TECHNICAL MEMORANDUM

DATE: December 3, 2015
TO: Boston Region Metropolitan Planning Organization (MPO)
FROM: Seth Asante, MPO Staff
RE: Low-Cost Improvements to Express-Highway Bottleneck Locations

This memorandum summarizes the results of the analyses and improvement alternatives resulting from the Low-Cost Improvements to Express-Highway Bottleneck Locations study. The opening sections provide background information and describe the purpose of the study. The selection of study locations and an assessment of the safety and operational problems, as well as a discussion of the potential improvement strategies, follow the background sections. The memorandum's final section presents study recommendations. Also included are technical appendices, which cite the study methods and how the data were applied, including detailed reports about the freeway merge and diverge analyses. If implemented, the report's recommendations would result in improved freeway facilities; they would increase traffic safety, make traffic operations more efficient, and reduce congestion at the bottlenecks.

1
 BACKGROUND

According to the Federal Highway Administration (FHWA), "Much of recurring congestion is due to physical bottlenecks-potentially correctible points on the highway system where traffic flow is restricted. While many of the nation's bottlenecks can only be addressed through costly major construction projects, there is a significant opportunity for the application of operational and low-cost infrastructure solutions to bring about relief at these chokepoints." ${ }^{1}$ In general, recurring bottlenecks, the subject of this study, are influenced by the design or operation present at the point where the bottleneck begins (e.g., merges, diverges, lane drops, traffic weaving, and abrupt changes in highway alignment).

Previously, Boston Region Metropolitan Planning Organization (MPO) staff analyzed several express-highway bottleneck locations in two consecutive studies, Low-Cost Improvements to Bottlenecks Phase I and Phase II, which were very well received by the Massachusetts Department of Transportation

[^0](MassDOT) and the FHWA. ${ }^{2,3}$ Some of the recommendations from those studies already have been executed, and the FHWA has interviewed MPO staff about the successful implementation. The MPO has been conducting these studies to identify low-cost methods to reduce congestion, increase safety, and improve traffic operations in the Boston Region.

2 PURPOSE OF STUDY

The purpose of this study is twofold:

- Identify two bottleneck segments or points where low-cost mitigation improvements seem applicable.
- Recommend low-cost mitigation improvements based on analysis of geometric design, traffic volumes and other data, and projected service performance associated with the improvements at each location.

3 SELECTION OF STUDY LOCATIONS

The selection of study locations was a two-stage process that included the inventorying and screening of candidate locations. ${ }^{4}$ MPO staff developed an initial list of candidate locations in the MPO region based on the following parameters:

- Staff knowledge of bottleneck locations in the Boston MPO region
- Review of Congestion Management Process (CMP) monitoring data and recent MPO and other planning studies
- Consultations with the MassDOT Highway Division
- Input from MPO members

The inventory process yielded five bottleneck locations for screening:

- Location 1: I-93 southbound between I-95 and Montvale Avenue in Woburn and Stoneham
- Location 2: I-95 southbound at the I-90 Interchange in Weston
- Location 3: I-93 southbound at the lane drop near Sullivan Square in Somerville/Charlestown
- Location 4: Route 2 Concord Rotary in Concord
- Location 5: I-95 northbound at the lane drop at Interchange 37 in Reading, Stoneham, and Wakefield

[^1]
3.1 Selection Criteria

MPO staff used the following three criteria to screen the bottleneck locations.

- Does the location qualify as a bottleneck? A repetitive long traffic queue upstream trailing free-flowing traffic downstream usually characterizes the location as a bottleneck. In other words, the location experiences routine and predictable congestion because traffic volume exceeds the available capacity at that location.
- Is a physical design constraint or operational conflict inherent in the location the cause of the bottleneck? Examples of these include:
o Lane drop: one or more travel lanes are lost, requiring traffic to merge
o Weaving area: drivers must merge across one or more lanes in order to access an entry or exit ramp
o Merge area: on-ramp traffic merges with mainline traffic in order to enter the freeway
o Major interchanges: high-volume traffic is directed from one freeway to another
- Can the bottleneck be fixed with low-cost operational and geometric improvements? These would exclude costly long-term solutions such as expansion or widening of the roadway. Examples of low-cost operational and geometric improvements include:
o Using a short section of shoulder as an additional travel lane or for lengthening an acceleration or deceleration lane
o Restriping merge and diverge areas to better serve traffic demand
o Providing all-purpose reversible lanes
o Changing or adding signs and striping

3.2 Study Locations

After consulting with MassDOT Highway Division staff, MPO staff selected Locations 1 and 2 for study. The study locations were also presented to the Boston Region MPO for discussions and approval. Through the selection process, MPO staff determined that these two locations likely could be corrected with low-cost mitigation strategies, whereas the other bottleneck locations likely could not be corrected in a low-cost manner. Appendix A contains comments about the study from the MassDOT Highway Division and a memorandum to the MPO that describes the selection process in detail.

Location 1: I-93 Southbound Between I-95 and Montvale Avenue in Woburn and Stoneham

This section of highway is frequently congested because of merging and diverging activities, and also because of inadequate length of the deceleration lane to Montvale Avenue. During peak periods, I-93 southbound carries as many as 7,700 vehicles per hour, the on-ramp from l-95 northbound carries as many as

1,800 vehicles per hour, and as many as 1,400 vehicles per hour exit to Montvale Avenue at Exit 36. The merging and diverging activities of these vehicles slow down I-93 southbound mainline traffic upstream of the Montvale Avenue interchange and cause many crashes near the diverge to Montvale Avenue. Section 6 of this memorandum contains a detailed description of the bottleneck, including the problems, causes, impacts, improvement alternatives, and recommendations.

Location 2: I-95 Southbound at the I-90 Interchange in Weston

This bottleneck is located on I-95 southbound at the point where traffic from I-90 and Route 30 merges onto I-95. During peak periods, between 2,300 and 2,900 vehicles per hour exit I-95 southbound to I-90 and Route 30. Farther downstream, between 2,000 and 2,400 vehicles per hour enter I-95 southbound from the same roads. However, the four I-95 southbound lanes in that section are not allocated efficiently to serve demand. As a result, during peak periods, a long traffic queue forms on the I-90 connector ramp heading southbound on I-95.
Section 7 of this memorandum contains a detailed description of the bottleneck, including the problems, causes, impacts, improvement alternatives, and recommendations.

3.3 Rationale for Not Selecting Locations for Study

MPO staff did not select Locations 3, 4, and 5 for study. The reasons are described below.

Location 3: I-93 Southbound at the Lane Drop near Sullivan Square in Somerville/Charlestown

This section of highway is frequently congested because of a lane drop and intensive merging and diverging activities, especially during the AM peak period. During that period, the on-ramp carries between 1,300 and 1,700 vehicles per hour in an auxiliary lane; the off-ramp to Leverett Circle, Exit 26, carries between 1,200 and 1,600 vehicles per hour. ${ }^{5}$ The merging and diverging activities of these vehicles slow down mainline traffic and seriously affect traffic on the upstream section of I-93. The distance between the two ramps is about 2,000 feet long. The reasons for not selecting this location for study include:

- Removing the lane drop would require widening the I-93 bridge over Alfred Lombardi Street to provide a new auxiliary lane for the on-ramp traffic or converting the existing auxiliary lane to an acceleration lane.
- Widening the I-93 Bridge could be expensive.

[^2]- Converting the existing auxiliary lane to an acceleration lane might create a queue backup on the ramp that could affect traffic on Route 38 (Mystic Avenue) and the collector-distributor roads. In addition, there might not be enough space to provide sufficient acceleration distance because of the I93 bridge over Alfred Lombardi Street.

Location 4: Route 2 Concord Rotary in Concord

This rotary, the intersection of Concord Turnpike (Route 2), Commonwealth Avenue, Barretts Mill Road, and Great Road (Route 119), is frequently congested because of high traffic volume and inadequate capacity during peak periods. The rotary is a challenge to navigate during these periods, and drivers often use local streets to avoid congestion. The MassDOT Highway Division is planning to replace the rotary with an overpass for safer and more efficient operation, and to minimize environmental impacts. The Highway Division also is exploring opportunities to improve neighborhood connections, incorporate the Bruce Freeman Rail Trail and wildlife corridors, improve water and air quality, and enhance the area's design aesthetics to the extent possible. Although this site is a major bottleneck, staff did not select this location for study because

- Low-cost solutions at this location likely would not be feasible. MassDOT and MPO staff have already studied the Route 2 Concord Rotary to examine potential short- and long-term improvement alternatives for the rotary. ${ }^{6,7}$
- The project was removed from the funded portion of the MPO's Long Range Transportation Plan in August 2009 and currently is on hold.

Location 5: l-95 Northbound at the Lane Drop at Interchange 37 in Reading, Stoneham, and Wakefield

This section of highway frequently is congested because of a lane drop and intensive merging and diverging activities, especially during the PM peak period, which slows down mainline traffic. During peak hours, the Exit 37 off-ramps carry as many as 3,200 vehicles per hour, and the Exit 37 on-ramps carry as many as 2,300 vehicles per hour. ${ }^{8}$ Adding an auxiliary lane northbound on I-95 would provide more room for the merging and diverging activities and reduce disturbance to mainline traffic. Staff did not select this location for study because an auxiliary lane would need to be extended for a long distance (about three or

[^3]four interchanges downstream) to reduce congestion and the queue, which could be expensive. In addition, the I-93 and I-95 Interchange project in Reading, Stoneham, and Woburn would address this bottleneck; currently this project is on hold.

4 DATA COLLECTION

4.1 Traffic Volume Data

The MassDOT Highway Division's Traffic Data Collection Program conducted automatic traffic recorder (ATR) counts for the ramps and freeways at the locations selected for study. The ATR counts are continuous traffic counts for at least 48 hours that are used to determine the average weekday daily traffic of a highway. For Location 1, MPO staff used ATR counts from the MassDOT Highway Division's traffic count database that were conducted in April 2014 and January 2015. For Location 2, MPO staff used actual ATR counts that were conducted in April 2015 for the four I-95 southbound ramps. The ATR count data are included in Appendix B.

4.2 Crash Data

MPO staff used crash data from January 2010 through December 2012 from the MassDOT's Registry of Motor Vehicles database to evaluate safety for motorists. Crash data are included in Appendix C.

4.3 Speed Data

MPO staff used speed data from spring 2012 and fall 2012 from the MPO's CMP. The CMP maintains average speed data on express-highway systems in the MPO region with use of the INRIX historical traffic speed data archive of real-time traffic.

5 LEVEL OF SERVICE CRITERIA FOR FREEWAY MERGE, DIVERGE, AND BASIC SEGMENTS

The Highway Capacity Manual (HCM) methodology demonstrates driving conditions on freeways in terms of level-of-service (LOS) ratings from A through F. ${ }^{9}$ The LOS criteria characterize freeway performance measures in terms of density (passenger cars per mile per lane, [pc/mi/ln]). Table 1 shows the LOS criteria for basic freeway and ramp merge/diverge and weaving segments. LOS A represents the best operating conditions (unrestricted operations), while LOS F represents the worst operating conditions (queuing on the freeway and/or ramp). LOS A through LOS D represent acceptable operating conditions. LOS E

[^4]represents operating conditions at capacity. LOS F represents failing conditions (demand exceeds capacity).

