0%

Statistical Information...

15th Percentile Speed 24.6 mph

Median Speed 49.9 mph

10 MPH Pace Speed 50 mph to 60 mph 11805 vehicles in pace Representing 39.6% of the total vehicles

85th Percentile Speed 58.5 mph

Average Speed 44.7 mph

Vehicles > 65 MPH 1009 3.4\%

File: comb..prn
City: Quincy
County: Ramp ID \# 12077

Site Reference: 190020000034
Site ID: Station 2
Location: I-93 SB ramp to I-95 Direction: SOUTH
Lane: 2

TIME	30	35	40	45	50	55	60	65	70	75	80	85	90	$91+$	$T o t a l$

01:00	1	0	7	23	33	204	315	251	108	35	11	0	0	1	989
02:00	1	0	0	8	39	91	186	190	109	65	5	1	1	1	697
03:00	0	0	1	1	5	47	131	171	111	48	24	6	2	1	548
04:00	0	0	0	1	8	35	71	110	90	35	17	7	1	0	375
05:00	0	0	0	0	5	30	48	111	76	51	20	2	0	0	343
06:00	0	0	0	0	1	22	53	133	168	133	47	13	2	1	573
07:00	1	0	1	3	6	41	196	312	240	145	46	12	2	1	1006
08:00	3	0	0	9	28	157	350	404	239	121	33	3	1	1	1349
09:00	2	0	1	34	108	349	585	431	154	40	9	1	0	0	1714
10:00	4	0	1	23	134	513	650	333	117	18	4	1	0	0	1798
11:00	8	42	91	280	566	577	181	61	21	5	0	0	0	2	1834
12:00	7	23	161	422	690	497	84	20	2	0	0	0	0	1	1907
13:00	51	39	103	368	588	603	140	15	2	0	0	2	0	1	1912
14:00	46	51	114	300	519	607	174	40	3	2	0	0	1	2	1859
15:00	41	60	109	307	476	606	191	39	12	5	0	2	0	3	1851
16:00	835	378	263	118	46	10	2	1	1	0	0	0	0	0	1654
17:00	627	180	349	309	114	39	4	5	0	0	1	1	0	0	1629
18:00	120	136	221	305	212	159	99	42	9	6	0	0	0	0	1309
19:00	18	23	40	154	289	627	414	177	49	6	1	2	0	2	1802
20:00	45	74	91	189	346	675	387	145	38	8	0	1	0	0	1999
21:00	4	7	25	163	299	660	452	150	37	16	1	0	0	2	1816
22:00	140	28	83	182	330	551	270	103	24	7	3	0	0	0	1721
23:00	4	24	32	136	295	599	410	164	26	3	3	0	0	0	1696
24:00	2	9	27	101	241	590	472	173	47	8	5	1	0	0	1676

DAY TOTAL	1960	1074	1720	3436	5378	8289	5865	3581	1683	757	230	55
PERCENTS	5.8%	3.2%	5.1%	10.1%	15.8%	24.4%	17.3%	10.5%	4.9%	2.2%	0.6%	0.1%

Statistical Information...

15th Percentile Speed	85th Percentile Speed
40.5 mph	61.7 mph
Median Speed	
52.1 mph	Average Speed
10 MPH Pace Speed	50.5 mph
50 mph to 60 mph	Vehicles $>65 \mathrm{MPH}$
14154 vehicles in pace	
Representing 41.5% of the total vehicles	2754

APPENDIX C

1. Crash tables

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Nu	$\begin{aligned} & \text { Crash } \\ & \text { Year } \end{aligned}$	Crash Date
2	Wilmington	1-93 Segment 7 (after second Exit 41 on-ramp)	1:40 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3752697	2014	2014-03-04
3	Wilmington	1-93 Segment 7 (after second Exit 41 on-ramp)	12:25 PM	Off-peak	Unknown	Not reported	Not reported	Property damage only (none injured)	Unknown	3792552	2014	2014-03-21
4	Wilmington	1-93 Segment 7 (after second Exit 41 on-ramp)	8:45 AM	Peak	Wet	Daylight	Sideswipe, same direction	Property damage only (none injured)	Snow	3680696	2013	2013-12-09
5	Wilmington	Exit 40 merge	9:33 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Cloudy	4038992	2015	2015-05-02
6	Wilmington	Exit 40 merge	10:00 PM	Off-peak	Dry	Dark - roadway not lighted	Single venicle crash	Non-fatal injury	Clear	4058519	2015	2015-05-22
7	Wilmington	Exit 40 merge	3:20 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4061157	2015	2015-07-07
8	Wilmington	Exit 40 merge	12:51 PM	Off-peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	4164171	2016	2016-03-07
9	Wilmington	Exit 40 merge	12:50 PM	Off-peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Clear	3667330	2013	2013-11-26
10	Wilmington	Route 125 at Ballardville St	12:08 PM	Off-peak	Wet	Daylight	Angle	Property damage only (none injured)	Cloudy	4154894	2016	2016-02-16
11	Wilmington	Route 125 at Ballardville St	2:41 PM	Off-peak	Wet	Daylight	Unknown	Property damage only (none injured)	Clear	4301334	2016	2016-12-12
12	Wilmington	Route 125 at Ballardville St	2:39 PM	Off-peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Rain	3999257	2015	2015-01-15
13	Wilmington	Route 125 at Ballardville St	8:26 AM	Peak	Wet	Daylight	Rear-end	Non-fatal injury	Cloudy	3367293	2012	2012-12-05
14	Wilmington	Route 125 at Ballardville St	3:38 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4096845	2015	2015-10-08
15	Wilmington	Route 125 at Ballardville St	9:09 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4141225	2016	2016-01-21
16	Wilmington	Route 125 at Ballardville St	8:04 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4187516	2016	2016-04-29
17	Wilmington	Route 125 at Ballardville St	5:25 PM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4245639	2016	2016-08-30
18	Wilmington	Route 125 at Ballardville St	8:41 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4284384	2016	2016-11-14
19	Wilmington	Route 125 at Ballardville St	1:58 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	3367318	2013	2013-01-21
20	Wilmington	Route 125 at Ballardville St	1:11 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3829970	2014	2014-06-01
21	Wilmington	Route 125 at Ballardville St	9:20 AM	Peak	Dry	Daylight	Sideswipe, opposite direction	Property damage only (none injured)	Cloudy	4191147	2016	2016-05-13
22	Wilmington	Route 125 at Ballardville St	9:40 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4218786	2016	2016-06-30
23	Wilmington	Route 125 at Ballardville St	8:40 AM	Peak	Wet	Daylight	Single vehicle crash	Property damage only (none injured)	Cloudy	2934893	2012	2012-02-17
24	Wilmington	Route 125 at Ballardville St	10:23 AM	Off-peak	Wet	Daylight	Angle	Property damage only (none injured)	Rain	3116421	2012	2012-05-08
25	Wilmington	Route 125 at Ballardville St	11:03 AM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Cloudy	3412964	2013	2013-03-18
26	Wilmington	Route 125 at Ballardville St	6:21 AM	Peak	Dry	Dawn	Sideswipe, same direction	Property damage only (none injured)	Clear	3705609	2013	2013-10-28
27	Wilmington	Route 125 at Ballardville St	8:00 AM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Clear	3671711	2013	2013-12-04
28	Wilmington	Route 125 at Ballardville St	5:05 PM	Peak	Dry	Dusk	Rear-end	Non-fatal injury	Clear	3730942	2014	2014-02-04
29	Wilmington	Route 125 at Ballardville St	4:46 PM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Unknown	3743372	2014	2014-02-21
30	Wilmington	Route 125 at Ballardville St	8:49 AM	Peak	Dry	Daylight	Angle	Non-fatal injury	Clear	3818287	2014	2014-04-24
31	Wilmington	Route 125 at Ballardville St	8:55 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3949949	2014	2014-09-09
32	Wilmington	Route 125 at Ballardville St	8:00 AM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4041862	2015	2015-05-14
33	Wilmington	Route 125 at Ballardville St	9:25 PM	Off-peak	Dry	Dark - unknown roadway linhtinn	Rear-end	Non-fatal injury	Clear	4058693	2015	2015-06-23
34	Wilmington	Route 125 at Ballardville St	1:50 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4061355	2015	2015-07-10
35	Wilmington	Route 125 at Ballardville St	8:11 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4132764	2016	2016-01-05
36	Wilmington	Route 125 at Ballardville St	2:12 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4149330	2016	2016-01-27
37	Wilmington	Route 125 at Ballardville St	7:25 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4219262	2016	2016-06-29

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	$\begin{aligned} & \text { Crash } \\ & \text { Year } \end{aligned}$	Crash Date
38	Wilmington	Route 125 at Ballardville St	4:00 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4226863	2016	2016-07-23
39	Wilmington	Route 125 at Ballardville St	12:12 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4245641	2016	2016-08-31
40	Wilmington	Route 125 at Ballardville St	5:04 PM	Peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	4301328	2016	2016-12-09
41	Wilmington	Route 125 at Ballardville St	9:22 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4284379	2016	2016-11-10
42	Wilmington	Route 125 at Ballardville St	4:57 PM	Peak	Dry	Dusk	Rear-end	Non-fatal injury	Clear	4288113	2016	2016-11-18
43	Wilmington	Route 125 at Ballardville St	1:48 PM	Off-peak	Wet	Daylight	Rear-end	Non-fatal injury	Cloudy	3968377	2014	2014-10-01
44	Wilmington	Route 125 at Ballardville St	7:55 AM	Peak	Wet	Daylight	Rear-end	Non-fatal injury	Clear	3298967	2012	2012-10-05
45	Wilmington	Route 125 at Ballardville St	8:35 PM	Off-peak	Dry	Dark - roadway not lighted	Head-on	Fatal injury	Cloudy	3374720	2013	2013-03-03
46	Wilmington	Route 125 at $1-93$ NB ramps	3:10 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3829341	2014	2014-02-14
47	Wilmington	Route 125 at - 93 NB ramps	4:07 AM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Clear	3509772	2013	2013-06-26
48	Wilmington	Route 125 at $1-93$ NB ramps	5:34 PM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3412999	2013	2013-04-24
49	Wilmington	1 -93 Segment 6 (before second Exit 41 on-ramp)	9:20 PM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Unknown	3729200	2014	2014-01-16
50	Wilmington	Route 125 at l-93 NB ramps	5:13 PM	Peak	Dry	Dark - roadway not lighted	Rear-end	Non-fatal injury	Clear	4127100	2015	2015-12-16
51	Wilmington	I-93 Segment 5 (before first Exit 41 on-ramp)	4:30 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4010731	2015	2015-02-20
52	Wilmington	Route 125 at l-93 NB ramps	8:35 AM	Peak	Wet	Daylight	Single vehicle crash	Property damage only (none injured)	Unknown	3414235	2013	2013-05-11
53	Wilmington	Route 125 at l-93 NB ramps	5:45 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4259043	2016	2016-10-04
54	Wilmington	Route 125 at l-93 NB ramps	6:00 PM	Peak	Dry	Dusk	Angle	Property damage only (none injured)	Clear	3984649	2014	2014-12-03
55	Wilmington	1-93 Segment 5 (before first Exit 41 on-ramp)	6:40 PM	Peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Cloudy	4109972	2015	2015-11-13
56	Wilmington	$1-93$ Segment 5 (before first Exit 41 on-ramp)	1:33 PM	Off-peak	Wet	Daylight	Single vehicle crash	Property damage only (none injured)	Unknown	3606315	2013	2013-10-04
57	Wilmington	1-93 Segment 5 (before first Exit 41 on-ramp)	3:08 AM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Non-fatal injury	Clear	3274436	2012	2012-10-12
58	Wilmington	Exit 40 offramp	8:51 AM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Cloudy	3375560	2012	2012-04-02
59	Wilmington	Exit 40 off-ramp	8:30 AM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Cloudy	3279863	2012	2012-10-03
60	Wilmington	$1-93$ Segment 4 (after Exit 41 off-ramp)	3:15 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	2869268	2012	2012-01-20
61	Wilmington	1-93 Segment 4 (after Exit 41 off-ramp)	4:30 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	2914945	2012	2012-02-01
62	Wilmington	Exit 41 diverge	3:50 AM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Clear	3868054	2014	2014-06-07
63	Wilmington	Exit 41 diverge	2:34 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4263092	2016	2016-10-14
64	Wilmington	Exit 41 diverge	3:30 PM	Peak	Snow/lce	Daylight	Single vehicle crash	Non-fatal injury	Snow	3375544	2012	2012-01-21
65	Wilmington	Exit 41 diverge	4:28 PM	Peak	Dry	Daylight	Single vehicle crash	Not Reported	Unknown	3101966	2012	2012-05-17
66	Wilmington	Exit 41 diverge	12:45 PM	Off-peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Clear	3210661	2012	2012-07-17
67	Wilmington	Exit 41 diverge	4:06 PM	Peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Clear	3266952	2012	2012-09-15
68	Wilmington	Exit 41 diverge	4:15 PM	Peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Clear	3290863	2012	2012-11-15
69	Wilmington	Exit 41 diverge	8:25 PM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Cloudy	3317430	2012	2012-12-18
70	Wilmington	Exit 41 diverge	2:09 PM	Off-peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Clear	3452992	2013	2013-05-18
71	Wilmington	Exit 41 diverge	1:30 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3584857	2013	2013-09-08
72	Wilmington	Exit 41 diverge	3:10 PM	Peak	Snow/lce	Daylight	Single venicle crash	Non-fatal injury	Snow	3371847	2013	2013-03-19
73	Wilmington	Exit 41 diverge	3:36 PM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Cloudy	3372959	2013	2013-03-06