TABLE 1
Level of Service Criteria for Basic Freeway, Ramp Merge/Diverge, and Weaving Segments

--	Basic Freeway Segment	Ramp Merge/Diverge and Weaving Segments
Level of Service	Density (in passenger cars per mile per lane [pc/mi/ln])	Density (in passenger cars per mile per lane $[\mathrm{pc} / \mathrm{mi} / \mathrm{ln}]$)
A	≤ 11	≤ 10
B	$>11-18$	$>10-20$
C	$>18-26$	$>20-28$
D	$>26-35$	$>28-35$
E	$>35-45$	>35
F	>45, Demand exceeds capacity	Demand exceeds capacity

Source: Highway Capacity Manual 2010.

6 LOCATION 1: I-93 SOUTHBOUND BETWEEN I-95 AND MONTVALE AVENUE IN WOBURN AND STONEHAM

This bottleneck is located on the I-93 southbound barrel between I-95 and Montvale Avenue. The MassDOT Highway Division's District 4 has jurisdiction of this roadway. Figure 1 shows the location of the bottleneck and the ramp configuration near it (all figures are included at the end of the memorandum). This section, approximately 1.2 miles long, experiences intense interruption of traffic flow because of the merging and diverging maneuvers of high-volume traffic entering and exiting the freeway.

6.1 Existing Freeway Characteristics

Basic Freeway Section

The basic freeway section of I-93 southbound has four 12-foot travel lanes, a 12-to-13-foot right shoulder, and an 11-to-12-foot left shoulder. This section carries up to 7,700 vehicles per hour. The posted speed limit is 65 mph on the $\mathrm{I}-93$ southbound mainline. Freeway exit signs are posted at one-mile and half-mile intervals to guide drivers to Montvale Avenue. Rumble strips have been installed on both sides of the southbound barrel to alert drivers and prevent run-off collisions.

Entrance Ramp

An entrance ramp is a one-way roadway that allows traffic to enter a freeway from other crossing highways. Sufficient acceleration distance is needed to allow a vehicle to enter the freeway mainline safely and comfortably; drivers on the
entrance ramp need to be able to see a sufficient distance upstream from the entrance to locate the gaps in the traffic stream within which to merge. The entrance ramp from I-95 northbound to I-93 southbound is a one-lane, one-way roadway. It carries as many as 1,800 vehicles per hour during peak hours. The length of the acceleration lane for traffic entering the section from I-95 northbound is approximately 1,600 feet long, and the posted speed limit on the entrance ramp is 30 mph . Based on highway design and entrance ramp curve design speeds, the length of the acceleration lane meets MassDOT's standards. The MassDOT Highway Division's current Project Development and Design Guide specifies a minimum acceleration lane of 1,230 feet for a freeway facility with a design speed of 70 miles per hour, an entrance ramp curve design speed of 35 mph , and a grade of two percent or less.

Exit Ramp

An exit ramp is a one-way roadway that allows traffic to exit from the freeway and provide access to other crossing highways. Sufficient deceleration distance is needed to allow a vehicle to leave the freeway mainline safely and comfortably. The exit ramp from I-93 southbound to Montvale Avenue is a one-way, one-lane roadway. It carries as many as 1,400 vehicles per hour during peak hours. The length of the deceleration lane for traffic exiting to Montvale Avenue is about 350 feet long, and the posted speed limit on the exit ramp is 30 mph . Based on highway design and exit ramp curve design speeds, the length of the deceleration lane does not meet MassDOT's standards. The MassDOT Highway Division's current Project Development and Design Guide specifies a minimum deceleration length of 490 feet for a freeway facility with a design speed of 70 miles per hour, an exit ramp curve design speed of 35 mph , and a grade of two percent or less.

6.2 Problems

The existing bottleneck creates intense interruption of traffic flow during peak travel periods, felt by virtually all drivers in the section. It reduces travel speeds on the freeway mainline to 25 to 45 mph during the AM peak period (6:00 AM to 10:00 AM). In addition, the bottleneck causes many crashes in this area and results in poor operating LOS, especially at the diverge area connecting the exit ramp to Montvale Avenue.

6.3 Causes

There are two primary contributing factors to this bottleneck: high volume of traffic and a short deceleration lane.

High Volume of Traffic

Figures 2 and 3 show the traffic flows during the AM and PM peak periods. Highvolume traffic from I-95 enters I-93 southbound at the upstream of the section, and high-volume traffic exits to Montvale Avenue at the downstream section during the AM peak period. The merging and diverging maneuvers of the entering and exiting vehicles interrupt traffic flow in this section, resulting in a traffic bottleneck.

Short Deceleration Lane

A short deceleration lane for the high-volume traffic exiting I-93 southbound to Montvale Avenue forces drivers to diverge quickly and does not give them the ample distance needed to allow a vehicle to leave the freeway mainline safely and comfortably. The intense diverging maneuvers slow down traffic, causing recurring congestion upstream from the diverge location.

6.4 Impacts

Crashes

A summary of the crashes in this segment is presented in Table 2. There were 61 crashes in this area between 2010 and 2012 (Appendix C). Figure 4 shows the location and number of crashes. The majority (52 crashes) occurred in the vicinity of the short deceleration lane to Montvale Avenue.

TABLE 2
Crash Summary (2010-2012)
I-93 Southbound Segment between I-95 and Montvale Avenue

Crash Variable	Number of Crashes
Crash severity	-
Fatal injury	1
Nonfatal injury	20
Property damage only	39
Not reported/unknown	1
Manner of collision	-
Angle	6
Rear-end	37
Sideswipe, same direction	9
Single vehicle crash	9
Road surface conditions	-
Dry	49
Wet	8
Snow	3

Other	1
Ambient light conditions	
Daylight	29
Dark: lighted roadway	28
Dark: nonlighted roadway	2
Dawn	1
Dusk	1
Weather conditions	
Clear	35
Cloudy	6
Rain	5
Snow	3
Not reported or unknown	12
Travel period	
Peak	33
Off-peak	28
Total crashes	61
Three-year average (rounded)	20
Segment crash rate	0.57
MassDOT Highway Division average crash rate for urban interstate roadways	0.54
The AM peak period is 6:00 AM to 10:00 AM, and the PM peak period is 3:00 PM to 7:00 PM. Source: Central Transportation Planning Staff.	
The segment crash rate of 0.57 crashes per million vehicle-miles traveled (MVMT) was greater than the MassDOT Highway Division average crash rate for urban interstate highways in Massachusetts, which is 0.54 MVMT . Below is a summary of the crashes in this segment. - Thirty-four percent of the crashes resulted in injury, including one fatal injury. - Sixty-one percent of the crashes were rear-end collisions. - Fifty-four percent of the crashes occurred during the peak travel period. - Fifty-two percent of the crashes occurred outside daylight conditions. - Eighty percent of the crashes occurred under dry roadway conditions.	
Travel Speed	
Figure 5 is a congestion scan that shows the average travel speeds on I-93 southbound at the bottleneck location between I-95 and Montvale Avenue. The bottleneck reduces travel speed to 25 to 45 mph . Many motorists on I-93 southbound move out of the rightmost lane to avoid the high volume of merging and diverging traffic entering and exiting the freeway at this location.	

Level of Service

MPO staff conducted traffic operations analyses consistent with HCM methodologies. Using the data collected, MPO staff built traffic analysis networks for the AM and PM peak hours with the 2010 Highway Capacity Software (HCS) to assess the capacity and quality of traffic flow at the bottleneck area (included in Appendix D). ${ }^{10}$ Table 3 presents the results of the LOS analyses for the existing conditions. The analyses indicate that the merge area upstream of the section operates well at LOS D during the AM and PM peak hours; however, the Exit 36 diverge area downstream of the section near Montvale Avenue operates at LOS E during the AM and PM peak hours (highlighted in yellow color in Table $3)$.

TABLE 3
Freeway Segment Analysis: Existing Conditions I-93 Southbound Segment between I-95 and Montvale Avenue

Freeway Component	$\begin{array}{r} \text { AM } \\ \text { Density } \\ \text { (pc/mi/ln) } \end{array}$	AM Speed (mph)	$\begin{array}{r} \text { AM } \\ \text { LOS* }^{*} \end{array}$	$\begin{array}{r} \text { PM } \\ \text { Density } \\ \text { (pc/mi/ln) } \end{array}$	PM Speed (mph)	$\begin{array}{r} \text { PM } \\ \text { LOS* }^{*} \\ \hline \end{array}$
2015 Existing Conditions	-	-	-	-	-	-
Merge area: ramp from I-95 northbound	27.3	54.3	C	30.0	51.9	D
Basic freeway segment: between the ramps	32.7	60.4	D	36.0	58.2	E
Diverge area: Exit 36, Montvale Avenue	36.2	50.4	E	40.4	51.2	E

*LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity). $\mathrm{mph}=$ miles per hour. $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}=$ passenger cars per mile per lane
Source: Central Transportation Planning Staff.

6.5 Improvement Alternatives

MPO staff developed two improvement alternatives to address the bottleneck:

- Alternative 1: Lengthen the deceleration lane at the Exit 36 diverge area
- Alternative 2: Create an auxiliary lane for merging and diverging traffic The alternatives were analyzed using projected year 2025 traffic volumes. MPO staff estimated a five percent total background growth from 2015 to 2025.

Alternative 1: Lengthen the Deceleration Lane at the Exit 36 Diverge Area

The existing deceleration lane is short; it does not meet MassDOT's standards and contributes to poor traffic operations and a high number of crashes. MPO staff recommends lengthening the deceleration lane at Exit 36.

[^5]Figure 6 shows the improvements recommended in Alternative 1.

- Use a portion of the existing right shoulder to lengthen the deceleration lane from 350 feet to 1200 feet. The improvement would upgrade the deceleration lane to meet MassDOT's standards and provide drivers with ample distance to exit the freeway to Montvale Avenue safely and comfortably.
- Relocate signs or install new guide signs to direct drivers to Montvale Avenue.
- Modify pavement markings to delineate the deceleration lane from travel lanes.

Alternative 2: Create an Auxiliary Lane for Merging and Diverging Traffic

An auxiliary lane is defined as the portion of the roadway adjoining the traveled freeway for speed change, merging, diverging, weaving, and other purposes supplementary to through-traffic movement. Alternative 2 would transform the right shoulder from the entrance ramp to the exit ramp into an auxiliary lane for merging or diverging traffic maneuvers and would provide sufficient distance to accommodate speed changes and weaving maneuvers. The auxiliary lane would also upgrade the short deceleration lane to meet MassDOT's standards.

Figure 7 (Sections 1, 2, and 3) shows the improvements recommended in Alternative 2.

- Use the existing right shoulder to create an auxiliary lane.
- Create emergency pullover or stopping areas on the southbound barrel to address incidents and safety concerns related to the use of the shoulder as a travel lane.
- Relocate existing guide signs or install new guide signs and pavement markings to direct drivers to merge onto the mainline or diverge to exit onto Montvale Avenue.
- Modify pavement markings to delineate the auxiliary lane from the mainline travel lanes.

6.6 Effectiveness and Cost of the Improvements

Alternatives 1 and 2 were analyzed as freeway merge/diverge and basic freeway segments. Table 4 presents the results of the 2025 future LOS analyses for Alternatives 1 and 2. Alternative 1 results in LOS E at the mainline basic freeway segment (highlighted in yellow in Table 4). Analysis indicates that Alternative 2 would improve traffic operations at the bottleneck to LOS D or better during peak periods (compared to LOS E with no action). Alternative 2 is expected to
increase AM peak period average travel speed to 50 to 55 mph (compared to 25 to 45 mph with no action) and reduce crashes by as much as 30 percent. ${ }^{11}$

Improvement Alternative 1 is estimated to cost between \$200,000 and \$250,000 to construct. Improvement Alternative 2 is estimated to cost between $\$ 500,000$ and $\$ 750,000$ to construct.

TABLE 4
Freeway Segment Analysis: Improvement Alternatives I-93 Southbound Segment between I-95 and Montvale Avenue

Freeway Component	AM Density (pc/mi/ln)	AM Speed (mph)	$\begin{array}{r} \text { AM } \\ \text { LOS* }^{2} \end{array}$	$\begin{array}{r} \text { PM } \\ \text { Density } \\ \text { (pc/mi/ln) } \end{array}$		$\begin{array}{r} \text { PM } \\ \text { LOS* }^{2} \end{array}$
Alternative 1: 2025 Future						
Conditions	-	-	-	-		
Merge area: ramp from l-95 northbound	17.4	58.2	B	30.8	51.0	D
Basic freeway segment: between the ramps	35.3	58.6	E	39.5	55.8	E
Diverge area: Exit 36 Montvale Avenue	27.7	50.1	C	31.0	51.2	D
Alternative 2: 2025 Future						
Conditions	-	-	-	-	-	-
Merge area:						
ramp from l-95 northbound	17.4	58.2	B	30.8	51.0	D
Basic freeway segment: between the ramps	24.9	64.4	C	26.9	63.6	D
Diverge area:						
Exit 36, Montvale Avenue	27.7	50.1	C	30.9	51.2	D

*LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity). $\mathrm{mph}=$ miles per hour. $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}=$ passenger cars per mile per lane
Source: Central Transportation Planning Staff.

6.7 Recommendations

MPO staff recommends Alternative 2 because it improves operational efficiency and safety by removing entering and exiting traffic from the mainline travel lanes to the auxiliary lane. Alternative 1 forces traffic to merge onto the mainline as well as diverge from the mainline to exit the freeway, which interrupts traffic flow.

There is space within the existing right-of-way to construct Alternative 2. The right shoulder appears to have a consistent 12-to-13-foot space, which is wide enough to accommodate a full-travel lane (auxiliary lane). In addition, there is

[^6]space to construct an emergency pullover/stopping area, which would not be expensive to build. Alternative 2 would mirror the recently constructed northbound auxiliary lane and emergency pullover area.

Alternative 2 would require a Design Exception Report (DER) for the less-thanminimal right shoulder (i.e., a 12 -foot auxiliary lane and a 2 -foot offset [no shoulder] to the guardrail). The DER could be easily produced by MassDOT Highway District 4, similar to the DER submitted and approved for the I-93 northbound auxiliary lane.

7 LOCATION 2: I-95 SOUTHBOUND AT THE I-90 INTERCHANGE IN WESTON

There are two bottleneck locations on the I-95 southbound barrel at the I-90 Interchange in Weston. The interchange and roadways are under the jurisdiction of MassDOT Highway Division's District 6 . Figure 8 shows the locations of the bottlenecks and the ramp configurations near them. The affected section, about one mile long, extends from Exit 25 (I-90) to the Recreation Road overpass.

7.1 Existing Freeway Characteristics

Basic Freeway Section

The basic freeway section has four 12-foot travel lanes, a 2-to-3-foot right shoulder, and an 11-to-12-foot left shoulder. During peak hours, I-95 southbound carries as many as 7,500 vehicles per hour upstream of the section under study. ${ }^{12}$ The posted speed limit is 55 mph . Exit signs are posted at one-mile, one-half-mile, and one-quarter-mile intervals to guide motorists exiting the freeway to I-90 and Route 30. Rumble strips have been installed on both sides of the southbound barrel to alert drivers and prevent run-off collisions. In June 2015, MassDOT Highway District 6 implemented signs and pavement markings in the study area.

Although, the posted speed limit on I-95 southbound is 55 mph , the 85thpercentile speed on the freeway is usually around 70 mph . Based on the 85thpercentile speed, MPO staff used a design speed of 70 mph to evaluate the minimum length of the acceleration and deceleration lanes described below.

Exit Ramps

Exit ramps are one-way roadways that allow traffic to exit from the freeway and provide access to other crossing highways. Sufficient deceleration distance is needed to allow a vehicle to leave the freeway mainline safely and comfortably.

[^7]At Exit 25, the exit ramp to I-90 is a one-way, one-lane roadway on the freeway that widens to two lanes on the connecting ramp roadway. It carries as many as 2,300 vehicles per hour during peak hours. The length of the deceleration lane is about 350 feet long. Based on the highway design and exit ramp curve design speeds, the length of the deceleration lane does not meet MassDOT's standards. The posted speed limit on the exit ramp curve to l-90 is 25 mph .

At Exit 24, the exit ramp to Route 30 is a one-way, one-lane roadway that carries as many as 900 vehicles per hour during peak hours. The advisory speed limit on the exit ramp curve to Route 30 is 25 mph . The length of the deceleration lane for the traffic exiting to Route 30 is about 500 feet long. Based on the highway design and exit ramp curve design speeds, the length of the deceleration lane meets MassDOT's standards. However, the sharp hairpin curve would require slower speeds and enhanced signs to warn and guide drivers through the curve. The MassDOT Highway Division's current Project Development and Design Guide specifies a minimum deceleration length of 520 feet for a freeway facility with a design speed of 70 mph , an exit ramp curve design speed of 30 mph , and a grade of two percent or less.

Entrance Ramps

Entrance ramps are one-way roadways that allow traffic to enter a freeway from other crossing highways. Sufficient acceleration distance is needed to allow a vehicle to enter the freeway mainline safely and comfortably; drivers on the entrance ramp need to be able to see a sufficient distance upstream from the entrance to locate the gaps in the traffic stream within which to merge. The entrance ramp from I-90 to I-95 southbound carries up to 2,000 vehicles per hour during peak periods that merge onto l-95 southbound at the bottleneck. The length of the existing acceleration lane on I-95 southbound for the traffic entering the freeway from I-90 is approximately 450 feet long. Based on the highway design and entrance ramp curve design speeds, the length of the acceleration lanes does not meet MassDOT's standards.

The entrance ramp from Route 30 to I-95 southbound carries up to 600 vehicles per hour during peak periods. The length of the existing acceleration lane on I-95 southbound for the traffic entering the freeway from Route 30 is approximately 400 feet long. Based on the highway design and entrance ramp curve design speeds, the length of the acceleration lanes does not meet MassDOT's standards.

Interstate 95, also called Route 128, was constructed in the 1950s to design standards of the time. It has been reconstructed along various portions over time to address some design deficiencies associated with updated standards. The

MassDOT Highway Division's current Project Development and Design Guide specifies a minimum acceleration length of 1,230 feet for a freeway facility with a design speed of 70 miles per hour, an entrance ramp curve design speed of 35 mph , and a grade of two percent or less. Because of space limitations (i.e., short spacing between the ramps, bridges, and overhead roadways and railroads), there is no room at the interchange to lengthen both acceleration lanes.

7.2 Problems

The existing bottlenecks, along with substandard acceleration and deceleration lanes, result in a long traffic queue on the I-90 connector during AM and PM peak periods when high volumes of traffic merge onto l-95 southbound. This queue affects I-90 traffic on the connector heading to I-95 northbound as well.

7.3 Causes

MPO staff identified four factors that contribute to form the bottlenecks:

- High-volume traffic from I-90 that merges onto I-95 southbound
- Short acceleration lane for the I-90 traffic merging onto I-95 southbound
- Short deceleration lane for the I-95 traffic exiting to I-90
- Lane imbalance in the section

High-Volume Traffic

Figures 9 and 10 show the traffic flows during the AM and PM peak periods. As many as 2,000 vehicles per hour enter I-95 southbound from I-90 during the peak period. These entry volumes are quite high for a single-lane entrance ramp given the high volume of traffic on I-95 southbound with which it has to merge. The intense merging maneuvers interrupt traffic for all drivers and cause a bottleneck. Many motorists on I-95 southbound move out of the rightmost lane to avoid the merge with high-volume traffic entering the freeway.

Short Acceleration Lane

The acceleration lane for the high-volume traffic merging onto l-95 southbound from I-90 is inadequate and does not meet MassDOT's standards. It forces drivers to merge quickly, causing intense merging and queuing on the I-90 entrance ramp. Presently, there is no room to lengthen the acceleration lane because of the bridges downstream of the section. In addition, the problem of forced merging at this location is exacerbated by the close proximity of the Route 30 and I-90 entrance ramps.

Short Deceleration Lane

The length of the deceleration lane at Exit 25 for the high-volume traffic exiting to I-90 is inadequate; it forces drivers to diverge quickly and does not give them
ample distance needed to allow a vehicle to leave the freeway mainline safely and comfortably. The intense diverge and lane-change maneuvers cause traffic interruption and wide variability in traffic speeds, resulting in many crashes.

Lane Imbalance

Travel lanes in the study area are not in balance with the volume of traffic entering and exiting this section. At Exit 25 and Exit 24, approximately 2,300 to 2,900 vehicles per hour exit the freeway to I-90 and Route 30 . The exit traffic flow rate exceeds the capacity of a full travel lane. Downstream of Exit 24, up to 2,400 vehicles per hour enter the freeway from the same roads. Likewise, the entry traffic flow rate is equivalent to the capacity of the full travel lane. Therefore, maintaining four continuous lanes in the study area creates a lane imbalance, which also results in intense merging and bottlenecks at the diverge and merge points.

7.4 Impacts

Crashes

Figure 11 shows the location and number of crashes in the study area. A summary of the crashes is also presented in Table 5. There were 77 crashes in this section between 2010 and 2012 (Appendix C). The majority, 53 of the crashes, occurred in the vicinity of the diverge area at Exit 25 . MPO staff believe that many of the rear-end and sideswipe crashes were caused by drivers slowing down to exit the freeway to I-90 or by drivers changing lanes. It appears that the short deceleration lane at this location may be contributing to poor traffic operations and the high number of crashes. There were only five recorded crashes near the bottleneck location where traffic from I-90 merges onto I-95 southbound.

The average crash rate of the freeway segment was 1.06 crashes per MVMT, which was significantly higher than the average of 0.54 crashes per MVMT for urban interstate highways in Massachusetts. Below is a summary of the crashes in this segment.

- Thirty-nine percent of the crashes resulted in injury.
- Sixty-eight percent of the crashes were rear-end collisions.
- Eighty-three percent of the crashes occurred under dry roadway conditions.
- Thirty percent of the crashes occurred outside daylight conditions.
- Sixty-six percent of the crashes occurred at peak travel periods.