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
110	Wilmington	Exit 41 diverge	6:28 PM	Peak	Wet	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Rain	4277199	2016	2016-10-21
111	Wilmington	Exit 41 diverge	3:14 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4225013	2016	2016-07-25
112	Wilmington	Exit 41 diverge	3:45 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	4225876	2016	2016-07-29
113	Wilmington	Exit 41 diverge	11:06 PM	Off-peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Clear	4231281	2016	2016-08-05
114	Wilmington	Exit 41 diverge	2:30 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4232428	2016	2016-08-12
115	Wilmington	Exit 41 diverge	1:23 AM	Off-peak	Wet	Dark - roadway not lighted	Single vehicle crash	Not Reported	Rain	4246651	2016	2016-08-22
116	Wilmington	Exit 41 diverge	3:25 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4250351	2016	2016-09-15
117	Wilmington	Exit 41 diverge	1:10 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4251667	2016	2016-09-17
118	Wilmington	Exit 41 diverge	3:00 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4259039	2016	2016-09-20
119	Wilmington	Exit 41 diverge	2:49 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4285466	2016	2016-10-12
120	Wilmington	Exit 41 diverge	12:09 AM	Off-peak	Dry	Dark - roadway not lighted	Sideswipe, same direction	Property damage only (none injured)	Clear	4264687	2016	2016-10-15
121	Wilmington	Exit 41 diverge	8:16 AM	Peak	Dry	Daylight	Angle	Non-fatal injury	Clear	4280713	2016	2016-11-02
122	Wilmington	Exit 41 diverge	8:20 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4288590	2016	2016-11-02
123	Wilmington	Exit 41 diverge	9:00 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4286635	2016	2016-11-08
124	Wilmington	Exit 41 diverge	2:50 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4282098	2016	2016-11-10
125	Wilmington	Exit 41 diverge	8:45 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4311477	2016	2016-12-06
126	Wilmington	Exit 41 diverge	3:45 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3959836	2014	2014-09-17
127	Wilmington	Exit 41 diverge	8:58 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3340523	2013	2013-01-11
128	Wilmington	Exit 41 diverge	10:33 AM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3783775	2014	2014-04-01
129	Wilmington	Exit 41 diverge	7:09 AM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4094461	2015	2015-09-21
130	Wilmington	Exit 41 diverge	4:00 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	4058716	2015	2015-06-16
131	Wilmington	$1-93$ Segment 3 (between Exit 40 and Exit 41)	5:40 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Cloudy	4070516	2015	2015-08-04
132	Wilmington	$1-93$ Segment 3 (between Exit 40 and Exit 41)	8:20 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	3664712	2013	2013-11-21
133	Wilmington	$1-93$ Segment 3 (between Exit 40 and Exit 41)	11:02 PM	Off-peak	Wet	Dark - lighted roadway	Sideswipe, same direction	Non-fatal injury	Rain	3427876	2013	2013-05-24
134	Wilmington	$1-93$ Segment 3 (between Exit 40 and Exit 41)	3:25 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Cloudy	3795758	2014	2014-04-30
135	Wilmington	$1-93$ Segment 3 (between Exit 40 and Exit 41)	5:01 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3870855	2014	2014-06-20
136	Wilmington	Exit 40 merge	2:50 AM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	4311467	2016	2016-12-24
137	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	2:50 PM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4132767	2016	2016-01-06
138	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	7:59 AM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	4248720	2016	2016-09-11
139	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	5:28 AM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Clear	3298840	2012	2012-12-09
140	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	5:45 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3588308	2013	2013-09-13
141	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	2:50 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	3372288	2013	2013-03-20
142	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	2:45 PM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3481928	2013	2013-06-23
143	Wilmington	$1-93$ Segment 2 (before Exit 40 on-ramp)	4:19 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3799235	2014	2014-01-20
144	Wilmington	$1-93$ Segment 2 (before Exit 40 on-ramp)	3:39 PM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Clear	3730081	2014	2014-01-27
145	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	2:53 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4141204	2016	2016-01-12

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	$\begin{aligned} & \text { Crash } \\ & \text { Year } \end{aligned}$	Crash Date
146	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	6:03 PM	Peak	Dry	Daylight	Angle	Non-fatal injury	Cloudy	4228564	2016	2016-07-28
147	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	5:20 AM	Off-peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Unknown	3252543	2012	2012-09-16
148	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	12:08 PM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3602528	2013	2013-09-19
149	Wilmington	1-93 Segment 2 (before Exit 40 on-ramp)	7:54 PM	Off-peak	Dry	Dark - lighted roadway	Angle	Non-fatal injury	Cloudy	3941716	2014	2014-08-22
150	Wilmington	$1-93$ Segment 2 (before Exit 40 on-ramp)	3:34 PM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	3720524	2014	2014-01-20
151	Wilmington	Exit 40 on-ramp	11:37 AM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3168166	2012	2012-02-23
152	Wilmington	Exit 40 off-ramp	11:40 PM	Off-peak	Snow/lce	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Unknown	3367261	2013	2013-03-07
153	Wilmington	Exit 40 off-ramp	11:29 PM	Off-peak	Dry	Dark - unknown roadway linhtinn	Single vehicle crash	Property damage only (none injured)	Cloudy	3850241	2014	2014-06-12
154	Wilmington	Exit 40 off-ramp	9:40 AM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Unknown	3215949	2012	2012-07-04
155	Wilmington	Exit 40 diverge	6:11 AM	Peak	Dry	Dark - roadway not lighted	Single vehicle crash	Non-fatal injury	Cloudy	2894051	2012	2012-01-22
156	Wilmington	Exit 40 diverge	2:17 PM	Off-peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Unknown	3604395	2013	2013-10-04
157	Wilmington	Exit 40 diverge	12:18 PM	Off-peak	Snow/lce	Daylight	Single vehicle crash	Property damage only (none injured)	Snow	3362802	2013	2013-02-17
158	Wilmington	Exit 40 diverge	3:55 PM	Peak	Wet	Dusk	Rear-end	Property damage only (none injured)	Rain	3713445	2014	2014-01-06
159	Wilmington	Exit 40 diverge	11:11 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Unknown	3794740	2014	2014-04-24
160	Wilmington	Exit 40 diverge	9:02 AM	Peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Unknown	3867488	2014	2014-06-27
161	Wilmington	Exit 40 diverge	2:35 PM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3869351	2014	2014-06-28
162	Wilmington	Exit 40 diverge	9:35 PM	Off-peak	Wet	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Rain	3987436	2014	2014-12-23
163	Wilmington	Exit 40 diverge	3:00 PM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Rain	3999799	2015	2015-01-12
164	Wilmington	Exit 40 diverge	4:40 AM	Off-peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Clear	4024118	2015	2015-03-20
165	Wilmington	Exit 40 diverge	9:08 AM	Peak	Dry	Daylight	Angle	Non-fatal injury	Unknown	4028915	2015	2015-03-20
166	Wilmington	Exit 40 diverge	9:35 PM	Off-peak	Dry	Dark - roadway not lighted	Angle	Non-fatal injury	Unknown	4030736	2015	2015-03-21
167	Wilmington	Exit 40 diverge	3:55 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4027365	2015	2015-03-31
168	Wilmington	Exit 40 diverge	4:45 PM	Peak	Dry	Dark - roadway not lighted	Single vehicle crash	Property damage only (none injured)	Clear	4119723	2015	2015-12-09
169	Wilmington	Exit 40 diverge	6:55 PM	Peak	Dry	Dark - unknown roadway linhtinn	Single vehicle crash	Non-fatal injury	Cloudy	4131981	2015	2015-12-26
170	Wilmington	Exit 40 diverge	3:00 PM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	4165145	2016	2016-03-16
171	Wilmington	Exit 40 diverge	4:30 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4219952	2016	2016-06-28
172	Wilmington	Exit 40 diverge	7:50 PM	Off-peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Clear	4191975	2016	2016-05-06
173	Wilmington	Exit 40 diverge	8:40 PM	Off-peak	Dry	Dark - roadway not lighted	Sideswipe, same direction	Non-fatal injury	Clear	4193354	2016	2016-05-11
174	Wilmington	Exit 40 diverge	5:55 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4195143	2016	2016-05-12
175	Wilmington	Exit 40 diverge	7:00 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4218755	2016	2016-06-10
176	Wilmington	Exit 40 diverge	5:35 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4203970	2016	2016-06-13
177	Wilmington	Exit 40 diverge	3:00 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4225021	2016	2016-07-28
178	Wilmington	Exit 40 diverge	5:55 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4227763	2016	2016-08-02
179	Wilmington	Exit 40 diverge	10:20 AM	Off-peak	Dry	Daylight	Angle	Non-fatal injury	Clear	4291906	2016	2016-11-01
180	Wilmington	Exit 40 diverge	8:36 PM	Off-peak	Dry	Dark - roadway not lighted	Rear-end	Property damage only (none injured)	Clear	4285953	2016	2016-11-13
181	Wilmington	Exit 40 diverge	9:26 PM	Off-peak	Snow/lce	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Snow	4324755	2016	2016-12-29

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
182	Wilmington	Exit 40 diverge	4:39 PM	Peak	Dry	Dusk	Sideswipe, same direction	Non-fatal injury	Clear	4132039	2016	2016-01-07
183	Wilmington	Exit 40 diverge	7:46 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Non-fatal injury	Clear	4218777	2016	2016-06-25

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
184	Quincy	$1-93$ Segment 1 (over traffic circle)	4:25 AM	Off-peak	Dry	Dark - lighted roadway	Single venicle crash	Property damage only (none injured)	Unknown	4149066	2016	2016-01-26
185	Quincy	$1-93$ Segment 1 (over traffic circle)	7:40 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3484089	2013	2013-06-14
186	Quincy	Exit 8 on-ramp	12:19 PM	Off-peak	Dry	Daylight	Angle	Non-fatal injury	Clear	4160084	2016	2016-03-02
187	Quincy	$1-93$ Segment 2 (ahead of Exit 8 on-ramp)	11:14 PM	Off-peak	Wet	Dark - lighted roadway	Angle	Property damage only (none injured)	Rain	3863457	2014	2014-06-13
188	Quincy	1 -93 Segment 2 (ahead of Exit 8 on-ramp)	9:03 PM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Non-fatal injury	Clear	4203426	2016	2016-05-25
189	Quincy	Exit 8 merge	9:05 AM	Peak	Snowlce	Daylight	Single vehicle crash	Non-fatal injury	Cloudy	3730358	2014	2014-01-04
190	Quincy	Exit 8 merge	3:10 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4039055	2015	2015-04-15
191	Quincy	Exit 8 merge	8:07 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4220945	2016	2016-05-31
192	Quincy	Exit 8 merge	6:23 PM	Peak	Wet	Dark - lighted roadway	Angle	Property damage only (none injured)	Rain	3384663	2013	2013-03-06
193	Quincy	$1-93$ Segment 3 (atter Exit 8 on-ramp)	1:05 PM	Off-peak	Wet	Daylight	Single vehicle crash	Non-fatal injury	Rain	3491318	2013	2013-06-13
194	Quincy	1-93 Segment 3 (atter Exit 8 on-ramp)	8:35 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4124999	2015	2015-12-16
195	Quincy	1 -93 Segment 3 (atter Exit 8 on-ramp)	5:52 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3893451	2014	2014-07-31
196	Quincy	1 -93 Segment 4 (near HOV lane merge)	3:00 PM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Clear	4237590	2016	2016-08-04
197	Quincy	$1-93$ Segment 4 (near HOV lane merge)	7:10 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4235196	2016	2016-08-23
198	Quincy	HOV lane merge	10:10 AM	Off-peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	3793362	2014	2014-04-16
199	Quincy	$1-93$ Segment 5 (ahead of Exit 7 diverge)	2:13 AM	Off-peak	Dry	Dark - lighted roadway	Single venicle crash	Property damage only (none injured)	Clear	4134751	2016	2016-01-09
200	Quincy	$1-93$ Segment 5 (ahead of Exit 7 diverge)	8:36 AM	Peak	Wet	Daylight	Rear-end	Non-fatal injury	Rain	3475968	2013	2013-06-11
201	Quincy	$1-93$ Segment 5 (ahead of Exit 7 diverge)	3:20 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3384447	2012	2012-09-20
202	Quincy	$1-93$ Segment 5 (ahead of Exit 7 diverge)	5:33 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3162992	2012	2012-07-08
203	Quincy	Exit 7 diverge	12:25 AM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	4155214	2016	2016-02-23
204	Quincy	Exit 7 diverge	7:19 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3863449	2014	2014-05-13
205	Quincy	Exit 7 diverge	4:17 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4062538	2015	2015-05-27
206	Quincy	Exit 7 diverge	4:10 PM	Peak	Dry	Daylight	Single vehicle crash	Not Reported	Clear	4048083	2015	2015-05-29
207	Quincy	Exit 7 diverge	3:00 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Clear	4108224	2015	2015-10-18
208	Quincy	Exit 7 diverge	3:30 PM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	4250337	2016	2016-08-31
209	Quincy	Exit 7 diverge	2:40 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Clear	3381453	2012	2012-02-01
210	Quincy	Exit 7 diverge	8:17 AM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3381575	2012	2012-04-11
211	Quincy	Exit 7 diverge	7:21 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Unknown	3647651	2013	2013-10-19
212	Quincy	Exit 7 diverge	8:38 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3208033	2012	2012-05-15
213	Quincy	Exit 7 diverge	7:50 AM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3421265	2013	2013-04-26
214	Quincy	Exit 7 diverge	7:10 PM	Off-peak	Dry	Dark - lighted roadway	Angle	Non-fatal injury	Clear	3963794	2014	2014-09-26
215	Quincy	Exit 7 diverge	4:00 PM	Peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	3985720	2014	2014-12-02
216	Quincy	Exit 7 diverge	3:25 AM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Non-fatal injury	Cloudy	3541450	2013	2013-07-27
217	Quincy	Exit 7 diverge	1:50 AM	Off-peak	Snowlce	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Snow	3384348	2012	2012-03-03
218	Quincy	Exit 7 diverge	1:44 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	2854032	2012	2012-01-02
219	Quincy	Exit 7 diverge	11:44 AM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	2900658	2012	2012-01-08