TABLE 5
Crash Summary (2010-2012) I-95 Southbound Segment between Exit 25 and Recreation Road

Crash Variable	Number of Crashes
Crash severity	-
Fatal injury	0
Nonfatal injury	30
Property damage only	40
Not reported/unknown	7
Manner of collision	-
Angle	4
Rear-end	52
Sideswipe, same direction	6
Single vehicle crash	15
Road Surface conditions	-
Dry	64
Wet	11
Snow	1
Other	1
Ambient light conditions	-
Daylight	54
Dark: lighted roadway	5
Dark: nonlighted roadway	10
Dawn	2
Dusk	6
Weather conditions	-
Clear	50
Cloudy	8
Rain	8
Snow	1
Fog/smog/smoke	1
Not reported/unknown	9
Travel period	-
Peak	51
Off-peak	26
Total crashes	77
Three-year average (rounded)	26
Segment crash rate	1.06
MassDOT Highway Division average crash rate for urban interstate roadways	0.54

* The AM peak period is 6:00 AM to 10:00 AM, and the PM peak period is 3:00 PM to 7:00 PM. Source: Central Transportation Planning Staff.

Travel Speed

The bottleneck affects travel on I-95 southbound and on the entrance ramp from $\mathrm{I}-90$. Figure 12 is a congestion scan that shows the average travel speeds on I95 southbound in the study area. The bottleneck reduces travel speed to 35 to 45 mph . A traffic queue resulting from the bottleneck forms on the I-90 entrance ramp, which extends onto the I-90 connector as well as onto I-95 southbound.

Level of Service

Using the data collected, MPO staff analyzed the AM and PM peak hours with the 2010 HCS to assess the capacity and quality of traffic flow at the bottleneck area (included in Appendix D). ${ }^{13}$ Table 6 presents the results of the existing freeway merge/diverge analyses. Analyses indicate that traffic entering l-95 southbound from I-90 operates at LOS E during peak hours due to intense merging. The merging and diverging activities in the section interrupt and slow down traffic on the mainline and entrance ramps. In addition, analyses show that the traffic exiting from the freeway to l-90 upstream of the section operates well at LOS F during peak hours.

TABLE 6
Freeway Segment Analysis: Existing Conditions I-95 Southbound Segment between Exit 25 and Recreation Road

Freeway	AM Density (pc/mi/ln)	AM Speed (mph)	AM LOS* *	PM Density (pc/mi/ln)	PM Speed $(\mathbf{m p h})$	PM LOS* *
2015 Existing Conditions Diverge segment:	-	-	-	-	-	-
Exit 25, I-90	39.5	45.5	F	43.7	45.0	F
Diverge segment:	27.1	46.6	C	24.5	47.0	C
Exit 24, Route 30 Merge segment:	12.6	50.9	B	23.4	50.4	C
Entrance ramp from Route 30 Merge segment: Entrance ramp from I-90	37.1	46.5	E	35.9	47.2	E

*LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity).
$\mathrm{mph}=$ miles per hour. $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}=$ passenger cars per mile per lane
Source: Central Transportation Planning Staff.

[^8]
7.5 Improvement Alternatives

MPO staff developed the following improvements to increase safety and address the bottleneck:

- Convert rightmost lane at Exit 25 to an "Exit Only" lane.
- Consider the possibility of using a portion of the shoulder on I-95 southbound at Exit 25 to create a two-lane exit ramp (i.e., two lanes on the freeway diverge area to connect to the existing two-lane connector). If a full two-lane exit ramp is not feasible, an alternative would be a shared through and exit lane in addition to the Exit Only lane.
- Restripe lanes to serve traffic demand better at the bottleneck.
- Installation of a highly visible curve sign or chevron warning signs on the exit ramp to Route 30.

Convert Rightmost Lane at Exit 25 to an "Exit Only" Lane

The objectives of the improvement at this location are to reduce traffic interruption and increase safety at the Exit 25 diverge area. The conversion would extend the deceleration lane to meet MassDOT's standards and provide drivers with ample distance to exit the freeway to I-90 safely and comfortably. In addition, it would improve traffic operation at the diverge area and reduce the high number of crashes at this location.

MPO staff suggests that the MassDOT Highway Division looks into the possibility of using a section of the right shoulder on I-95 southbound at Exit 25 to create a full two-lane exit-ramp (i.e., two lanes on the freeway diverge area to connect to the existing two-lane exit ramp connector as illustrated in Figure 13 [Section 1]). A full two-lane exit ramp would improve safety and operations significantly. This improvement would require relocation of signs or installation of new guide signs to direct drivers to I-90 and modifying of pavement markings to delineate the "Exit Only" lane from the mainline travel lanes.

It is possible that a full two-lane exit is not feasible because of the following reasons:

- The need for additional overhead signage (including placement of brandnew overhead full-span sign support structures)
- The desire to discourage drivers from making the dangerous but oftenobserved move from the I-95 southbound center lanes to the left lane of the exit ramp by removing the second lane on the exit ramp
- Removal of the shoulder may raise safety concerns for maintenance operations using the access drive from River Road
An alternative to resolve these issues would be a shared through and exit lane in addition to the Exit Only lane as shown in Figure 14.

Restripe Lanes to Serve Traffic Demand Better at the Bottleneck (I-95 Southbound Subtract-a-Lane at the l-90 Interchange)

The objective of this improvement is to restripe the southbound lanes at the bottleneck locations to serve traffic demand better. Figure 13 (Sections 1 and 2) shows the recommended improvements. After Exit 25, I-95 southbound would have three travel lanes instead of the current four lanes. The high-volume traffic entering I-95 southbound from I-90 would pick up the extra lane to head southbound on I-95. The modifications would provide the I-90 traffic merging onto I-95 southbound with an auxiliary lane, which would also address the issue of the inadequate acceleration lane at the merge area. Because of the high volume of traffic that exits the freeway at Exits 25 and 24 to I-90 and Route 30, respectively, subtracting a lane would not affect travel on I-95 southbound.

In addition to the new auxiliary lane for traffic from I-90 to merge onto I-95 southbound, MPO staff also proposes the following improvements:

- Relocate existing signs or install new guide signs to direct drivers into appropriate lanes to exit the freeways or proceed through the section.
- Modify pavement markings to define the acceleration, deceleration, and auxiliary lanes from the mainline travel lanes.

7.6 Effectiveness and Cost of the Improvements

The improvements were analyzed as freeway merge/diverge and basic freeway segments. Ramp LOS analysis for 2025, presented in Table 7 indicates that the improvements would improve traffic operations at the bottleneck.

- At the location where traffic from I-90 merges onto l-95 southbound, the LOS would improve to LOS D from LOS E during PM peak hours. During the AM peak hours, there is slightly improved traffic operation, but it is not enough to change the LOS from LOS E.
- At Exit 25, where traffic exits to I-90, the LOS would improve to LOS B from LOS F during the AM and PM peak periods.
- The improvements are expected to reduce crashes by as much as 30 percent. ${ }^{14}$

The improvements are estimated to cost approximately $\$ 50,000$ to construct.

[^9]TABLE 7
Freeway Segment Analysis: Improvement Alternatives I-95 Southbound Segment between Exit 25 and Recreation Road

Freeway Component		AM Speed (mph)	$\begin{gathered} \text { AM } \\ \text { LOS* }^{*} \end{gathered}$	PM Density (pc/mi/ln)		$\begin{array}{r} \text { PM } \\ \text { LOS* }^{*} \end{array}$
2025 With Improvements: TwoLane Exit and Restripe Lanes to						
Serve Traffic Demand Better	-	-	-	-	-	-
Diverge segment:						
Exit 25, I-90	12.2	45.5	B	15.5	45.7	B
Diverge segment:						
Exit 24, Route 30	33.0	48.3	D	32.1	47.0	D
Merge segment:						
Entrance ramp from Route 30	30.6	49.2	D	32.1	48.8	D
Merge segment:						
Entrance ramp from I-90	35.9	54.4	E	34.5	54.8	D

*LOS A through LOS D represent acceptable operating conditions; LOS E represents operating conditions at capacity; and LOS F represents failing conditions (demand exceeds capacity). $\mathrm{mph}=$ miles per hour. $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}=$ passenger cars per mile per lane
Source: Central Transportation Planning Staff.

7.7 Recommendations

MPO staff recommend two improvements for the I-90 interchange: designating an "Exit Only" lane at Exit 25, and subtracting a lane between Exit 25 and the entrance ramp from I-90. The proposed improvements would require approval from FHWA. MassDOT Highway District 4 office could easily produce the necessary documentation, which would be similar to the documentation that was submitted and approved for the I-95 northbound subtract-a-lane project at the I-90 interchange.

The I-95 southbound subtract-a-lane improvement project at the I-90 interchange is expected to benefit from the I-95 Add-a-Lane project, which would remove a downstream bottleneck (lane drop) on I-95 southbound just north of Route 9 in Wellesley. The I-95 Add-a-Lane project includes bridge and roadway reconstruction, namely the installation of an additional 12-foot travel lane and 10foot shoulder in each direction; this project is scheduled to be completed in spring 2019. Therefore, executing or planning the above-described improvements, which would benefit from the l-95 Add-a-Lane project, is very important.

Currently, as a result of bridge maintenance work on I-95 southbound in the vicinity of the study area, the MassDOT Highway Division has implemented some form of these improvements as a traffic management plan for the work zone.

8 CONCLUSION AND NEXT STEPS

MPO staff, working in conjunction with the MassDOT Highway staff, identified, developed, and evaluated improvements for two bottleneck locations in the MPO region. The study provides the MassDOT Highway Division with an opportunity to begin identifying the needs at the two bottleneck locations and to start planning design and engineering efforts. If implemented, these low-cost, short-term improvements would increase traffic safety, make traffic operations more efficient, and reduce congestion at the bottlenecks. The study aligns with the MPO goals of reducing congestion and increasing safety on the region's highway system.

The MassDOT Highway Division is responsible for implementing the improvements recommended for the two bottleneck locations. The next steps are for the MassDOT Highway Division to examine the design of the improvement alternatives and work with the FHWA to advance the projects. Transportation decision-making is complex and is influenced by factors such as financial limitations and agency programmatic commitments. Project development is the process that takes a transportation improvement plan from concept to construction. Appendix E includes an overview of the MassDOT Highway Division's project development process.

SA/sa

I-93 Southbound Segment: Between I-95 and Montvale Avenue Study Area Map
$\ll z$

Low-Cost Improvements to Express-Highway
Bottleneck Locations

I-93 Southbound

Average Travel Speed (Miles Per Hour)
$1-24 \mathrm{mph} \square 25-34 \mathrm{mph} \square 35-44 \mathrm{mph} \square 45-49 \mathrm{mph} \square 50-54 \mathrm{mph} \square 55+\mathrm{mph}$
\qquad Bottleneck Locations

I-95 Southbound Segment: Between Exit 25 and Recreation Road Study Area Map

Low-Cost Improvements to Express-Highway Bottleneck Locations

Low-Cost Improvements to Express-Highway Bottleneck Locations

I-95 Southbound Segment: Between Exit 25 and Recreation Road Congestion Scan Bottleneck Locations

Low-Cost Improvements to Express-Highway Bottleneck Locations

Low-Cost Improvements to Express-Highway Bottleneck Locations

APPENDIX A

1. Review Comments

2. Selection Process

1. Review Comments

Seth Asante

From:	Raphael, Connie (DOT)
Sent:	Wednesday, November 04, 2015 11:11 AM
To:	Seth Asante
Subject:	RE: Low-Cost Improvements to Express-Highway Bottleneck Locations

Hi Seth,

The District has reviewed the revised memo. Overall you put together a good explanation and plan for moving forward. Here are some comments.