	A	B	G	H	- J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
220	Quincy	Exit 7 diverge	12:51 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	2890194	2012	2012-01-25
221	Quincy	Exit 7 diverge	11:00 PM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	3061894	2012	2012-03-16
222	Quincy	Exit 7 diverge	6:39 AM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	3389298	2012	2012-07-15
223	Quincy	Exit 7 diverge	1:40 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	2939680	2012	2012-02-20
224	Quincy	Exit 7 diverge	12:00 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Not Reported	Cloudy	3000832	2012	2012-02-25
225	Quincy	Exit 7 diverge	5:10 PM	Peak	Dry	Daylight	Rear-end	Not Reported	Cloudy	3102080	2012	2012-05-05
226	Quincy	Exit 7 diverge	9:19 AM	Peak	Wet	Daylight	Single vehicle crash	Not Reported	Rain	3113847	2012	2012-05-16
227	Quincy	Exit 7 diverge	5:05 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Cloudy	3154606	2012	2012-06-23
228	Quincy	Exit 7 diverge	9:40 PM	Off-peak	Dry	Dark - lighted roadway	Angle	Property damage only (none injured)	Unknown	3207191	2012	2012-07-20
229	Quincy	Exit 7 diverge	2:07 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3289050	2012	2012-10-26
230	Quincy	Exit 7 diverge	12:00 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Clear	3289110	2012	2012-11-12
231	Quincy	Exit 7 diverge	11:50 PM	Off-peak	Dry	Dark - roadway not lighted	Angle	Property damage only (none injured)	Clear	3292059	2012	2012-11-14
232	Quincy	Exit 7 diverge	3:30 PM	Peak	Dry	Daylight	Single vehicle crash	Non-fatal injury	Clear	3330247	2012	2012-12-31
233	Quincy	Exit 7 diverge	3:30 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3607513	2013	2013-09-27
234	Quincy	Exit 7 diverge	10:30 AM	Off-peak	Dry	Daylight	Sideswipe, same direction	Not Reported	Clear	3655412	2013	2013-10-03
235	Quincy	Exit 7 diverge	8:50 AM	Peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3362870	2013	2013-02-22
236	Quincy	Exit 7 diverge	11:30 PM	Off-peak	Snow/lce	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Snow	3390860	2013	2013-03-27
237	Quincy	Exit 7 diverge	9:52 AM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3359757	2013	2013-02-07
238	Quincy	Exit 7 diverge	4:30 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3376175	2013	2013-03-10
239	Quincy	Exit 7 diverge	1:41 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3391936	2013	2013-03-21
240	Quincy	Exit 7 diverge	2:16 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3377191	2013	2013-03-24
241	Quincy	Exit 7 diverge	12:00 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Clear	3381638	2013	2013-04-05
242	Quincy	Exit 7 diverge	8:45 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3430374	2013	2013-05-03
243	Quincy	Exit 7 diverge	9:00 PM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	3430681	2013	2013-05-04
244	Quincy	Exit 7 diverge	3:28 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3453240	2013	2013-05-30
245	Quincy	Exit 7 diverge	4:39 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Unknown	3510837	2013	2013-07-03
246	Quincy	Exit 7 diverge	6:25 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3556656	2013	2013-08-05
247	Quincy	Exit 7 diverge	3:20 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Unknown	3580257	2013	2013-08-20
248	Quincy	Exit 7 diverge	11:30 AM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3611135	2013	2013-09-22
249	Quincy	Exit 7 diverge	11:15 AM	Off-peak	Dry	Daylight	Angle	Property damage only (none injured)	Clear	3611145	2013	2013-10-03
250	Quincy	Exit 7 diverge	4:42 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Clear	3623834	2013	2013-10-26
251	Quincy	Exit 7 diverge	11:20 AM	Off-peak	Wet	Daylight	Not reported	Property damage only (none injured)	Clear	3710829	2013	2013-12-19
252	Quincy	Exit 7 diverge	11:32 PM	Off-peak	Wet	Dark - lighted roadway	Angle	Property damage only (none injured)	Rain	3726184	2014	2014-01-10
253	Quincy	Exit 7 diverge	10:50 PM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Clear	3772811	2014	2014-03-07
254	Quincy	Exit 7 diverge	8:34 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3772813	2014	2014-03-08
255	Quincy	Exit 7 diverge	4:05 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3974039	2014	2014-11-14

	A	B	G	H	H	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
256	Quincy	Exit 7 diverge	2:10 AM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Clear	3792026	2014	2014-04-21
257	Quincy	Exit 7 diverge	6:40 PM	Peak	Wet	Daylight	Single vehicle crash	Non-fatal injury	Rain	3902045	2014	2014-07-14
258	Quincy	Exit 7 diverge	10:58 AM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	3908557	2014	2014-08-04
259	Quincy	Exit 7 diverge	5:12 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3909153	2014	2014-08-07
260	Quincy	Exit 7 diverge	6:45 AM	Peak	Dry	Daylight	Single vehicle crash	Property damage only (none injured)	Clear	3909154	2014	2014-08-08
261	Quincy	Exit 7 diverge	11:37 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Non-fatal injury	Unknown	3935855	2014	2014-08-17
262	Quincy	Exit 7 diverge	2:08 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3922844	2014	2014-08-21
263	Quincy	Exit 7 diverge	6:20 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3928331	2014	2014-09-05
264	Quincy	Exit 7 diverge	10:48 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	3962816	2014	2014-10-09
265	Quincy	Exit 7 diverge	12:24 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3977440	2014	2014-11-22
266	Quincy	Exit 7 diverge	12:00 AM	Off-peak	Wet	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Rain	3987225	2014	2014-12-07
267	Quincy	Exit 7 diverge	9:45 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	4011973	2014	2014-12-14
268	Quincy	Exit 7 diverge	10:35 AM	Off-peak	Dry	Daylight	Sideswipe, same direction	Non-fatal injury	Cloudy	4024370	2015	2015-03-20
269	Quincy	Exit 7 diverge	9:05 PM	Off-peak	Snowlce	Dark - lighted roadway	Rear-end	Non-fatal injury	Snow	4012964	2015	2015-02-08
270	Quincy	Exit 7 diverge	4:50 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4037235	2015	2015-04-06
271	Quincy	Exit 7 diverge	1:35 AM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	4031392	2015	2015-04-11
272	Quincy	Exit 7 diverge	4:35 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4037452	2015	2015-04-13
273	Quincy	Exit 7 diverge	11:50 AM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4046705	2015	2015-05-23
274	Quincy	Exit 7 diverge	12:50 AM	Off-peak	Dry	Dark - lighted roadway	Angle	Non-fatal injury	Clear	4085525	2015	2015-08-26
275	Quincy	Exit 7 diverge	1:35 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4099952	2015	2015-10-12
276	Quincy	Exit 7 diverge	6:20 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4065328	2015	2015-07-07
277	Quincy	Exit 7 diverge	3:06 PM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4065876	2015	2015-07-16
278	Quincy	Exit 7 diverge	5:45 PM	Peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Clear	4084975	2015	2015-08-29
279	Quincy	Exit 7 diverge	11:29 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Cloudy	4099176	2015	2015-09-21
280	Quincy	Exit 7 diverge	3:10 AM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Non-fatal injury	Clear	4089288	2015	2015-09-25
281	Quincy	Exit 7 diverge	1:32 AM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	4104890	2015	2015-10-09
282	Quincy	Exit 7 diverge	7:15 PM	Off-peak	Wet	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Clear	4121124	2015	2015-11-28
283	Quincy	Exit 7 diverge	5:20 PM	Peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	4135117	2015	2015-12-28
284	Quincy	Exit 7 diverge	6:43 PM	Peak	Dry	Dark - lighted roadway	Rear-end	Property damage only (none injured)	Clear	4134715	2015	2015-12-30
285	Quincy	Exit 7 diverge	1:55 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4141149	2016	2016-01-16
286	Quincy	Exit 7 diverge	4:11 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4143218	2016	2016-01-02
287	Quincy	Exit 7 diverge	2:15 PM	Off-peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Snow	4152580	2016	2016-02-08
288	Quincy	Exit 7 diverge	6:47 AM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4164398	2016	2016-03-12
289	Quincy	Exit 7 diverge	11:50 AM	Off-peak	Wet	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4169147	2016	2016-03-15
290	Quincy	Exit 7 diverge	7:30 PM	Off-peak	Dry	Dark - lighted roadway	Rear-end	Non-fatal injury	Cloudy	4175021	2016	2016-04-11
291	Quincy	Exit 7 diverge	7:38 PM	Off-peak	Wet	Dark - lighted roadway	Sideswipe, same direction	Non-fatal injury	Rain	4186159	2016	2016-04-12

	A	B	G	H	J	K	M	N	0	Q	T	U
1	Study Location	Area of Crash	Crash Time	Is Peak?	Road Surface Conditions	Ambient Light Conditions	Manner of Collision	Crash Severity	Weather Conditions	Crash Number	Crash Year	Crash Date
292	Quincy	Exit 7 diverge	4:00 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4177270	2016	2016-04-14
293	Quincy	Exit 7 diverge	8:20 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4220955	2016	2016-06-08
294	Quincy	Exit 7 diverge	1:18 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4220974	2016	2016-06-19
295	Quincy	Exit 7 diverge	6:19 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4226497	2016	2016-07-06
296	Quincy	Exit 7 diverge	8:02 PM	Off-peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Clear	4224577	2016	2016-07-07
297	Quincy	Exit 7 diverge	11:15 PM	Off-peak	Dry	Dark - lighted roadway	Sideswipe, same direction	Property damage only (none injured)	Unknown	4246657	2016	2016-08-30
298	Quincy	Exit 7 diverge	12:00 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4245884	2016	2016-09-04
299	Quincy	Exit 7 diverge	5:39 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Cloudy	4245601	2016	2016-09-06
300	Quincy	Exit 7 diverge	5:05 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4250342	2016	2016-09-08
301	Quincy	Exit 7 diverge	10:45 AM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4276584	2016	2016-11-01
302	Quincy	Exit 7 diverge	12:58 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Cloudy	4277246	2016	2016-11-03
303	Quincy	Exit 7 diverge	2:10 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Cloudy	4291883	2016	2016-11-19
304	Quincy	Exit 7 diverge	1:45 PM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4313065	2016	2016-12-03
305	Quincy	Exit 7 diverge	11:56 AM	Off-peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	4313019	2016	2016-12-14
306	Quincy	Exit 7 diverge	10:47 PM	Off-peak	Dry	Dark - lighted roadway	Single vehicle crash	Property damage only (none injured)	Unknown	4313119	2016	2016-12-24
307	Quincy	Exit 7 diverge	9:00 PM	Off-peak	Wet	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Unknown	3984905	2014	2014-12-10
308	Quincy	Exit 7 diverge	9:56 PM	Off-peak	Wet	Dark - lighted roadway	Rear-end	Non-fatal injury	Rain	4062116	2015	2015-06-27
309	Quincy	Exit 7 diverge	1:40 PM	Off-peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	3545935	2013	2013-07-17
310	Quincy	Exit 7 diverge	4:54 AM	Off-peak	Wet	Dark - lighted roadway	Single vehicle crash	Non-fatal injury	Rain	4262971	2016	2016-10-01
311	Quincy	I-93 Segment 6 (shortly after Exit 7 split)	3:33 PM	Peak	Unknown	Not reported	Not reported	Property damage only (none injured)	Unknown	3826940	2014	2014-05-27
312	Quincy	1-93 Segment 6 (shortly after Exit 7 split)	8:00 AM	Peak	Dry	Daylight	Rear-end	Non-fatal injury	Clear	4160026	2016	2016-02-17
313	Quincy	1-93 Segment 6 (shortly after Exit 7 split)	5:15 PM	Peak	Dry	Daylight	Sideswipe, same direction	Property damage only (none injured)	Unknown	3376197	2013	2013-03-25
314	Quincy	1-93 Segment 6 (shortly after Exit 7 split)	7:00 PM	Peak	Dry	Dark - lighted roadway	Rear-end	Non-fatal injury	Clear	3354879	2013	2013-02-14
315	Quincy	I-93 Segment 6 (shortly after Exit 7 split)	4:45 PM	Peak	Dry	Daylight	Rear-end	Property damage only (none injured)	Clear	3391082	2013	2013-02-06

APPENDIX D

1. HCS printouts

	4			4			4	4			\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				${ }^{1}$		「゙「		中 ${ }^{\text {a }}$			44	「
Traffic Volume（vph）	0	0	0	184	0	893	0	276	41	0	1373	639
Future Volume（vph）	0	0	0	184	0	893	0	276	41	0	1373	639
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0		0	0		150	0		0	0		400
Storage Lanes	0		0	1		1	0		0	0		1
Taper Length（ft）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		405			717			1086			800	
Travel Time（s）		9.2			16.3			24.7			18.2	
Peak Hour Factor	0.92	0.92	0.92	0.82	0.92	0.93	0.92	0.78	0.85	0.92	0.84	0.76
Heavy Vehicles（\％）	2\％	2\％	2\％	0\％	2\％	4\％	2\％	4\％	2\％	2\％	1\％	2\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	0	0	224	0	960	0	402	0	0	1635	841
Turn Type				Prot		custom		NA			NA	Perm
Protected Phases				3		13		2			12	
Permitted Phases												12
Detector Phase				3		1		2			2	
Switch Phase												
Minimum Initial（s）				6.0				8.0				
Minimum Split（s）				12.0				14.5				
Total Split（s）				32.0				23.0				
Total Split（\％）				40．0\％				28．8\％				
Yellow Time（s）				3.5				4.0				
All－Red Time（s）				1.5				2.5				
Lost Time Adjust（s）				－1．0				－2．5				
Total Lost Time（s）				4.0				4.0				
Lead／Lag								Lag				
Lead－Lag Optimize？								Yes				
Recall Mode				Min				C－Min				
Act Effct Green（s）				15.4		34.5		37.5			56.6	56.6
Actuated g／C Ratio				0.19		0.43		0.47			0.71	0.71
v／c Ratio				0.65		0.72		0.25			0.65	0.62
Control Delay				37.9		16.1		12.1			6.1	1.1
Queue Delay				0.0		0.0		0.0			0.0	0.0
Total Delay				37.9		16.1		12.1			6.1	1.1
LOS				D		B		B			A	A
Approach Delay					20.2			12.1			4.4	
Approach LOS					C			B			A	
Queue Length 50th（ft）				104		156		67			104	0
Queue Length 95th（ft）				142		197		93			m240	m2
Internal Link Dist（ft）		325			637			1006			720	
Turn Bay Length（ft）						150						400
Base Capacity（vph）				631		1513		1612			2528	1365
Starvation Cap Reductn				0		0		0			0	0
Spillback Cap Reductn				0		2		36			0	0
Storage Cap Reductn				0		0		0			0	0
Reduced v／c Ratio				0.35		0.64		0.26			0.65	0.62

Splits and Phases: 1: Route 125 \& New On-ramp to I-93 NB/I-93 NB Ramp

Intersection Summary	
Area Type: \quad Other	
Cycle Length: 80	
Actuated Cycle Length: 80	
Offset: 14 (18\%), Referenced to phase 2:NBSB, Start of Yellow	
Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.81 Intersection Signal Delay: 9.1 Intersection Capacity Utilization 74.5\% Analysis Period (min) 15 ! Phase conflict between lane groups.	

Splits and Phases: 2: Route 125 \& I-93 SB Ramp

Intersection Summary \quad Other
Area Type:
Cycle Length: $80 \quad$ Intersection LOS: D
Actuated Cycle Length: 80
Offset: 0 (0\%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.12
Intersection Signal Delay: 45.2
Intersection Capacity Utilization 74.8\%
Analysis Period (min) 15
\sim Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Route 125 \& Ballardvale Street

Location 1 - I-93 Northbound between Exit 40 (Route 2) and Exit 41 (Route 125)
Freeway Merge, Diverge, and Weave Analyses

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 4	Time Period Analyzed	AM Peak Hour 7:00-8:00
Project Description	Wilmington - Exit 40 On-Ramp from Route 62 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Acceleration Length (LA),ft	1200	300
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)		4950	450	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, \%		5.00	5.00	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.952	0.952	
Flow Rate (vi),pc/h		5473	498	
Capacity (c), pc/h		9293	1839	
Volume-to-Capacity Ratio (v/c)		0.64	0.27	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freewa	y (No)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)		0.361
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/h/ln		1642
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR)), mi/h	62.1
Prop. Freeway Vehicles in Lane 1 and 2 (PfM)	0.156	Outer Lanes Freeway Speed (So), m	mi/h	69.4
Flow in Lanes 1 and 2 (v12), pc/h	2189	Ramp Junction Speed (S), mi/h		65.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	2687	Average Density (D), pc/mi/ln		22.7
Level of Service (LOS)	C	Density in Ramp Influence Area (D)	R), pc/mi/ln	24.4

Service Volume Table

Target LOS	A	B	C	D		E
Freeway						
Max Service Flow Rate (MSF), pc/h/ln	410	1077	1603	2067	2130	
Service Flow Rate (SF), veh/h	1560	4100	6104	7870	8110	
Service Volume, veh/h	1482	3895	5799	7477	7704	
One Direction DSV, 1000 veh/day	15	39	58	75	77	
Bi-Directional DSV, 1000 veh/day	27	71	105	136	140	

Ramp

Max Service Flow Rate (MSF), pc/h/ln	149	392	583	752	774
Service Flow Rate (SF), veh/h	142	373	555	715	737
Service Volume, veh/h	135	354	527	680	700
One Direction DSV, 1000 veh/day	1	4	5	7	7

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	32.2	31.9	22.7	22.5	17.9	17.8
LOS	F	F	D	D	C	C	C	B

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 4	Time Period Analyzed	PM Peak Hour 5:00-6:00
Project Description	Wilmington - Exit 40 On-Ramp from Route 62 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Acceleration Length (LA),ft	1200	300
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)		7200	350	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, \%		3.00	3.00	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.971	0.971	
Flow Rate (vi),pc/h		7805	379	
Capacity (c), pc/h		9293	1839	
Volume-to-Capacity Ratio (v/c)		0.88	0.21	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway	(No)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)		0.433
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/h/ln		2342
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (S), mi/h	59.9
Prop. Freeway Vehicles in Lane 1 and 2 (PfM)	0.170	Outer Lanes Freeway Speed (So),	mi/h	66.7
Flow in Lanes 1 and 2 (v12), pc/h	3122	Ramp Junction Speed (S), mi/h		63.6
Flow Entering Ramp-Infl. Area (vR12), pc/h	3501	Average Density (D), pc/mi/ln		32.2
Level of Service (LOS)	D	Density in Ramp Influence Area (D)), pc/mi/ln	30.8

Service Volume Table

Target LOS	A	B	C	D	E
Freeway					
Max Service Flow Rate (MSF), pc/h/ln	458	1173	1746	2216	-
Service Flow Rate (SF), veh/h	1778	4554	6781	8605	-
Service Volume, veh/h	1689	4327	6442	8175	-
One Direction DSV, 1000 veh/day	17	43	64	82	-
Bi-Directional DSV, 1000 veh/day	31	79	117	149	-
Ramp					
Max Service Flow Rate (MSF), pc/h/ln	89	228	340	431	-
Service Flow Rate (SF), veh/h	86	221	330	418	-
Service Volume, veh/h	82	210	313	397	-
One Direction DSV, 1000 veh/day	1	2	3	4	-
Copyright © 2019 University of Florida. All Rights Reserved.		ington_193NB_Exit40_Merge_PM.xuf			2

HCS7 Freeway Diverge Report

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 4	Time Period Analyzed	AM Peak Period 7:00-8:00
Project Description	Wilmington - Exit 41 Off-Ramp to Route 125 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Deceleration Length (LA),ft	875	400
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	5400	750
Peak Hour Factor (PHF)	0.95	0.95
Total Trucks, \%	5.00	5.00
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHV)	0.952	0.952
Flow Rate (vi),pc/h	5971	829
Capacity (c), pc/h	9293	1839
Volume-to-Capacity Ratio (v/c)	0.64	0.45

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (DS)	0.578
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1450
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	55.3
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	0.436	Outer Lanes Freeway Speed (So), mi/h	78.9
Flow in Lanes 1 and 2 (v12), pc/h	3071	Ramp Junction Speed (S), mi/h	64.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln	23.1
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	27.1

Service Volume Table

HCS7 Freeway Diverge Report

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 4	Time Period Analyzed	PM Peak Period 5:00-6:00
Project Description	Wilmington - Exit 41 Off-Ramp to Route 125 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Deceleration Length (LA),ft	875	400
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	7550	1050
Peak Hour Factor (PHF)	0.95	0.95
Total Trucks, \%	3.00	3.00
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHV)	0.971	0.971
Flow Rate (vi),pc/h	8185	1138
Capacity (c), pc/h	9293	1839
Volume-to-Capacity Ratio (v/c)	0.88	0.62
Sped and Density		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (DS)	0.606
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1988
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	54.4
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	0.436	Outer Lanes Freeway Speed (So), mi/h	76.8
Flow in Lanes 1 and 2 (v12), pc/h	4210	Ramp Junction Speed (S), mi/h	63.4
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln	32.3
Level of Service (LOS)	E	Density in Ramp Influence Area (DR), pc/mi/ln	36.9

Service Volume Table

Target LOS	A	B	C	D	E
Freeway					
Max Service Flow Rate (MSF), pc/h/ln	521	1092	1544	1939	2323
Service Flow Rate (SF), veh/h	2025	4242	5998	7530	9023
Service Volume, veh/h	1924	4029	5699	7153	8572
One Direction DSV, 1000 veh/day	19	40	57	72	86
Bi-Directional DSV, 1000 veh/day	35	73	104	130	156
Ramp					
Max Service Flow Rate (MSF), pc/h/ln	290	608	859	1078	1292
Service Flow Rate (SF), veh/h	282	590	834	1047	1255
Service Volume, veh/h	268	560	793	995	1192
One Direction DSV, 1000 veh/day	3	6	8	10	12
Copyright © 2019 University of Florida. All Rights Reserved.		Eways Ver		Generated: 07/18/2019 09:48:36	

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2030
Jurisdiction	MassDOT District 4	Time Period Analyzed	AM Peak Hour 7:00-8:00
Project Description	Wilmington - Exit 40 On-Ramp from Route 62 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Acceleration Length (LA),ft	1200	300
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	5170	470
Peak Hour Factor (PHF)	0.95	0.95
Total Trucks, \%	5.00	5.00
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHV)	0.952	0.952
Flow Rate (vi),pc/h	5716	520
Capacity (c), pc/h	9293	1839
Volume-to-Capacity Ratio (v/c)	0.67	0.28
Sped and		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)	0.368
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1715
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR), mi/h	61.9
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	0.153	Outer Lanes Freeway Speed (So), mi/h	69.1
Flow in Lanes 1 and 2 (v12), pc/h	2286	Ramp Junction Speed (S), mi/h	65.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	2806	Average Density (D), pc/mi/ln	23.7
Level of Service (LOS)	C	Density in Ramp Influence Area (DR), pc/mi/ln	25.3

Service Volume Table

Target LOS	A	B	C	D		E
Freeway						
Max Service Flow Rate (MSF), pc/h/ln	410	1077	1603	2067	2130	
Service Flow Rate (SF), veh/h	1560	4100	6104	7870	8110	
Service Volume, veh/h	1482	3895	5799	7477	7704	
One Direction DSV, 1000 veh/day	15	39	58	75	77	
Bi-Directional DSV, 1000 veh/day	27	71	105	136	140	

Ramp

Max Service Flow Rate (MSF), pc/h/ln	149	392	583	752	774
Service Flow Rate (SF), veh/h	142	373	555	715	737
Service Volume, veh/h	135	354	527	680	700
One Direction DSV, 1000 veh/day	1	4	5	7	7