Location 1: I-93 SB between I-95 and Montvale Ave appears to be the only one that could be implemented short-term, low-cost. Alternative 2, providing an auxiliary lane for the entire length between interchanges, is the better solution. The shoulder area appears to be wide enough to accommodate full-time travel and the emergency turnout would not be overly expensive to build. It would also match up well with the auxiliary lane on I-93 NB between the same interchanges. This solution would mirror the recently constructed northbound auxiliary lane and emergency pull off. The Design Exception Report required for the less than minimum right shoulder could be easily produced as it is similar to the DER submitted and approved for the northbound auxiliary lane.

Thanks Seth

Connie Raphael
District Four Planning Coordinator
MassDOT - Highway Division
519 Appleton Street
Arlington, MA 02476
781-641-8468

From: Seth Asante [mailto:sasante@ctps.org]
Sent: Wednesday, October 28, 2015 11:17 AM
To: Raphael, Connie (DOT)
Subject: Low-Cost Improvements to Express-Highway Bottleneck Locations

Hi Connie,

The attachment is a revised memo with Figures 2 and 9 legends corrected to AM hours.

Thanks,
Seth

Seth A. Asante | Chief Transportation Planner
CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org
www.ctps.org/bostonmpo

From:
Sent:
To:
Cc:
Subject:
Attachments:
Lipton, Amitai (DOT)
Thursday, November 05, 2015 12:25 PM
Seth Asante (sasante@ctps.org)
Boudreau, Neil (DOT); Kulen, Raj (DOT); Pervez, Hameed (DOT)
RE: Low-Cost Improvements to Express-Highway Bottleneck Locations
20150114 Memo Heller to Leavenworth w-appendices.pdf; 20151007 Memo Heller to
Leavenworth - scanned signed by DHD.pdf

Hi Seth,

This is a very thorough analysis of the bottleneck at I-95 SB at I-90 in Weston. I'd like to second Raj's suggestion that it may be worthwhile to send your memo to FHWA ASAP (in draft version), as they are in the middle of evaluating our request to make the modifications permanent.

I do have a few minor notes/suggestions for your consideration:
Please note District 6 implemented the sign and pavement marking modifications in June 2015. Were the field observations and traffic volume measurements conducted before or after the modifications were implemented? In Table 5 (page 18), the existing conditions are labeled as "2015", and I was curious if these were counts actually conducted in 2015, or if they were older counts with a growth rate applied?

There seems to be a little inconsistency regarding speeds and terminology in certain parts of pages 14-15. The existing geometry was evaluated in reference to either a 65 mph (exit ramp to Route 30) or 70 mph (entrance ramps) design speed on I-95. While the posted speed limit on I-95 is 55 mph , and the original speed regulation for this roadway was 60 mph , the 85 th-percentile speeds are usually around $70-72 \mathrm{mph}$. Do you know why design speeds of $65-70 \mathrm{mph}$ were chosen for this report?

On the exit ramp to Route 30, the sign is actually an "advisory speed," not a "speed limit." Given how sharp the hairpin curve is, an even lower speed of 15 or 20 mph may be more appropriate than the posted " 25 mph ". Perhaps we can install a few supplemental high-visibility curve or chevron warning signs at some point.

On page 14 , where the exit ramp from I-95 SB to I-90 is discussed, I feel the running speed on the ramp is fairly close to that of the I-95 mainline, and the horizontal curve has a fairly large radius at the exit gore, so most likely very little deceleration distance is needed.

On page 16, in the Lane Imbalance section, I would note that the entering and exiting volumes ($2300-2900 \mathrm{vph}$) actually exceed the capacity of a full travel lane, making the imbalance even more severe.

That brings me to page 19 and a discussion of the exit to l-90, whether it should be a two-lane ramp vs. a one-lane ramp. We did discuss the pros and cons of each alternative, and we ended up deciding on a one-lane ramp. Some of the reasons we chose not to pursue this alternative were:

- The need for additional overhead signage (including replacement of brand-new overhead full-span sign support structures);
- Desire to discourage drivers from making the dangerous but oft-observed move from the I-95 SB center lanes to the left lane of the exit ramp by removing the second lane on the exit ramp; and
- Removal of shoulder raised safety concerns for maintenance operations using access drive from River Road (seen on Figure 13 Section 1 at the start of the 5th lane).

Costs: I'm still waiting to see the final invoices for the work we did, but my ballpark estimate for the signage (overhead and ground-mounted) is $\$ 10-15,000$ and for the pavement markings it's $\$ 3-5,000$. We still need to install final markings, reset 2 signs on permanent posts, and re-install pavement markers and rumble strips, but I think a ballpark estimate of $\$ 25-50,000$ for all the work is reasonable.

I think Figure 2 also has AM/PM swapped like Figure 9 did.
As we discussed on Wednesday, I am attaching for your information the memos that District 6 prepared for this project. The first memo was sent to FHWA on $1 / 22 / 2015$ and approved by them on $2 / 13 / 2015$. The second memo, requesting permanent approval for the modifications, was signed by District 6 DHD on 10/7/2015 for transmission to the Chief's office and then FHWA. Please consider the second memo a "draft" until we receive confirmation that it's been approved.

Thank you very much, I look forward to seeing the final report!
Amitai

From: Kulen, Raj (DOT)
Sent: Tuesday, October 27, 2015 12:16
To: Seth Asante (sasante@ctps.org)
Cc: Boudreau, Neil (DOT); Lipton, Amitai (DOT); hameed.pervez@state.ma.us
Subject: FW: Low-Cost Improvements to Express-Highway Bottleneck Locations
Hi Seth,
This is intersecting. We have already implemented the I-93-SB lane configuration this summer as part of bridge deck work as a test and collected travel time data, now we are waiting for FHWA final approval for permanent marking.

Neil, this is good if you want to send this to FHWA as well.

Raj

From: Seth Asante [mailto:sasante@ctps.org]
Sent: Tuesday, October 27, 2015 11:29 AM
To: Kulen, Raj (DOT)
Subject: Low-Cost Improvements to Express-Highway Bottleneck Locations
Hi Raj,
The attached technical memorandum—Low-Cost Improvements to Express-Highway Bottleneck Locations is available for review.

MPO staff selected two locations for this study:

Location 1: I-93 southbound between I-95 and Montvale Avenue in Woburn and Stoneham

Location 2: I-95 southbound at the I-90 Interchange in Weston
The result of the study for Location 2, which is in MassDOT Highway Division's District 6, is presented in Section 7 of the memorandum.

Please review the attached documents and provide any comments or questions you may have by November 10, 2015.

Thank you,
Seth

Seth A. Asante | Chief Transportation Planner
CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org
www.ctps.org/bostonmpo

Seth Asante

From:	Patel, Hasmukh (DOT)
Sent:	Friday, October 30, 2015 4:17 PM
To:	Seth Asante (sasante@ctps.org)
Cc:	Wood, Stanley (DOT); Jasmin, Matthew (DOT)
Subject:	FW: Low-Cost Improvements to Express-Highway Bottleneck Locations Study
Attachments:	2015-09-15 Low-Cost Bottlenecks MEM SA 1.pdf; Appendix A-E.pdf

Hi Seth,

I have reviewed the draft document for the subject study and have following comments.

I concur with the selection of following two locations for the study.
Location 1: I-93 Southbound between I-95 \& Montvale Ave in Stoneham \& Woburn
Location 3: I-95 Southbound at I-90 Interchange in Weston

Location 1: Location 1: I-93 Southbound between I-95 \& Montvale Ave in Stoneham \& Woburn

- Preferred Alternative 2 - Create Auxiliary Lane for Merging \& Diverging Traffic

This alternative would require roadway widening. Existing right shoulder is $10 \mathrm{ft}+-$. Auxiliary lane would require
12^{\prime} wide lane and at least 6^{\prime} shoulder. Anything less than 6^{\prime} wide shoulder will require design exception approval. Also, if we go with 12^{\prime} wide auxiliary lane, and 2' offset (no shoulder) to guard rail, it will require design exception approval. It will also require emergency pool over area.

- Cost of $\$ 200,000-\$ 300,000$ seems low. Consider $\$ 500,000$

Location 3: I-95 Southbound at I-90 Interchange in Weston

- Concur with the improvements suggested at this interchange. No additional comments.

Hardy

From: Seth Asante [mailto:sasante@ctps.org]
Sent: Tuesday, September 15, 2015 12:41 PM
To: Patel, Hasmukh (DOT)
Subject: Low-Cost Improvements to Express-Highway Bottleneck Locations Study
Hello Hardy,
As we discussed in our recent telephone conversation, I have attached a draft document of the Boston Region MPO's Low-Cost Improvements to Express-Highway Bottleneck Locations study for review. The document has not been reviewed by the Highway Districts yet.
Please review and comment-I will address your comments before I forward it to Districts 4 and 6 for further review.
I will appreciate it if you can give me comments by Tuesday September 29, 2015.

Thanks,
Seth

Seth A. Asante | Chief Transportation Planner CENTRAL TRANSPORTATION PLANNING STAFF
857.702.3644 | sasante@ctps.org
www.ctps.org/bostonmpo

2. Selection Process

TECHNICAL MEMORANDUM

DATE: April 2, 2015
TO: Boston Region Metropolitan Planning Organization (MPO) FROM: Seth Asante, MPO Staff

RE: Low-Cost Improvements to Express-Highway Bottleneck Locations Selection of Study Locations

1 BACKGROUND

This memorandum presents the results of Task 2 of the work program for LowCost Improvements to Express-Highway Bottleneck Locations: FFY 2015. ${ }^{1}$ MPO staff indicated in Task 2—screen bottleneck locations and select locations for analysis-that we will present the results to the MPO for discussion.

According to the Federal Highway Administration (FHWA), "Much of recurring congestion is due to physical bottlenecks—potentially correctible points on the highway system where traffic flow is restricted. While many of the nation's bottlenecks can only be addressed through costly major construction projects, there is a significant opportunity for the application of operational and low-cost infrastructure solutions to bring about relief at these chokepoints." ${ }^{2}$

In the past, MPO staff analyzed several express-highway bottleneck locations in two consecutive studies, Low-Cost Improvements to Bottlenecks Phase I and Phase II, which were very well received by the Massachusetts Department of Transportation (MassDOT) and FHWA. ${ }^{3,4}$ Previous study locations included sections of I-95 in Weston and Burlington and sections of Route 3 in Braintree.

[^10]Some of the recommendations from those studies have been executed, such as the I-95 northbound subtract-a-lane at Interchange 24 in Weston; and FHWA has interviewed MPO staff about their successful implementation.

The cause and duration of highway bottlenecks vary. In general, recurring bottlenecks, the subject of this work program, are influenced by the design or operation present at the point where the bottleneck begins, for example: merges, diverges, lane drops, traffic weaving, abrupt changes in highway alignment, lowclearance structures, lane narrowing, intended disruption of traffic for management purposes, and less-than-optimal express-highway design. This memorandum presents the process used to select the bottleneck study locations. MPO staff will submit this proposal to the MPO for discussion and approval.