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	5
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	34.0	33.7	23.7	23.6	18.7	
LOS	F	F	D	D	C	C	C	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8
2030NoBt_I93NB_Ex40_Merge_AM.xuf

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2030
Jurisdiction	MassDOT District 4	Time Period Analyzed	PM Peak Hour 5:00-6:00
Project Description	Wilmington - Exit 40 On-Ramp from Route 62 - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	75.4	30.0
Segment Length (L) / Acceleration Length (LA),ft	1200	300
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	0.975	0.975
Final Capacity Adjustment Factor (CAF)	0.968	0.968
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	7480	400	
Peak Hour Factor (PHF)	0.95	0.95	
Total Trucks, \%	3.00	-	-
Single-Unit Trucks (SUT), \%	-	-	
Tractor-Trailers (TT), \%	0.971	0.971	
Heavy Vehicle Adjustment Factor (fHV)	8109	434	
Flow Rate (vi),pc/h	9293	1839	
Capacity (c), pc/h	0.92		
Volume-to-Capacity Ratio (v/c)	Number of Outer Lanes on Freeway (No)	2	
Speed and Density	Speed Index (Ms)		
Upstream Equilibrium Distance (LEQ), ft	Flow Outer Lanes (voA), pc/h/ln		
Distance to Upstream Ramp (LUP), ft	-	On-Ramp Influence Area Speed (SR), mi/h	59.1
Downstream Equilibrium Distance (LEQ), ft	-	Outer Lanes Freeway Speed (So), mi/h	66.2
Distance to Downstream Ramp (LDown), ft	-	Ramp Junction Speed (S), mi/h	2433
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	0.164	Average Density (D), pc/mi/ln	62.9
Flow in Lanes 1 and 2 (v12), pc/h	3244	34.0	
Flow Entering Ramp-Infl. Area (vR12), pc/h	3678	Density in Ramp Influence Area (DR), pc/mi/ln	32.2
Level of Service (LOS)	D		

Service Volume Table

Target LOS	A	B	C	D		E							
Freeway													
Max Service Flow Rate (MSF), pc/h/ln	444	1162	1732	2205	-								
Service Flow Rate (SF), veh/h	1725	4512	6727	8565	-								
Service Volume, veh/h	1639	4287	6391	8137	-								
One Direction DSV, 1000 veh/day	16	43	64	81	-								
Bi-Directional DSV, 1000 veh/day	30	78	116	148	-								

Ramp

Max Service Flow Rate (MSF), pc/h/ln	95	249	371	472	-
Service Flow Rate (SF), veh/h	92	241	360	458	-
Service Volume, veh/h	88	229	342	435	-
One Direction DSV, 1000 veh/day	1	2	3	4	-

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	-	-	34.0	33.8	26.0	25.9
LOS	F	F	F	F	D	D	C	C

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8 2030NoBt_I93NB_Exit40_Merge_PM.xuf

HCS7 Freeway Diverge Report

Project Information

Analyst	Ben Erban	Date	$4 / 25 / 2019$
Agency	CTPS	Analysis Year	2030
Jurisdiction	MassDOT District 4	Time Period Analyzed	AM Peak Period 7:00-8:00
Project Description	Wilmington - Exit 41 Off-Ramp - Low Cost Freeway Bottlenecks	Unit	United States Customary

Geometric Data

		Freeway	Ramp	
Number of Lanes (N), In		4	1	
Free-Flow Speed (FFS), mi/h		75.4	30.0	
Segment Length (L) / Deceleration Length (LA), ft		875	400	
Terrain Type		Level	Level	
Percent Grade, \%		-	-	
Segment Type / Ramp Side		Freeway	Right	
Adjustment Factors				
Driver Population		Mostly Familiar	Mostly Fam	iliar
Weather Type		Non-Severe Weather	Non-Sever	Weather
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		0.975	0.975	
Final Capacity Adjustment Factor (CAF)		0.968	0.968	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		5640	800	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, \%		5.00	5.00	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.952	0.952	
Flow Rate (vi),pc/h		6236	885	
Capacity (c), pc/h		9293	1839	
Volume-to-Capacity Ratio (v/c)		0.67	0.48	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lane	(No)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (DS)		0.583
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA)		1509
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influence Ar), mi/h	55.1
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	0.436	Outer Lanes Freeway		78.6
Flow in Lanes 1 and 2 (v12), pc/h	3218	Ramp Junction Speed		64.4
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), p		24.2
Level of Service (LOS)	D	Density in Ramp Influe), pc/mi/ln	28.3

Service Volume Table

Target LOS	A	B	C	D		E							
Freeway													
Max Service Flow Rate (MSF), pc/h/ln	518	1087	1539	1932	2323								
Service Flow Rate (SF), veh/h	1973	4141	5862	7359	8847								
Service Volume, veh/h	1875	3934	5569	6991	8404								
One Direction DSV, 1000 veh/day	19	39	56	70	84								
Bi-Directional DSV, 1000 veh/day	34	72	101	127	153								

Ramp

Max Service Flow Rate (MSF), pc/h/ln	294	617	873	1096	1318
Service Flow Rate (SF), veh/h	280	587	832	1044	1255
Service Volume, veh/h	266	558	790	992	1192
One Direction DSV, 1000 veh/day	3	6	8	10	12

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	5
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	33.9	33.6	24.2	23.4	19.4	
LOS	F	F	D	C	D	B	C	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8

HCS7 Freeway Diverge Report

Project Information

Analyst	Ben Erban		Date	4/25/2019	
Agency	CTPS		Analysis Year	2030	
Jurisdiction	MassDOT District 4		Time Period Analyzed	PM Peak Period 5:00-6:00	
Project Description	Wilmington - Exit 41 Off-Ramp Low Cost Freeway Bottlenecks		Unit	United States Customary	
Geometric Data					
			Freeway	Ramp	
Number of Lanes (N), In			4	1	
Free-Flow Speed (FFS), mi/h			75.4	30.0	
Segment Length (L) / Deceleration Length (LA), ft			875	400	
Terrain Type			Level	Level	
Percent Grade, \%			-	-	
Segment Type / Ramp Side			Freeway	Right	
Adjustment Factors					
Driver Population			Mostly Familiar	Mostly Familiar	
Weather Type			Non-Severe Weather	Non-Severe Weather	
Incident Type			No Incident	-	
Final Speed Adjustment Factor (SAF)			0.975	0.975	
Final Capacity Adjustment Factor (CAF)			0.968	0.968	
Demand Adjustment Factor (DAF)			1.000	1.000	
Demand and Capacity					
Demand Volume (Vi)			7880	1100	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, \%			3.00	3.00	
Single-Unit Trucks (SUT), \%			-	-	
Tractor-Trailers (TT), \%			-	-	
Heavy Vehicle Adjustment Factor (f HV)			0.971	0.971	
Flow Rate (vi), pc/h			8542	1192	
Capacity (c), pc/h			9293	1839	
Volume-to-Capacity Ratio (v/c)			0.92	0.65	
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft		-	Number of Outer Lanes on Freeway (No)		2
Distance to Upstream Ramp (LUP), ft		-	Speed Index (Ds)		0.611
Downstream Equilibrium Distance (LEQ), ft		-	Flow Outer Lanes (voA), pc/h/ln		2073
Distance to Downstream Ramp (LDOWN), ft		-	Off-Ramp Influence Area Speed (SR), mi/h		54.3
Prop. Freeway Vehicles in Lane 1 and 2 (Pfd)		0.436	Outer Lanes Freeway Speed (So), mi/h		76.4
Flow in Lanes 1 and 2 (v12), pc/h		4397	Ramp Junction Speed (S), mi/h		63.2
Flow Entering Ramp-Infl. Area (vR12), pc/h		-	Average Density (D), pc/mi/ln		33.8
Level of Service (LOS)		E	Density in Ramp Influence Area (DR), pc/mi/ln		38.5

Service Volume Table

Target LOS	A	B	C	D		E							
Freeway													
Max Service Flow Rate (MSF), pc/h/ln	521	1091	1543	1938	2323								
Service Flow Rate (SF), veh/h	2024	4236	5993	7525	9023								
Service Volume, veh/h	1923	4024	5694	7149	8572								
One Direction DSV, 1000 veh/day	19	40	57	71	86								
Bi-Directional DSV, 1000 veh/day	35	73	104	130	156								

Ramp

Max Service Flow Rate (MSF), pc/h/ln	291	609	862	1082	1297
Service Flow Rate (SF), veh/h	283	591	837	1050	1260
Service Volume, veh/h	268	562	795	998	1197
One Direction DSV, 1000 veh/day	3	6	8	10	12

Design Analysis Table

| Freeway Lanes, In | 2 | 2 | 3 | 3 | 4 | 4 | 5 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ramp Lanes, In | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| Density, pc/mi/In | - | - | - | - | 33.8 | 33.0 | 27.0 | 26.0 |
| LOS | F | F | F | F | E | C | D | C |

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8

HCS7 Freeway Weaving Report

Project Information

Analyst	Chen-Yuan Wang	Date	6/20/2019
Agency	CTPS	Analysis Year	2030
Jurisdiction	MassDOT District 4	Time Period Analyzed	AM Peak Hour $7: 00-8: 00$
Project Description	I-93 Northbound Between Exit 40 and Exit 41 in Wilmington - Low Cst Freeway Bottlenecks	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	1200	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.66	Cross Weaving Managed Lane	No

Adjustment Factors

| Driver Population | Mostly Familiar | Final Speed Adjustment Factor (SAF) | 0.975 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 0.968 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (V i), veh/h	4390	470	0	800
Peak Hour Factor (PHF)	0.95	0.95	0.95	0.95
Total Trucks, \%	5.00	5.00	5.00	5.00
Heavy Vehicle Adjustment Factor (fHV)	0.952	0.952	0.952	0.952
Flow Rate (vi), pc/h	4854	520	0	885
Weaving Flow Rate (vw), pc/h	1405	Freeway Max Capacity (cIFL), pc/h/ln		2400
Non-Weaving Flow Rate (vNW), pc/h	4854	Density-Based Capacity (cIWL), pc/h/ln		2126
Total Flow Rate (v), pc/h	6259	Demand Flow-Based Capacity (cıW), pc/h		10714
Volume Ratio (VR)	0.224	Weaving Segment Capacity (cW), veh/h		10120
Minimum Lane Change Rate (LCMIN), Ic/h	1405	Adjusted Weaving Area Capacity, pc/h		10290
Maximum Weaving Length (LMAX), ft	4783	Volume-to-Capacity Ratio (v/c)		0.61
Speed and Density				
Non-Weaving Vehicle Index (INW)	384	Average Weaving Speed (SW), mi/h		56.6
Non-Weaving Lane Change Rate (LCNW), Ic/h	687	Average Non-Weaving Speed (SNW), mi/h		57.4
Weaving Lane Change Rate (LCW), Ic/h	1844	Average Speed (S), mi/h		57.2
Weaving Lane Change Rate (LCAll), Ic/h	2531	Density (D), pc/mi/ln		21.9
Weaving Intensity Factor (W)	0.407	Level of Service (LOS)		C

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	644	1162	1518	1789	2058
Service Flow Rate (SF), veh/h	3067	5531	7223	8517	9796
Service Volume, veh/h	2914	5254	6862	8092	9306
One Direction DSV, 1000 veh/day	29	53	69	81	93
Bi-Directional DSV, 1000 veh/day	53	96	125	147	169

Design Analysis Table

Number of Lanes, In	3	4	5	6
Density, $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	-	27.9	21.9	18.0
LOS	F	C	C	B

HCS7 Freeway Weaving Report

Project Information

Analyst	Chen-Yuan Wang	Date	6/20/2019
Agency	CTPS	Analysis Year	2030
Jurisdiction	MassDOT District 4	Time Period Analyzed	PM Peak Hour $5: 00-6: 00$
Project Description	I-93 Northbound Between Exit 40 and Exit 41 in Wilmington - Low Cst Freeway Bottlenecks	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	1200	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.66	Cross Weaving Managed Lane	No

Adjustment Factors

| Driver Population | Mostly Familiar | Final Speed Adjustment Factor (SAF) | 0.975 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 0.968 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (V i), veh/h	6480	400	0	1100
Peak Hour Factor (PHF)	0.95	0.95	0.95	0.95
Total Trucks, \%	3.00	3.00	3.00	3.00
Heavy Vehicle Adjustment Factor (fHV)	0.971	0.971	0.971	0.971
Flow Rate (vi), pc/h	7025	434	0	1192
Weaving Flow Rate (vw), pc/h	1626	Freeway Max Capacity (cIFL), pc/h/ln		2400
Non-Weaving Flow Rate (vNW), pc/h	7025	Density-Based Capacity (cIWL), pc/h/ln		2154
Total Flow Rate (v), pc/h	8651	Demand Flow-Based Capacity (cıW), pc/h		12766
Volume Ratio (VR)	0.188	Weaving Segment Capacity (cW), veh/h		10458
Minimum Lane Change Rate (LCMIN), Ic/h	1626	Adjusted Weaving Area Capacity, pc/h		10425
Maximum Weaving Length (LMAX), ft	4414	Volume-to-Capacity Ratio (v/c)		0.83
Speed and Density				
Non-Weaving Vehicle Index (INW)	556	Average Weaving Speed (SW), mi/h		54.3
Non-Weaving Lane Change Rate (LCNW), Ic/h	1135	Average Non-Weaving Speed (SNW), mi/h		53.5
Weaving Lane Change Rate (LCW), Ic/h	2065	Average Speed (S), mi/h		53.6
Weaving Lane Change Rate (LCAll), Ic/h	3200	Density (D), pc/mi/ln		32.3
Weaving Intensity Factor (W)	0.490	Level of Service (LOS)		D

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	653	1190	1552	1839	2085
Service Flow Rate (SF), veh/h	3168	5778	7535	8928	10123
Service Volume, veh/h	3010	5489	7158	8481	9617
One Direction DSV, 1000 veh/day	30	55	72	85	96
Bi-Directional DSV, 1000 veh/day	55	100	130	154	175

Design Analysis Table

Number of Lanes, In	3	4	5	6
Density, $\mathrm{pc} / \mathrm{mi} / \mathrm{In}$	-	-	32.3	26.3
LOS	F	F	D	C
Copyright © 2019 University of Florida. All Rights Reserved.	HCS $^{\text {TM }}$ Freeways Version 7.8	Generated: $06 / 24 / 2019$ 15:38:56		

Location 2 - I-93 Southbound at the End of the HOV Zipper Lane Freeway Merge, Diverge, and Weave Analyses

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - Exit 8 On-Ramp - Low Cost Freeway Bottlenecks Existing	Unit	United States Customary

Geometric Data

		Freeway	Ramp	
Number of Lanes (N), In		4	1	
Free-Flow Speed (FFS), mi/h		55.0	35.0	
Segment Length (L) / Acceleration Length (LA), ft		1500	920	
Terrain Type		Specific Grade	Specific Grade	
Percent Grade, \%		1.00	1.00	
Segment Type / Ramp Side		Freeway	Right	
Adjustment Factors				
Driver Population		Mostly Familiar	Mostly Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weath	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		7000	700	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, \%		2.00	0.00	
Single-Unit Trucks (SUT), \%		70	100	
Tractor-Trailers (TT), \%		30	0	
Heavy Vehicle Adjustment Factor (fHV)		0.966	1.000	
Flow Rate (vi),pc/h		7628	737	
Capacity (c), pc/h		9000	2000	
Volume-to-Capacity Ratio (v/c)		0.93	0.37	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (No)		2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)		0.429
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/h/ln		2289
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR), mi/h		49.4
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	0.126	Outer Lanes Freeway Speed (SO), mi/h		48.6
Flow in Lanes 1 and 2 (v12), pc/h	3051	Ramp Junction Speed (S), mi/h		49.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	3788	Average Density (D), pc/mi/ln		42.7
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln		29.0

Service Volume Table

Target LOS	A	B	C	D		E							
Freeway													
Max Service Flow Rate (MSF), pc/h/ln	562	1319	1841	2045	-								
Service Flow Rate (SF), veh/h	2170	5095	7114	7904	-								
Service Volume, veh/h	2062	4840	6759	7508	-								
One Direction DSV, 1000 veh/day	21	48	68	75	-								
Bi-Directional DSV, 1000 veh/day	37	88	123	137	-								

Ramp

Max Service Flow Rate (MSF), pc/h/ln	217	510	711	790	-
Service Flow Rate (SF), veh/h	217	510	711	790	-
Service Volume, veh/h	206	484	676	751	-
One Direction DSV, 1000 veh/day	2	5	7	8	-

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/ln	-	-	-	-	42.7	42.5	32.9	32.7
LOS	F	F	F	F	D	C	C	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8
Generated: 09/06/2019 16:50:08

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - Exit 8 On-Ramp - Low Cost Freeway Bottlenecks Alternative 1	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	35.0
Segment Length (L) / Acceleration Length (LA),ft	1500	900
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)		7500	700	
Peak Hour Factor (PHF)		1.00	1.00	
Total Trucks, \%		2.00	0.00	
Single-Unit Trucks (SUT), \%		70	100	
Tractor-Trailers (TT), \%		30	0	
Heavy Vehicle Adjustment Factor (fHV)		0.966	1.000	
Flow Rate (vi),pc/h		7764	700	
Capacity (c), pc/h		9000	2000	
Volume-to-Capacity Ratio (v/c)		0.94	0.35	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freewa	(No)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)		0.433
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/h/ln		2329
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (S), mi/h	49.4
Prop. Freeway Vehicles in Lane 1 and 2 (PfM)	0.130	Outer Lanes Freeway Speed (So), m	i/h	48.3
Flow in Lanes 1 and 2 (v12), pc/h	3106	Ramp Junction Speed (S), mi/h		48.8
Flow Entering Ramp-Infl. Area (vR12), pc/h	3806	Average Density (D), pc/mi/ln		43.4
Level of Service (LOS)	D	Density in Ramp Influence Area (D)), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	29.3

Service Volume Table

Target LOS	A	B	C	D		E							
Freeway													
Max Service Flow Rate (MSF), pc/h/ln	566	1327	1857	2058	-								
Service Flow Rate (SF), veh/h	2186	5127	7175	7952	-								
Service Volume, veh/h	2186	5127	7175	7952	-								
One Direction DSV, 1000 veh/day	22	51	72	80	-								
Bi-Directional DSV, 1000 veh/day	40	93	130	145	-								

Ramp

Max Service Flow Rate (MSF), pc/h/ln	204	479	670	742	-
Service Flow Rate (SF), veh/h	204	479	670	742	-
Service Volume, veh/h	204	479	670	742	-
One Direction DSV, 1000 veh/day	2	5	7	7	-

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	5
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	-	-	43.4	43.2	33.3	33.2
LOS	F	F	F	F	D	C	C	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS $^{\text {TM }}$ Freeways Version 7.8
Generated: 09/06/2019 16:57:49

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - Exit 8 On-Ramp - Low Cost Freeway Bottlenecks Alternative 2	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	35.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	7500	700	
Peak Hour Factor (PHF)	1.00	1.00	
Total Trucks, \%	70	0.00	
Single-Unit Trucks (SUT), \%	30	100	
Tractor-Trailers (TT), \%	0.966	0	
Heavy Vehicle Adjustment Factor (fHV)	7764	1.000	
Flow Rate (vi),pc/h	9000	700	2000
Capacity (c), pc/h	0.94	0.35	
Volume-to-Capacity Ratio (v/c)	Number of Outer Lanes on Freeway (No)	2	
Speed and Density	Speed Index (Ms)	0.391	
Upstream Equilibrium Distance (LEQ), ft	Flow Outer Lanes (voA), pc/h/ln	2329	
Distance to Upstream Ramp (LUP), ft	-	On-Ramp Influence Area Speed (SR), mi/h	49.9
Downstream Equilibrium Distance (LEQ), ft	-	Outer Lanes Freeway Speed (So), mi/h	48.3
Distance to Downstream Ramp (LDown), ft	-	Ramp Junction Speed (S), mi/h	49.0
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	0.130	3106	Average Density (D), pc/mi/ln
Flow in Lanes 1 and 2 (v12), pc/h	Density in Ramp Influence Area (DR), pc/mi/ln	25.5	
Flow Entering Ramp-Infl. Area (vR12), pc/h	3806	C	43.2
Level of Service (LOS)			

Service Volume Table

Target LOS	A	B	C	D	E
Freeway					
Max Service Flow Rate (MSF), pc/h/ln	585	1575	2058	-	-
Service Flow Rate (SF), veh/h	2261	6086	7952	-	-
Service Volume, veh/h	2261	6086	7952	-	-
One Direction DSV, 1000 veh/day	23	61	80	-	-
Bi-Directional DSV, 1000 veh/day	41	111	145	-	-

Ramp

Max Service Flow Rate (MSF), pc/h/ln	211	568	742	-	-
Service Flow Rate (SF), veh/h	211	568	742	-	-
Service Volume, veh/h	211	568	742	-	-
One Direction DSV, 1000 veh/day	2	6	7	-	-

Design Analysis Table

Freeway Lanes, In	2	2	3	3	4	4	5	
Ramp Lanes, In	1	2	1	2	1	2	1	2
Density, pc/mi/In	-	-	-	-	43.2	43.2	33.2	33.2
LOS	F	F	F	F	C	C	B	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS ${ }^{\text {TM }}$ Freeways Version 7.8
Generated: 09/06/2019 16:59:48
Quincy - Exit 8 - Merge Alternative 2.xuf

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - Exit 8 On-Ramp - Low Cost Freeway Bottlenecks Alternative 3	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	35.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Right

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	7500	700	
Peak Hour Factor (PHF)	1.00	1.00	
Total Trucks, \%	70	0.00	
Single-Unit Trucks (SUT), \%	30	100	
Tractor-Trailers (TT), \%	0.966	0	
Heavy Vehicle Adjustment Factor (fHV)	7764	1.000	
Flow Rate (vi),pc/h	9000	700	2000
Capacity (c), pc/h	0.94	0.35	
Volume-to-Capacity Ratio (v/c)	Number of Outer Lanes on Freeway (No)	2	
Speed and Density	Speed Index (Ms)	0.391	
Upstream Equilibrium Distance (LEQ), ft	Flow Outer Lanes (voA), pc/h/ln	2329	
Distance to Upstream Ramp (LUP), ft	-	On-Ramp Influence Area Speed (SR), mi/h	49.9
Downstream Equilibrium Distance (LEQ), ft	-	Outer Lanes Freeway Speed (So), mi/h	48.3
Distance to Downstream Ramp (LDown), ft	-	Ramp Junction Speed (S), mi/h	49.0
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	0.130	3106	Average Density (D), pc/mi/ln
Flow in Lanes 1 and 2 (v12), pc/h	Density in Ramp Influence Area (DR), pc/mi/ln	25.5	
Flow Entering Ramp-Infl. Area (vR12), pc/h	3806	C	43.2
Level of Service (LOS)			

Service Volume Table

Target LOS	A		B	C		D	E
Freeway							
Max Service Flow Rate (MSF), pc/h/ln	585		1575	2058		-	-
Service Flow Rate (SF), veh/h	2261		6086	7952		-	-
Service Volume, veh/h	2261		6086	7952		-	-
One Direction DSV, 1000 veh/day	23		61	80		-	-
Bi-Directional DSV, 1000 veh/day	41		111	145		-	-
Ramp							
Max Service Flow Rate (MSF), pc/h/ln	211		568	742		-	-
Service Flow Rate (SF), veh/h	211		568	742		-	-
Service Volume, veh/h	211		568	742		-	-
One Direction DSV, 1000 veh/day	2		6	7		-	-
Design Analysis Table							
Freeway Lanes, In 2	2	3	3	4	4	5	5
Ramp Lanes, In $\quad 1$	2	1	2	1	2	1	2
Density, pc/mi/ln	-	-	-	43.2	43.2	33.2	33.2
LOS	F	F	F	C	C	B	B

Copyright © 2019 University of Florida. All Rights Reserved.
HCS ${ }^{\text {TM }}$ Freeways Version 7.8
Generated: 09/06/2019 17:01:11
Quincy - Exit 8 - Merge Alternative 3.xuf

HCS7 Freeway Merge Report					
Project Information					
Analyst	Ben Erban		Date	2/25/2019	
Agency	CTPS		Analysis Year	2019	
Jurisdiction	MassDOT District 6		Time Period Analyzed	4:00 to 5:00 PM	
Project Description	Quincy - HOV Lane Merge - Low Cost Freeway Bottlenecks-Existing		Unit	United States Customary	
Geometric Data					
			Freeway	Ramp	
Number of Lanes (N), In			4	1	
Free-Flow Speed (FFS), mi/h			55.0	55.0	
Segment Length (L) / Acceleration Length (LA), ft			1200	430	
Terrain Type			Specific Grade	Specific Grade	
Percent Grade, \%			1.00	1.00	
Segment Type / Ramp Side			Freeway	Left	
Adjustment Factors					
Driver Population			Mostly Familiar	Mostly Familiar	
Weather Type			Non-Severe Weather	Non-Severe Weather	
Incident Type			No Incident	-	
Final Speed Adjustment Factor (SAF)			1.000	1.000	
Final Capacity Adjustment Factor (CAF)			1.000	1.000	
Demand Adjustment Factor (DAF)			1.000	1.000	
Demand and Capacity					
Demand Volume (Vi)			5500	1500	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, \%			2.00	0.00	
Single-Unit Trucks (SUT), \%			70	100	
Tractor-Trailers (TT), \%			30	0	
Heavy Vehicle Adjustment Factor (fHV)			0.966	1.000	
Flow Rate (vi), pc/h			5993	1579	
Capacity (c), pc/h			9000	2200	
Volume-to-Capacity Ratio (v/c)			0.84	0.72	
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft		-	Number of Outer Lanes on Freeway (No)		2
Distance to Upstream Ramp (LUP), ft		-	Speed Index (Ms)		0.482
Downstream Equilibrium Distance (LEQ), ft		-	Flow Outer Lanes (voA), pc/h/ln		1798
Distance to Downstream Ramp (LDOWN), ft		-	On-Ramp Influence Area Speed (SR), mi/h		48.7
Prop. Freeway Vehicles in Lane 3 and 4 (PFM)		0.020	Outer Lanes Freeway Speed (SO), mi/h		50.3
Flow in Lanes 3 and 4 (v34), pc/h		2397	Ramp Junction Speed (S), mi/h		49.4
Flow Entering Ramp-Infl. Area (vR34), pc/h		3976	Average Density (D), pc/mi/ln		38.3
Level of Service (LOS)		D	Density in Ramp Influence Area (DR), pc/mi/ln		33.1