2 SELECTION OF STUDY LOCATIONS

Selection of study locations was a two-stage process that comprised inventorying and screening candidate locations.

2.1 Inventorying Candidate Locations

MPO staff developed an initial list of candidate locations in the MPO region based on the following parameters:

- Staff knowledge of bottleneck locations in the Boston MPO region
- Review of congestion management process (CMP) monitoring data and recent MPO and other planning studies
- Consultations with MassDOT Highway Division
- Input from MPO members

The inventory process yielded five bottleneck locations for screening:

1. I-93 southbound between I-95 and Montvale Avenue in Stoneham and Woburn
2. I-93 southbound at the lane drop near Sullivan Square in Somerville/Charlestown
3. I-95 southbound at I-90 Interchange in Weston
4. Route 2 Concord Rotary
5. I-95 northbound, lane drop at interchange 37 in Reading, Stoneham, and Wakefield

2.2 Screening Candidate Locations

MPO staff selected two bottleneck locations for analysis. After consulting with MassDOT Highway Division, staff determined that these two locations likely could be corrected with low-cost mitigation strategies, whereas the other bottlenecks likely could not be correctible in a low-cost manner. MPO staff used the following criteria to screen the bottleneck locations:

- Does the location qualify as a bottleneck? A long traffic queue upstream trailing free-flowing traffic downstream usually characterizes the location as a bottleneck. In addition, the upstream congestion must be recurringin other words, the location experiences routine and predictable congestion because traffic volume exceeds the available capacity at that location.
- Is a physical design constraint or operational conflict inherent in the location the cause of the bottleneck? Examples of these are:
o Lane drop-one or more travel lanes are lost, requiring traffic to merge
o Weaving area—drivers must merge across one or more lanes in order to access an entry or exit ramp
o Merge area—on-ramp traffic merges with mainline traffic in order to enter the freeway
o Major interchanges-high-volume traffic is directed from one freeway to another
o Horizontal curves-abrupt changes in highway alignment force drivers to slow down because of safety concerns
- Can the bottleneck be fixed with low-cost operational and geometric improvements? These would exclude costly long-term solutions such as expansion and major transit investments that alter driver mode choice. Examples of low-cost operational and geometric improvements are:
o Using a short section of shoulder as an additional travel lane, an auxiliary lane, or for lengthening an acceleration or deceleration lane
o Restriping merge and diverge areas to better serve traffic demand
o Providing better traveler information to allow drivers to respond to temporary changes in lane assignment, such as using a shoulder as an additional travel lane during peak periods
o Providing all-purpose reversible lanes
o Changing or adding signs and striping

Based on the screening criteria and consultations with MassDOT Highway Division officials, MPO staff selected Locations 1 and 3 for study. Below are staff's rationale for not selecting Locations 2, 4, and 5:

Location 2: I-93 Southbound at the Lane Drop near Sullivan Square in Somerville/Charlestown

This section of highway is frequently congested because of a lane drop and intensive merging and diverging activities, especially during the AM peak period. During that period, the on-ramp carries between 1,300-and-1,700 vehicles per hour in an auxiliary lane; and the off-ramp to Leverett Circle, Exit 26, carries between 1,200-and-1,600 vehicles per hour. ${ }^{5}$ The merging and diverging activities of these vehicles slow down mainline traffic and seriously affect traffic on the upstream section on I-93. The distance between the two ramps is about 0.4 miles long. The reasons for not selecting this location are:

- Removing the lane drop would require widening the I-93 bridge over Alfred Lombardi Street to provide a new auxiliary lane for the on-ramp traffic or converting the existing auxiliary lane to an acceleration lane.
- Widening the I-93 Bridge could be expensive.
- Converting the existing auxiliary lane to an acceleration lane might create a queue backup on the ramp that might affect traffic on Route 38 (Mystic Avenue) and the collector-distributor roads. In addition, there might not be enough space to provide sufficient acceleration distance because of the I93 bridge over Alfred Lombardi Bridge.

Location 4: Route 2 Concord Rotary

This rotary, the intersection of Concord Turnpike (Route 2), Commonwealth Avenue, Barretts Mill Road, and Great Road (Route 119) is frequently congested because of high traffic volume and inadequate capacity during the AM and PM peak periods. The rotary is a challenge to navigate during these periods, and drivers often use local streets to avoid congestion. MassDOT Highway Division is planning to replace the rotary with an overpass for safer and more efficient operation, and to minimize environmental impacts. The Highway Division also is exploring opportunities to improve neighborhood connections, incorporate the Bruce Freeman Rail Trail and wildlife corridors, improve water and air quality, and enhance the area's design aesthetics to the extent possible.

Although this site is a major bottleneck, staff did not select this location because:

- Low-cost solutions at this location likely would not be feasible. MassDOT and MPO staff already studied the Route 2 Concord Rotary

[^11]to examine potential short- and long-term improvement alternatives for the rotary. ${ }^{6,7}$

- The project was removed from the funded portion of the MPO's Long Range Transportation Plan (LRTP) in August 2009 and currently is on hold.

Location 5: I-95 Northbound, Lane Drop at Interchange 37 in Reading, Stoneham, and Wakefield

This section of highway frequently is congested because of a lane drop and intensive merging and diverging activities, especially during the PM peak period, which slows down mainline traffic. During that time, the Exit 37 off-ramps carry about 3,200 vehicles per hour and the Exit 37 on-ramps carry about 2,300 vehicles per hour. ${ }^{8}$ Adding an auxiliary lane northbound on I-95 would provide more room for the merging and diverging activities and reduce disturbance to mainline traffic. Staff did not select this location because an auxiliary lane would need to be extended for a long distance (about three-to-four interchanges downstream) to reduce congestion and queue, which could be expensive.

3 SELECTED BOTTLENECK LOCATIONS FOR STUDY

Location 1: I-93 Southbound Between I-95 and Montvale Avenue in Stoneham and Woburn

This section of highway, about two miles long, frequently is congested because of merging and diverging activities, especially during the AM and PM peak periods. The southbound off- and on-ramps connect to and from Montvale Avenue. During peak periods, l-93 southbound carries about 8,000 vehicles per hour; the on-ramp from l-95 northbound carries about 2,000 vehicles per hour; and about 900 vehicles per hour exit to Montvale Avenue at Exit 36. In addition, about 800 vehicles per hour enter I-93 southbound from Montvale Avenue during the same period. ${ }^{9}$ The merging and diverging activities of these vehicles slow down I-93 southbound mainline traffic upstream of the Montvale Avenue interchange. In addition, these activities affect traffic entering l-93 southbound from I-95 northbound.

[^12]
Location 3: I-95 Southbound at I-90 Interchange in Weston

This bottleneck is located on I-95 southbound at the point where traffic from I-90 and Route 30 merges onto I-95. During peak periods, between 2,000-to-2,600 vehicles per hour exit I-95 southbound to I-90 and Route 30. Further downstream about the same volume of traffic enters I-95 from the same roads. However, the four I-95 southbound lanes in that section are not allocated efficiently to serve demand. As a result, during peak periods a long traffic queue forms on the I-90 and Route 30 connector ramps heading southbound on I-95.

4
 SUMMARY

By identifying and evaluating a comprehensive list of potential improvements at the two locations, MPO staff will rely on their technical expertise and judgment regarding the nature of bottlenecks. MPO staff will seek input from MassDOT Highway Division staff that are familiar with the region's express-highway system operations.

This study addresses the MPO's goal of reducing congestion and increasing safety on the region's highway system. MPO staff will submit this proposal to the MPO for discussion and approval. If the MPO approves this selection, staff will meet with officials from MassDOT and discuss the study specifics, conduct field visits, collect data, and perform various analyses.

SAA/saa

APPENDIX B

Automatic Traffic Recorder (ATR) Count Data

LOCATION 1

I-93 Southbound Between I-95 and Montvale Avenue in Woburn and Stoneham

Transportation Data Management System

Directions:

AADT (?)								
	Year	AADT	DHV-30	K \%	D \%	PA	BC	Src
	2013	86,756						
	2007	92,586						

Travel Demand Model

VOLUME TREND (?)	
Year	Annual Growth
2014	7%
2013	-3%
2010	0%
2009	-2%
2008	4%

SPEED

Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Mon 1/5/2015
End Date	Tue 1/6/2015
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube Class

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	434
$\mathbf{1 : 0 0 - 2 : 0 0}$	275
$\mathbf{2 : 0 0 - 3 : 0 0}$	273
$\mathbf{3 : 0 0 - 4 : 0 0}$	510
$\mathbf{4 : 0 0 - 5 : 0 0}$	1,617
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,466
$\mathbf{6 : 0 0 - 7 : 0 0}$	6,654
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,213
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,877
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	4,994
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,003
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	4,824
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	4,601
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,674
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,211
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,398
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,134
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,619
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,382
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	3,848
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	2,650
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,104
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	1,605
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,042
Total	92,408
AM Peak	$06: 00-07: 00$
PM Peak	$17: 00-18: 00$
	7,619

Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Tue 1/6/2015
End Date	Wed 1/7/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube Class

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	469
1:00-2:00	323
$\mathbf{2 : 0 0 - 3 : 0 0}$	279
$\mathbf{3 : 0 0 - 4 : 0 0}$	472
4:00-5:00	1,550
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,518
$\mathbf{6 : 0 0 - 7 : 0 0}$	7,008
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,134
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,790
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	5,220
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,110
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	4,698
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	4,737
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,557
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	4,925
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,046
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	5,596
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,085
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,137
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,169
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	2,839
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,177
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	1,675
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,099
Total	91,613
AM Peak	$06: 00-07: 00$
PM Peak	$\mathbf{1 7}: 00-18: 00$
7,085	

Classification Report

Location ID	4098_SB	Located On	INTERSTATE 93	Community	WOBURN
Counted By	TCDS_Combined	SOUTH OF	RTE.I- 95(128)	County	MIDDLESEX
Start Date	Tue 1/6/2015	Loc On Alias		Module	
Start Time	$12: 00: 00$ AM	Direction	SB	Agency	MHD
Source	Syst_Combine	Sensor	Tube Class		
Axle Factor	0.976	Count Status	Accepted		