Service Volume Table

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - HOV Lane Merge - Low Cost Freeway Bottlenecks-- Alternative 1	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	2400	1100
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Left

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	6000	1500
Peak Hour Factor (PHF)	1.00	1.00
Total Trucks, \%	2.00	0.00
Single-Unit Trucks (SUT), \%	70	100
Tractor-Trailers (TT), \%	30	0
Heavy Vehicle Adjustment Factor (fHV)	0.966	1.000
Flow Rate (vi),pc/h	6211	1500
Capacity (c), pc/h	9000	2200
Volume-to-Capacity Ratio (v/c)	0.86	0.68
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)	0.410
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1864
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR), mi/h	49.7
Prop. Freeway Vehicles in Lane 3 and 4 (PFM)	0.030	Outer Lanes Freeway Speed (So), mi/h	50.1
Flow in Lanes 3 and 4 (v34), pc/h	2484	Ramp Junction Speed (S), mi/h	49.9
Flow Entering Ramp-Infl. Area (vR34), pc/h	3984	Average Density (D), pc/mi/ln	38.6
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	29.0

Service Volume Table

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - HOV Lane Merge - Low Cost Freeway Bottlenecks-- Alternative 2	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	2400	430
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Left

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	6000	1500
Peak Hour Factor (PHF)	1.00	1.00
Total Trucks, \%	2.00	1.00
Single-Unit Trucks (SUT), \%	70	100
Tractor-Trailers (TT), \%	30	0
Heavy Vehicle Adjustment Factor (fHV)	0.966	0.983
Flow Rate (vi),pc/h	6211	1526
Capacity (c), pc/h	9000	2200
Volume-to-Capacity Ratio (v/c)	0.86	0.69

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)	0.489
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1864
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR), mi/h	48.6
Prop. Freeway Vehicles in Lane 3 and 4 (PFM)	0.027	Outer Lanes Freeway Speed (So), mi/h	50.1
Flow in Lanes 3 and 4 (v34), pc/h	2484	Ramp Junction Speed (S), mi/h	49.3
Flow Entering Ramp-Infl. Area (vR34), pc/h	4010	Average Density (D), pc/mi/ln	39.2
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	33.4

Service Volume Table

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	$4: 00$ to 5:00 PM
Project Description	Quincy - HOV Lane Merge - Low Cost Freeway Bottlenecks-- Alternative 3	Unit	United States Customary

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	55.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	2400	1100
Terrain Type	Specific Grade	Specific Grade
Percent Grade, \%	1.00	1.00
Segment Type / Ramp Side	Freeway	Left

Adjustment Factors

Driver Population	Mostly Familiar	Mostly Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	6000	1500
Peak Hour Factor (PHF)	1.00	1.00
Total Trucks, \%	2.00	0.00
Single-Unit Trucks (SUT), \%	70	100
Tractor-Trailers (TT), \%	30	0
Heavy Vehicle Adjustment Factor (fHV)	0.966	1.000
Flow Rate (vi),pc/h	6211	1500
Capacity (c), pc/h	9000	2200
Volume-to-Capacity Ratio (v/c)	0.86	0.68
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Number of Outer Lanes on Freeway (NO)	2
Distance to Upstream Ramp (LUP), ft	-	Speed Index (Ms)	0.410
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln	1864
Distance to Downstream Ramp (LDOWN), ft	-	On-Ramp Influence Area Speed (SR), mi/h	49.7
Prop. Freeway Vehicles in Lane 3 and 4 (PFM)	0.030	Outer Lanes Freeway Speed (So), mi/h	50.1
Flow in Lanes 3 and 4 (v34), pc/h	2484	Ramp Junction Speed (S), mi/h	49.9
Flow Entering Ramp-Infl. Area (vR34), pc/h	3984	Average Density (D), pc/mi/ln	38.6
Level of Service (LOS)	D	Density in Ramp Influence Area (DR), pc/mi/ln	29.0

Service Volume Table

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - One-Sided Weave from HOV Lane to Route 3 - Existing	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1900	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	2
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	2.00	Cross Weaving Managed Lane	No

Adjustment Factors

| Driver Population | All Familiar | Final Speed Adjustment Factor (SAF) | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF RR	FR
Demand Volume (Vi), veh/h	2500	700600	2600
Peak Hour Factor (PHF)	1.00		1.00
Total Trucks, \%	2.00	0.00 0.00	2.00
Heavy Vehicle Adjustment Factor (fHV)	0.970	1.0001 .000	0.968
Flow Rate (vi), pc/h	2577	700600	2686
Weaving Flow Rate (vw), pc/h	3386	Freeway Max Capacity (cIFL), pc/h/ln	2250
Non-Weaving Flow Rate (vNW), pc/h	3177	Density-Based Capacity (cIWL), pc/h/ln	1782
Total Flow Rate (v), pc/h	6563	Demand Flow-Based Capacity (cıw), pc/h	4651
Volume Ratio (VR)	0.516	Weaving Segment Capacity (cw), veh/h	4535
Minimum Lane Change Rate (LCMIN), Ic/h	0	Adjusted Weaving Area Capacity, pc/h	4651
Maximum Weaving Length (LMAX), ft	8014	Volume-to-Capacity Ratio (v/c)	1.41

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Target LOS		A		B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln		493		925	1163	1163	1163
Service Flow Rate (SF), veh/h		1912		3589	4511	4511	4511
Service Volume, veh/h		1912		3589	4511	4511	4511
One Direction DSV, 1000 veh/day		19		36	45	45	45
Bi-Directional DSV, 1000 veh/day		19		36	45	45	45
Design Analysis Table							
Number of Lanes, In	4		5		6	7	
Density, pc/mi/ln	-		-		-	-	
LOS	F		F		F	F	

Quincy - From HOV to 93 SB - One-Sided Weave (Ramp is Route 3) Existing.xuf

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - One-Sided Weave from HOV Lane to Route 3- Alternative 1	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2600	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	2
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	2.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

| Driver Population | All Familiar | Final Speed Adjustment Factor (SAF) | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2500	700	600	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	2.00	0.962
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	2703	
Flow Rate (vi), pc/h	2583	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1835		
Non-Weaving Flow Rate (vNW), pc/h	3403	Demand Flow-Based Capacity (cIW), pc/h	4642	
Total Flow Rate (v), pc/h	6586	Weaving Segment Capacity (cw), veh/h	4512	
Volume Ratio (VR)	0.517	Adjusted Weaving Area Capacity, pc/h	4643	
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.42	
Maximum Weaving Length (LMAX), ft	8026			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (SW), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Target LOS		A		B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln		494		929	1161	1161	1161
Service Flow Rate (SF), veh/h		1912		3596	4494	4494	4494
Service Volume, veh/h		1912		3596	4494	4494	4494
One Direction DSV, 1000 veh/day		19		36	45	45	45
Bi-Directional DSV, 1000 veh/day		35		65	82	82	82
Design Analysis Table							
Number of Lanes, In	4		5		6	7	
Density, pc/mi/ln	-		-		-	-	
LOS	F		F		F	F	

[^22]Generated: 09/07/2019 20:57:46

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - One-Sided Weave from HOV Lane to Route 3- Alternative 2	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2600	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	2
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

| Driver Population | All Familiar | Final Speed Adjustment Factor (SAF) | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2500	700	600	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	2.00	0.968
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	2686	
Flow Rate (vi), pc/h	2583	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1837		
Non-Weaving Flow Rate (vNW), pc/h	3183	Demand Flow-Based Capacity (cIW), pc/h	4660	
Total Flow Rate (v), pc/h	6569	Weaving Segment Capacity (cw), veh/h	4541	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	4661		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.41	
Maximum Weaving Length (LMAX), ft	8002			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Target LOS		A		B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln		494		924	1165	1165	1165
Service Flow Rate (SF), veh/h		1912		3578	4512	4512	4512
Service Volume, veh/h		1912		3578	4512	4512	4512
One Direction DSV, 1000 veh/day		19		36	45	45	45
Bi-Directional DSV, 1000 veh/day		19		36	45	45	45
Design Analysis Table							
Number of Lanes, In	4		5		6	7	
Density, pc/mi/ln	-		-		-	-	
LOS	F		F		F	F	

[^23]Generated: 09/07/2019 21:01:34

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - One-Sided Weave from HOV Lane to Route 3- Alternative 3	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	2600	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	2
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

| Driver Population | All Familiar | Final Speed Adjustment Factor (SAF) | 1.000 |
| :--- | :--- | :--- | :--- | :--- |
| Weather Type | Non-Severe Weather | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Incident Type | No Incident | Demand Adjustment Factor (DAF) | 1.000 |

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2500	700	600	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	2.00	0.968
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	2686	
Flow Rate (vi), pc/h	2583	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1837		
Non-Weaving Flow Rate (vNW), pc/h	3183	Demand Flow-Based Capacity (cIW), pc/h	4660	
Total Flow Rate (v), pc/h	6569	Weaving Segment Capacity (cw), veh/h	4541	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	4661		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.41	
Maximum Weaving Length (LMAX), ft	8002			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Target LOS		A		B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln		484		907	932	932	932
Service Flow Rate (SF), veh/h		2340		4390	4512	4512	4512
Service Volume, veh/h		2340		4390	4512	4512	4512
One Direction DSV, 1000 veh/day		23		44	45	45	45
Bi-Directional DSV, 1000 veh/day		43		80	82	82	82
Design Analysis Table							
Number of Lanes, In	4		5		6	7	
Density, pc/mi/ln	-		-		-	-	
LOS	F		F		F	F	

[^24]Generated: 09/07/2019 21:04:03

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - Two-Sided Weave from HOV Lane to I-93 SB (Ramp is I-93) - Existing	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1900	Number of Maneuver Lanes (NWL), In	0
Weaving Configuration	Two-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	3
Interchange Density (ID), int/mi	2.00	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2600	600	500	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	0.00	2.00
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	0.000	2686
Flow Rate (vi), pc/h	2686	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	500	Density-Based Capacity (cIWL), pc/h/ln	1902	
Non-Weaving Flow Rate (vNW), pc/h	5972	Demand Flow-Based Capacity (clW), pc/h	-	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	7406		
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	7608		
Minimum Lane Change Rate (LCMIN), Ic/h	1500	Volume-to-Capacity Ratio (v/c)	0.85	
Maximum Weaving Length (LMAX), ft	6450			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	494	894	1175	1373	1902
Service Flow Rate (SF), veh/h	1911	3462	4550	5317	7365
Service Volume, veh/h	1911	3462	4550	5317	7365
One Direction DSV, 1000 veh/day	19	35	45	53	74
Bi-Directional DSV, 1000 veh/day	35	63	83	97	134

Design Analysis Table

Number of Lanes, In	4	5	6	7
Density, pc/mi/ln	-	33.9	27.6	23.2
LOS	F	D	C	C

Copyright © 2019 University of Florida. All Rights Reserved. HCS ${ }^{\text {TM }}$ Freeways Version 7.8
Generated: 09/07/2019 21:25:18
Quincy - From HOV to 93 SB - Two-Sided Weave (Ramp is I-93) Existing.xuf

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - Two-Sided Weave from HOV Lane to I-93 SB (Ramp is I-93) - Alternative 1	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2500	Number of Maneuver Lanes (NWL), In	0
Weaving Configuration	Two-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	3
Interchange Density (ID), int/mi	2.00	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2600	600	500	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	0.00	2.00
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	0.000	2686
Flow Rate (vi), pc/h	2686	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	500	Density-Based Capacity (cIWL), pc/h/ln	1948	
Non-Weaving Flow Rate (vNW), pc/h	5972	Demand Flow-Based Capacity (clW), pc/h	-	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	7585		
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	7792		
Minimum Lane Change Rate (LCMIN), Ic/h	1500	Volume-to-Capacity Ratio (v/c)	0.83	
Maximum Weaving Length (LMAX), ft	6450			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	494	899	1171	1379	1948
Service Flow Rate (SF), veh/h	1911	3479	4534	5338	7543
Service Volume, veh/h	1911	3479	4534	5338	7543
One Direction DSV, 1000 veh/day	19	35	45	53	75
Bi-Directional DSV, 1000 veh/day	35	63	82	97	137

Design Analysis Table

Number of Lanes, In	4	5	6	7
Density, pc/mi/ln	-	33.8	27.5	23.2
LOS	F	D	C	C

Managed Lane Geometric Data

Managed Lane Type	Continuous Access	Free-Flow Speed (FFS), mi/h	75.4
Number of Managed Lanes, In	1	Terrain Type	Level
Managed Lane Length, ft	5280	Percent Grade, \%	-

Managed Lane Adjustment Factors

Driver Population	All Familiar	Driver Population CAF	1.000
Weather Type	Non-Severe Weather	Weather Type CAF	1.000
Driver Population SAF	1.000	Final Speed Adjustment Factor (SAF)	1.000
Weather Type SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Demand Adjustment Factor (DAF)	1.000		

Managed Lane Demand and Capacity

Volume (VmL), veh/h	0	Heavy Vehicle Adjustment Factor (f fv)	1.000
Peak Hour Factor	0.94	Flow Rate ($\mathrm{V}_{\mathrm{p}, \mathrm{ML}}$), $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	1804
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (adj) $^{\text {a }}$, pc/h/ln	1804
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.00
Passenger Car Equivalent (ET)	2.000		
Managed Lane Speed and Density			
Breakpoint (BPML)	500	Indicator Variable (1c)	-
Speed $1\left(\mathrm{~S}_{1}\right)$, mi/h	75.4	Average Speed (Smı), mi/h	75.4
Speed $2\left(\mathrm{~S}_{2}\right)$, mi/h	-	Density (DmL), pc/mi/ln	0.0
Speed 3 (S_{3}, mi/h	-	Level of Service (LOS)	A

Copyright © 2019 University of Florida. All Rights Reserved.