FHWA-Scheme F Classification																
Start Time	Motor cycle	Car	Pick up	Bus	$\begin{aligned} & \text { 2A } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & \text { 3A } \\ & \text { SU } \end{aligned}$	$\begin{array}{\|c} \hline>3 A \\ \text { SU } \end{array}$	$\begin{aligned} & <5 A \\ & 2 U \end{aligned}$	$\begin{aligned} & 5 A \\ & 2 U \end{aligned}$	$\begin{array}{\|c} \hline>5 A \\ 2 U \end{array}$	$\begin{aligned} & <6 A \\ & >2 U \end{aligned}$	$\begin{gathered} \hline 6 \mathrm{~A} \\ >2 \mathrm{U} \end{gathered}$	$\begin{aligned} & >6 \mathrm{~A} \\ & >2 \mathrm{U} \end{aligned}$	14	15	TOTAL
12:00 AM	0	430	4	5	6	3	0	4	16	1	0	0	0	0	0	469
1:00 AM	0	278	6	2	7	1	0	9	16	3	1	0	0	0	0	323
2:00 AM	0	219	7	0	7	9	0	3	27	7	0	0	0	0	0	279
3:00 AM	0	378	12	5	12	18	0	8	36	3	0	0	0	0	0	472
4:00 AM	0	1346	90	5	31	12	0	17	47	2	0	0	0	0	0	1550
5:00 AM	12	5923	404	15	39	26	0	28	67	4	0	0	0	0	0	6518
6:00 AM	14	6698	173	20	29	24	1	16	31	2	0	0	0	0	0	7008
7:00 AM	7	4708	245	28	54	23	6	13	43	7	0	0	0	0	0	5134
8:00 AM	1	4342	257	14	59	28	3	17	63	6	0	0	0	0	0	4790
9:00 AM	4	4687	262	24	80	29	6	21	99	8	0	0	0	0	0	5220
10:00 AM	8	4550	267	20	84	31	5	28	106	11	0	0	0	0	0	5110
11:00 AM	9	4180	267	15	62	45	4	33	73	9	0	1	0	0	0	4698
12:00 PM	8	4275	231	19	65	33	2	19	73	12	0	0	0	0	0	4737
1:00 PM	7	4106	247	15	50	30	3	25	68	6	0	0	0	0	0	4557
2:00 PM	9	4523	241	18	49	26	2	19	35	3	0	0	0	0	0	4925
3:00 PM	1	4710	216	16	42	19	0	13	27	2	0	0	0	0	0	5046
4:00 PM	2	5316	186	18	41	13	1	6	13	0	0	0	0	0	0	5596
5:00 PM	2	6830	174	20	31	9	0	5	12	2	0	0	0	0	0	7085
6:00 PM	1	5929	125	19	27	5	0	7	21	3	0	0	0	0	0	6137
7:00 PM	0	3988	97	9	16	7	0	11	38	3	0	0	0	0	0	4169
8:00 PM	0	2695	74	7	14	3	0	11	30	4	1	0	0	0	0	2839
9:00 PM	0	2081	53	3	11	1	0	2	19	6	0	1	0	0	0	2177
10:00 PM	1	1566	65	4	5	3	0	2	27	2	0	0	0	0	0	1675
11:00 PM	0	1027	32	4	6	2	0	5	19	3	1	0	0	0	0	1099
TOTAL	86	84785	3735	305	827	400	33	322	1006	109	3	2	0	0	0	91613

Classification Report

Location ID	4098_SB	Located On	INTERSTATE 93	Community	WOBURN
Counted By	TCDS_Combined	SOUTH OF	RTE.I- 95(128)	County	MIDDLESEX
Start Date	Mon 1/5/2015	Loc On Alias		Module	
Start Time	$12: 00: 00$ AM	Direction	SB	Agency	MHD
Source	Syst_Combine	Sensor	Tube Class		
Axle Factor	0.977	Count Status	Accepted		

FHWA-Scheme F Classification																
Start Time	Motor cycle	Car	Pick up	Bus	$\begin{aligned} & \text { 2A } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & \text { 3A } \\ & \text { SU } \end{aligned}$	$\begin{array}{\|c} \hline>3 A \\ \text { SU } \end{array}$	$\begin{aligned} & <5 A \\ & 2 U \end{aligned}$	$\begin{aligned} & 5 A \\ & 2 U \end{aligned}$	$\begin{array}{\|c} \hline>5 A \\ 2 U \end{array}$	$\begin{aligned} & <6 A \\ & >2 U \end{aligned}$	$\begin{gathered} \hline 6 A \\ >2 U \end{gathered}$	$\begin{aligned} & >6 \mathrm{~A} \\ & >2 \mathrm{U} \end{aligned}$	14	15	TOTAL
12:00 AM	0	375	26	4	5	0	0	5	19	0	0	0	0	0	0	434
1:00 AM	0	219	21	4	3	3	0	8	15	2	0	0	0	0	0	275
2:00 AM	1	222	20	0	5	8	0	2	13	2	0	0	0	0	0	273
3:00 AM	0	381	53	6	16	16	0	5	29	4	0	0	0	0	0	510
4:00 AM	5	1302	199	8	28	15	0	15	42	3	0	0	0	0	0	1617
5:00 AM	4	5418	869	19	44	26	0	21	61	4	0	0	0	0	0	6466
6:00 AM	8	6058	457	19	43	21	2	13	31	1	0	0	1	0	0	6654
7:00 AM	8	4619	449	28	37	19	6	12	33	0	0	2	0	0	0	5213
8:00 AM	4	4228	457	16	51	22	5	23	68	2	1	0	0	0	0	4877
9:00 AM	2	4313	446	22	65	32	7	21	79	6	1	0	0	0	0	4994
10:00 AM	5	4227	511	22	70	36	2	31	96	2	0	1	0	0	0	5003
11:00 AM	8	4059	512	16	65	34	4	22	97	7	0	0	0	0	0	4824
12:00 PM	6	3821	544	23	67	25	4	20	85	5	0	0	1	0	0	4601
1:00 PM	8	3954	477	21	71	35	6	12	83	7	0	0	0	0	0	4674
2:00 PM	4	4507	498	18	70	30	1	19	60	3	0	0	1	0	0	5211
3:00 PM	4	4818	448	18	47	19	0	10	33	1	0	0	0	0	0	5398
4:00 PM	2	5651	383	15	36	13	0	5	28	0	0	1	0	0	0	6134
5:00 PM	1	7258	280	22	28	9	0	9	9	0	0	1	2	0	0	7619
6:00 PM	7	6059	237	16	19	5	0	16	22	1	0	0	0	0	0	6382
7:00 PM	3	3671	104	11	18	6	0	13	20	2	0	0	0	0	0	3848
8:00 PM	1	2522	68	7	11	3	0	7	27	4	0	0	0	0	0	2650
9:00 PM	1	2004	48	5	11	4	0	7	21	3	0	0	0	0	0	2104
10:00 PM	1	1517	44	6	6	4	0	3	21	2	1	0	0	0	0	1605
11:00 PM	0	979	23	5	7	2	0	7	18	1	0	0	0	0	0	1042
TOTAL	83	82182	7174	331	823	387	37	306	1010	62	3	5	5	0	0	92408

Classification Report

Location ID	4098_SB	Located On	INTERSTATE 93	Community	WOBURN
Counted By	TCDS_Combined	SOUTH OF	RTE.I- 95(128)	County	MIDDLESEX
Start Date	Mon 12/22/2014	Loc On Alias		Module	
Start Time	$12: 00: 00$ AM	Direction	SB	Agency	MHD
Source	Syst_Combine	Sensor	Tube Class		
Axle Factor	0.975	Count Status	Accepted		

FHWA-Scheme F Classification																
Start Time	Motor cycle	Car	Pick up	Bus	$\begin{aligned} & \text { 2A } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & \text { 3A } \\ & \text { SU } \end{aligned}$	$\begin{array}{\|c} \hline>3 A \\ \text { SU } \end{array}$	$\begin{aligned} & <5 A \\ & 2 U \end{aligned}$	$\begin{aligned} & \text { 5A } \\ & 2 U \end{aligned}$	$\begin{array}{\|c} \hline>5 A \\ 2 U \end{array}$	$\begin{aligned} & <6 A \\ & >2 U \end{aligned}$	$\begin{array}{\|c\|} \hline 6 A \\ >2 U \end{array}$	$\begin{aligned} & >6 \mathrm{~A} \\ & >2 \mathrm{U} \end{aligned}$	14	15	TOTAL
12:00 AM	0	493	22	3	4	2	0	5	16	4	0	0	0	0	0	549
1:00 AM	0	280	14	4	5	2	0	5	21	3	0	0	0	0	0	334
2:00 AM	2	241	26	0	4	11	0	5	24	6	0	0	0	0	0	319
3:00 AM	3	372	42	6	17	16	0	10	34	6	0	0	0	0	0	506
4:00 AM	2	1123	178	8	21	21	0	19	60	6	1	0	0	0	0	1439
5:00 AM	6	5190	1044	17	56	26	1	19	63	6	1	1	0	0	0	6430
6:00 AM	14	5873	564	25	51	31	0	17	27	1	0	0	0	0	0	6603
7:00 AM	4	4531	543	23	62	28	6	18	51	2	0	0	0	0	0	5268
8:00 AM	5	4358	530	17	71	25	3	22	72	4	0	1	0	0	0	5108
9:00 AM	7	4763	594	25	81	34	8	28	109	11	1	0	0	0	0	5661
10:00 AM	0	4967	629	19	86	26	4	38	105	4	0	0	0	0	0	5878
11:00 AM	1	4765	582	19	82	45	6	23	109	6	1	0	0	0	0	5639
12:00 PM	4	4598	555	12	60	43	6	14	91	6	0	0	1	0	0	5390
1:00 PM	4	4505	500	22	80	34	2	17	72	2	0	0	1	0	0	5239
2:00 PM	7	5008	504	17	61	34	4	19	50	4	3	0	0	0	0	5711
3:00 PM	1	4848	505	20	60	18	1	9	25	1	1	1	0	0	0	5490
4:00 PM	1	4850	381	16	53	6	0	4	24	1	1	0	0	0	0	5337
5:00 PM	1	5460	346	15	39	6	0	12	20	2	0	1	0	0	0	5902
6:00 PM	4	5118	258	14	39	7	0	4	29	0	1	1	0	0	0	5475
7:00 PM	1	3766	209	12	20	6	0	7	26	1	0	0	0	0	0	4048
8:00 PM	3	2880	162	6	16	5	0	13	24	1	0	0	0	0	0	3110
9:00 PM	1	2423	143	6	6	6	1	5	35	2	0	0	0	0	0	2628
10:00 PM	0	2070	123	4	9	5	0	7	25	0	0	0	0	0	0	2243
11:00 PM	0	1296	68	4	5	2	0	5	16	2	1	0	0	0	0	1399
TOTAL	71	83778	8522	314	988	439	42	325	1128	81	11	5	2	0	0	95706

Classification Report

Location ID	4098_SB	Located On	INTERSTATE 93	Community	WOBURN
Counted By	TCDS_Combined	SOUTH OF	RTE.I- 95(128)	County	MIDDLESEX
Start Date	Fri 12/19/2014	Loc On Alias		Module	
Start Time	$12: 00: 00$ AM	Direction	SB	Agency	MHD
Source	Syst_Combine	Sensor	Tube Class		
Axle Factor	0.98	Count Status	Accepted		