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - Two-Sided Weave from HOV Lane to I-93 SB (Ramp is I-93) - Alternative 2	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1400	Number of Maneuver Lanes (NWL), In	0
Weaving Configuration	Two-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	3
Interchange Density (ID), int/mi	2.00	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF RR	FR
Demand Volume (Vi), veh/h	2600	600500	2600
Peak Hour Factor (PHF)	1.00	1.00 1.00	1.00
Total Trucks, \%	2.00	0.00 0.00	2.00
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000 1.000	0.968
Flow Rate (vi), pc/h	2686	600500	2686
Weaving Flow Rate (vw), pc/h	500	Freeway Max Capacity (clFL), pc/h/ln	2250
Non-Weaving Flow Rate (vNW), pc/h	5972	Density-Based Capacity (cIWL), pc/h/ln	1864
Total Flow Rate (v), pc/h	6472	Demand Flow-Based Capacity (cıw), pc/h	-
Volume Ratio (VR)	0.077	Weaving Segment Capacity (cW), veh/h	7258
Minimum Lane Change Rate (LCmin), Ic/h	1500	Adjusted Weaving Area Capacity, pc/h	7456
Maximum Weaving Length (LMAX), ft	6450	Volume-to-Capacity Ratio (v/c)	0.87

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	492	894	1171	1382	1864
Service Flow Rate (SF), veh/h	1906	3463	4534	5353	7217
Service Volume, veh/h	1906	3463	4534	5353	7217
One Direction DSV, 1000 veh/day	19	35	45	54	72
Bi-Directional DSV, 1000 veh/day	35	63	82	97	131

Design Analysis Table

Number of Lanes, In	4	5	6	7
Density, $\mathrm{pc} / \mathrm{mi} / \mathrm{In}$	-	33.6	27.4	23.0
LOS	F	D	C	C

Copyright © 2019 University of Florida. All Rights Reserved. HCS ${ }^{\text {TM }}$ Freeways Version 7.8
Generated: 09/07/2019 21:29:45

Project Information

Analyst	Ben Erban	Date	$2 / 25 / 2019$
Agency	CTPS	Analysis Year	2019
Jurisdiction	MassDOT District 6	Time Period Analyzed	
Project Description	Quincy - Two-Sided Weave from HOV Lane to I-93 SB (Ramp is I-93) - Alternative 2	Unit	United States Customary

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2000	Number of Maneuver Lanes (NWL), In	0
Weaving Configuration	Two-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Specific Grade	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	1.00	Ramp-to-Ramp Lane Changes (LCRR), Ic	3
Interchange Density (ID), int/mi	2.00	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2600	600	500	2600
Peak Hour Factor (PHF)	1.00	1.00	1.00	1.00
Total Trucks, \%	2.00	0.00	0.00	2.00
Heavy Vehicle Adjustment Factor (fHV)	0.968	1.000	0.000	2686
Flow Rate (vi), pc/h	2686	Freeway Max Capacity (cIFL), pc/h/ln	2250	
Weaving Flow Rate (vw), pc/h	500	Density-Based Capacity (cIWL), pc/h/ln	1910	
Non-Weaving Flow Rate (vNW), pc/h	5972	Demand Flow-Based Capacity (clW), pc/h	-	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	7437		
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	7640		
Minimum Lane Change Rate (LCMIN), Ic/h	1500	Volume-to-Capacity Ratio (v/c)	0.85	
Maximum Weaving Length (LMAX), ft	6450			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (Sw), mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

Service Volume Table

Target LOS	A	B	C	D	E
Max Service Flow Rate (MSF), pc/h/ln	494	894	1175	1380	1910
Service Flow Rate (SF), veh/h	1911	3462	4550	5342	7396
Service Volume, veh/h	1911	3462	4550	5342	7396
One Direction DSV, 1000 veh/day	19	35	45	53	74
Bi-Directional DSV, 1000 veh/day	35	63	83	97	134

Design Analysis Table

Number of Lanes, In	4	5	6	7
Density, $\mathrm{pc} / \mathrm{mi} / \mathrm{In}$	-	33.8	27.5	23.2
LOS	F	D	C	C

Copyright © 2019 University of Florida. All Rights Reserved. HCS ${ }^{\text {TM }}$ Freeways Version 7.8
Generated: 09/07/2019 21:59:55

[^0]: ${ }^{1}$ Federal Highway Administration, Recurring Traffic Bottlenecks: A Primer: Focus on Low-Cost Operations Improvements, US Department of Transportation, Federal Highway Administration, June 2009, p. 1.

[^1]: ${ }^{2}$ Seth Asante, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region MPO, "Low-Cost Improvements to Bottleneck Locations, Phase I," June 2, 2011.
 ${ }^{3}$ Chen-Yuan Wang, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region MPO, "Low-Cost Improvements to Bottleneck Locations, Phase II," March 12, 2012.
 ${ }^{4}$ Seth Asante, MPO staff, memorandum to the Boston Region MPO, "Low-Cost Improvements to Express-Highway Bottleneck Locations," December 3, 2015.
 ${ }^{5}$ Seth Asante and Ben Erban, "Low-Cost Improvements to Express-Highway Bottleneck Locations," January 18, 2018.

[^2]: ${ }^{6}$ Seth Asante, MPO staff, memorandum to the Boston Region MPO, "Low-Cost Improvements to Express-Highway Bottleneck Locations: Selection of Study Locations," April 2, 2015.

[^3]: ${ }^{7}$ All figures are included at the end of the report.

[^4]: ${ }^{8}$ INRIX is a private company that collects roadway travel times and origin-destination data for most roadways that are collectors, arterials, limited-access roadways or freeways.
 ${ }^{9}$ Highway Capacity Manual 2010, Transportation Research Board of the National Academies, Washington, DC, December 2010.

[^5]: ${ }^{10}$ The AM peak period is 6:00 AM to 10:00 AM, and the PM peak period is 3:00 PM to 7:00 PM. Source: Central Transportation Planning Staff.
 ${ }^{11}$ Acceleration and deceleration lanes are measured from the point where the lane reaches 12 feet wide to the first controlling curve. Source: A Policy on Geometric Design of Highways and Streets, AASHTO, 2004. Chapter 10 Grade Separations and Interchanges.

[^6]: ${ }^{12}$ Massachusetts Highway Department, Project Development and Design Guide, January 2006. The Guidebook describes the project development procedures and design guidelines applicable to projects with MassDOT Highway Division involvement. It provides guidance to municipalities, authorities, and other entities involved in the design and development of highways and streets, and other transportation facilities.
 ${ }^{13}$ Synchro Version 10.3 was used for the analyses. This software is developed and distributed by Trafficware Ltd. It can perform capacity analysis and traffic simulation (when combined with SimTraffic) for an individual intersection or a series of intersections in a roadway network.

[^7]: ${ }^{14}$ See Appendix D for detailed Synchro intersection-capacity analysis reports.
 ${ }^{15} \mathrm{I}$-93 northbound travel lanes reduce from four to three lanes about one mile north of the Route 125, near the Wilmington/Andover town line.

[^8]: Note: The weekday evening peak period is 3:00 PM to 7:00 PM from Monday through Friday.

[^9]: ${ }^{16}$ INRIX is a private company headquartered in Kirkland, Washington. It provides locationbased data and analytics, such as traffic and parking, to automakers, cities and road authorities worldwide.

[^10]: ${ }^{17}$ Highway Capacity Software 7, Version 7.3, McTrans Center, PO Box 116585, Gainesville, Florida, 2017.
 ${ }^{18}$ For right-hand on-ramps, HCM defines the merge influence area to include the acceleration lane(s) and Lanes 1 and 2 of the freeway mainline (rightmost and second rightmost) for a distance of 1,500 feet downstream of the merge point. For right-hand off-ramps, the diverge influence area includes the deceleration lane(s) and Lanes 1 and 2 of the freeway mainline for a distance of 1,500 feet upstream of the diverge point. At this study location, the merge influence area overlaps with the diverge influence area for about 1,000 feet.

[^11]: ${ }^{19}$ Ramp spacing is defined as the distance between the painted tips of successive ramps. As in this case, both the entrance and exit ramps are the parallel type; the spacing is estimated at the end of the solid white line extending from the painted tip of the two ramps.
 ${ }^{20}$ Guidelines for Ramp and Interchange Spacing, NCHRP (National Cooperative Highway Research Program) Report 687, Transportation Research Board, Washington D.C., 2011.

[^12]: ${ }^{21}$ American Association of State Highway and Transportation Officials. Highway Safety Manual. Washington, DC, 2010.
 ${ }^{22}$ Crash Modification Factors Clearinghouse. The Crash Modification Factors Clearinghouse provides a searchable online database of CMFs along with guidance and resources on using CMFs in road safety practice. www.cmfclearinghouse.org/index.cfm.

[^13]: ${ }^{23}$ Acceleration and deceleration distances are measured from the point where the lane reaches 12 feet wide to the first controlling curve. Source: A Policy on Geometric Design of Highways and Streets, AASHTO, 2004. Chapter 10 Grade Separations and Interchanges.

[^14]: ${ }^{24}$ The AM peak period is 6:00 AM to 10:00 AM, and the PM peak period is 3:00 PM to 7:00 PM. Source: Central Transportation Planning Staff.

[^15]: ${ }^{25}$ Highway Capacity Software 7, Version 7.3, McTrans Center, PO Box 116585, Gainesville, Florida, 2017.

[^16]: ${ }^{26}$ VISSIM, PTV Group America, 1530 Wilson Blvd. Suite 510 Arlington VA 22209 United States.

[^17]: ${ }^{1}$ Work Program to the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Express-Highway Bottleneck Locations: FFY 2019," September 20, 2018.
 ${ }^{2}$ Federal Highway Administration, Recurring Traffic Bottlenecks: A Primer: Focus on Low-Cost Operations Improvements, US Department of Transportation, Federal Highway Administration, June 2009, p. 1.

[^18]: ${ }^{3}$ Seth Asante, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Bottleneck Locations," June 2, 2011.
 ${ }^{4}$ Chen-Yuan Wang, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region Metropolitan Planning Organization, "LowCost Improvements to Bottleneck Locations, Phase II," March 12, 2012.
 ${ }^{5}$ Seth Asante, MPO staff, memorandum to the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Bottleneck Locations," December 3, 2015.
 ${ }^{6}$ Seth Asante, MPO staff, "Low-Cost Improvements to Bottleneck Locations," Boston Region Metropolitan Planning Organization, January 2018.

[^19]: *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^20]: *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^21]: *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^22]: Copyright © 2019 University of Florida. All Rights Reserved
 HCS $^{\text {TM }}$ Freeways Version 7.8
 Quincy - From HOV to 93 SB - One-Sided Weave (Ramp is Route 3) Alternative 1.xuf

[^23]: Copyright © 2019 University of Florida. All Rights Reserved
 HCS $^{\text {TM }}$ Freeways Version 7.8
 Quincy - From HOV to 93 SB - One-Sided Weave (Ramp is Route 3) Alternative 2.xuf

[^24]: Copyright © 2019 University of Florida. All Rights Reserved
 HCS $^{\text {TM }}$ Freeways Version 7.8
 Quincy - From HOV to 93 SB - One-Sided Weave (Ramp is Route 3) Alternative 3.xuf