FHWA-Scheme F Classification																
Start Time	Motor cycle	Car	Pick up	Bus	$\begin{aligned} & \text { 2A } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & \text { 3A } \\ & \text { SU } \end{aligned}$	$\begin{aligned} & >3 A \\ & \text { SU } \end{aligned}$	$\begin{aligned} & <5 A \\ & 2 U \end{aligned}$	$\begin{aligned} & 5 A \\ & 2 U \end{aligned}$	$\begin{array}{\|c} >5 \mathrm{~A} \\ 2 \mathrm{U} \end{array}$	$\begin{aligned} & <6 \mathrm{~A} \\ & >2 \mathrm{U} \end{aligned}$	$\begin{gathered} \hline 6 \mathrm{~A} \\ >2 \mathrm{U} \end{gathered}$	$\begin{aligned} & >6 \mathrm{~A} \\ & >2 \mathrm{U} \end{aligned}$	14	15	TOTAL
12:00 AM	1	751	36	2	7	4	0	9	19	3	0	0	0	0	0	832
1:00 AM	1	391	22	4	2	1	0	9	14	2	0	0	0	0	0	446
2:00 AM	5	281	25	1	11	13	0	9	15	4	0	0	0	0	0	364
3:00 AM	2	422	51	2	15	15	0	15	26	4	0	0	0	0	0	552
4:00 AM	3	1179	203	14	27	14	0	39	48	4	0	0	0	0	0	1531
5:00 AM	13	5241	1019	20	38	32	1	37	54	4	0	0	0	0	0	6459
6:00 AM	10	5579	597	27	49	31	3	23	32	3	0	0	1	0	0	6355
7:00 AM	14	4608	483	24	58	25	8	17	54	4	1	2	0	0	0	5298
8:00 AM	9	4424	475	29	62	26	6	17	50	4	1	0	2	0	0	5105
9:00 AM	13	4660	533	27	80	35	4	39	79	5	0	0	1	0	0	5476
10:00 AM	6	4849	552	21	63	54	4	36	76	7	1	0	0	0	0	5669
11:00 AM	14	4973	560	21	71	37	11	42	88	4	1	0	1	0	0	5823
12:00 PM	12	4716	535	15	73	40	9	32	68	3	0	0	0	0	0	5503
1:00 PM	6	4786	530	20	51	32	5	20	38	6	0	0	0	0	0	5494
2:00 PM	11	5513	536	22	53	31	4	23	42	2	1	0	0	0	0	6238
3:00 PM	3	5741	497	22	47	14	1	12	20	1	1	2	1	0	0	6362
4:00 PM	4	6160	427	13	35	13	0	11	11	0	0	1	0	0	0	6675
5:00 PM	7	6933	301	18	27	6	0	6	12	1	0	1	0	0	0	7312
6:00 PM	4	6061	259	20	29	2	0	5	14	1	0	0	0	0	0	6395
7:00 PM	2	4361	234	13	20	10	0	9	14	0	1	0	0	0	0	4664
8:00 PM	5	3304	155	10	14	3	0	7	14	3	0	0	0	0	0	3515
9:00 PM	1	2855	139	6	12	2	0	6	15	2	0	0	1	0	0	3039
10:00 PM	0	2586	125	2	8	1	0	7	20	3	0	0	0	0	0	2752
11:00 PM	0	2046	98	9	6	4	0	3	13	3	0	0	0	0	0	2182
TOTAL	146	92420	8392	362	858	445	56	433	836	73	7	6	7	0	0	104041

Volume Count Report

LOCATION INFO	
Location ID	R12697
Type	SPOT
Fnct'I Class	-
Located On	I-95
	Exit 37A I-93 South Boston
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Thu 4/10/2014
End Date	Fri 4/11/2014
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000590
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	199
$\mathbf{1 : 0 0 - 2 : 0 0}$	124
$\mathbf{2 : 0 0 - 3 : 0 0}$	115
$\mathbf{3 : 0 0 - 4 : 0 0}$	177
$\mathbf{4 : 0 0 - 5 : 0 0}$	363
$\mathbf{5 : 0 0 - 6 : 0 0}$	1,344
$\mathbf{6 : 0 0 - 7 : 0 0}$	1,316
$\mathbf{7 : 0 0 - 8 : 0 0}$	958
$\mathbf{8 : 0 0 - 9 : 0 0}$	1,010
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	1,377
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	1,604
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	1,552
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	1,606
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	1,676
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	1,823
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	1,769
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	1,492
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	1,538
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	1,669
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	1,541
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	1,207
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	1,095
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	780
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	$\mathbf{0}$
Total	26,740
AM Peak	$10: 00-11: 00$
$\mathbf{P M}$ Peak	$14: 00-15: 00$
	1,823

Volume Count Report

LOCATION INFO	
Location ID	R12697
Type	SPOT
Fnct'I Class	-
Located On	I-95
	Exit 37A I-93 South Boston
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Tue 4/8/2014
End Date	Wed 4/9/2014
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000590
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	178
$\mathbf{1 : 0 0 - 2 : 0 0}$	103
$\mathbf{2 : 0 0 - 3 : 0 0}$	92
$\mathbf{3 : 0 0 - 4 : 0 0}$	141
$\mathbf{4 : 0 0 - 5 : 0 0}$	376
$\mathbf{5 : 0 0 - 6 : 0 0}$	1,322
$\mathbf{6 : 0 0 - 7 : 0 0}$	1,228
$\mathbf{7 : 0 0 - 8 : 0 0}$	890
$\mathbf{8 : 0 0 - 9 : 0 0}$	767
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	1,127
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	1,497
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	1,447
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	1,520
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	1,604
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	1,768
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	1,877
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	1,837
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	1,781
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	1,882
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	1,402
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	1,084
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	946
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	623
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	305
Total	25,797
AM Peak	$10: 00-11: 00$
PM Peak	1,497
	$18: 00-19: 00$
1,882	

Volume Count Report

LOCATION INFO	
Location ID	R12697
Type	SPOT
Fnct'I Class	-
Located On	I-95
	Exit 37A I-93 South Boston
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 4/9/2014
End Date	Thu 4/10/2014
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000590
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	164
$\mathbf{1 : 0 0 - 2 : 0 0}$	99
$\mathbf{2 : 0 0 - 3 : 0 0}$	80
$\mathbf{3 : 0 0 - 4 : 0 0}$	143
$\mathbf{4 : 0 0 - 5 : 0 0}$	350
$\mathbf{5 : 0 0 - 6 : 0 0}$	1,379
$\mathbf{6 : 0 0 - 7 : 0 0}$	1,371
$\mathbf{7 : 0 0 - 8 : 0 0}$	986
$\mathbf{8 : 0 0 - 9 : 0 0}$	977
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	1,256
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	1,595
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	1,566
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	1,596
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	1,769
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	1,895
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	1,883
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	1,834
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	1,724
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	1,781
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	1,431
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	1,123
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	969
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	668
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	361
Total	27,000
AM Peak	$10: 00-11: 00$
PM Peak	$14: 595$
	1,895

Volume Count Report

LOCATION INFO	
Location ID	R12697
Type	SPOT
Fnct'I Class	-
Located On	I-95
	Exit 37A I-93 South Boston
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Thu 4/10/2014
End Date	Fri 4/11/2014
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000590
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	199
$\mathbf{1 : 0 0 - 2 : 0 0}$	124
$\mathbf{2 : 0 0 - 3 : 0 0}$	115
$\mathbf{3 : 0 0 - 4 : 0 0}$	177
$\mathbf{4 : 0 0 - 5 : 0 0}$	363
$\mathbf{5 : 0 0 - 6 : 0 0}$	1,344
$\mathbf{6 : 0 0 - 7 : 0 0}$	1,316
$\mathbf{7 : 0 0 - 8 : 0 0}$	958
$\mathbf{8 : 0 0 - 9 : 0 0}$	1,010
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	1,377
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	1,604
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	1,552
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	1,606
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	1,676
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	1,823
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	1,769
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	1,492
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	1,538
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	1,669
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	1,541
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	1,207
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	1,095
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	780
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	$\mathbf{0}$
Total	26,740
AM Peak	$10: 00-11: 00$
$\mathbf{P M}$ Peak	$14: 00-15: 00$
	1,823

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Thu 1/22/2015
End Date	Fri 1/23/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Loop

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	481
$\mathbf{1 : 0 0 - 2 : 0 0}$	317
$\mathbf{2 : 0 0 - 3 : 0 0}$	295
$\mathbf{3 : 0 0 - 4 : 0 0}$	544
$\mathbf{4 : 0 0 - 5 : 0 0}$	1,550
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,542
$\mathbf{6 : 0 0 - 7 : 0 0}$	6,791
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,291
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,886
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	5,556
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,355
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	4,984
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	5,122
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	5,016
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,721
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,806
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,662
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,654
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,592
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,399
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	3,240
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,523
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	2,007
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,209
Total	98,543
AADT	95,390
AM Peak	$06: 00-07: 00$
PM Peak	$17: 00-18: 00$
7,654	

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 1/21/2015
End Date	Thu 1/22/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Loop

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	497
$\mathbf{1 : 0 0 - 2 : 0 0}$	303
$\mathbf{2 : 0 0 - 3 : 0 0}$	290
$\mathbf{3 : 0 0 - 4 : 0 0}$	442
4:00-5:00	1,516
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,582
$\mathbf{6 : 0 0 - 7 : 0 0}$	6,987
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,140
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,537
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	5,338
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,112
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	5,034
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	5,056
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,932
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,433
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,736
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,330
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,501
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,474
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,153
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	2,970
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,539
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	1,759
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,074
Total	95,735
AADT	98,416
AM Peak	$06: 00-07: 00$
PM Peak	$17: 00-18: 00$
7,501	

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Thu 1/15/2015
End Date	Fri 1/16/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Loop

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	537
$\mathbf{1 : 0 0 - 2 : 0 0}$	330
$\mathbf{2 : 0 0 - 3 : 0 0}$	323
3:00-4:00	491
4:00-5:00	1,570
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,132
$\mathbf{6 : 0 0 - 7}: 00$	6,840
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,009
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,134
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	4,799
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	4,849
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	4,881
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	4,986
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,975
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,495
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,622
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,146
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	6,465
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,650
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,276
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	3,046
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,588
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	2,031
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,206
Total	93,381
AADT	90,393
AM Peak	$06: 00-07: 00$
PM Peak	$18: 00-19: 00$
6,650	

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 1/21/2015
End Date	Thu 1/22/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Loop

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	497
$\mathbf{1 : 0 0 - 2 : 0 0}$	303
$\mathbf{2 : 0 0 - 3 : 0 0}$	290
$\mathbf{3 : 0 0 - 4 : 0 0}$	442
4:00-5:00	1,516
$\mathbf{5 : 0 0 - 6 : 0 0}$	6,582
$\mathbf{6 : 0 0 - 7 : 0 0}$	6,987
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,140
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,537
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	5,338
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,112
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	5,034
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	5,056
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,932
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,433
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,736
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,330
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,501
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,474
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,153
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	2,970
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,539
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	1,759
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,074
Total	95,735
AADT	98,416
AM Peak	$06: 00-07: 00$
PM Peak	$17: 00-18: 00$
7,501	

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	4098_SB
Type	SPOT
Fnct'I Class	1
Located On	INTERSTATE 93
SOUTH OF	RTE.I- 95(128)
Direction	SB
Community	WOBURN
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Tue 1/13/2015
End Date	Wed 1/14/2015
Start Time	$12: 00: 00$ AM
End Time	$12: 00: 00 \mathrm{AM}$
Direction	SB
Notes	
Count Source	
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Loop

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0}: 00-1: 00$	509
1:00-2:00	322
2:00-3:00	307
3:00-4:00	493
4:00-5:00	1,598
5:00-6:00	6,608
$\mathbf{6 : 0 0 - 7 : 0 0}$	6,443
$\mathbf{7 : 0 0 - 8 : 0 0}$	5,269
$\mathbf{8 : 0 0 - 9 : 0 0}$	4,748
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	5,457
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	5,419
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	4,934
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	5,022
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	4,763
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	5,226
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	5,648
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	6,440
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	7,298
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	6,550
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	4,236
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	3,158
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	2,382
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	1,809
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	1,068
Total	95,707
AADT	100,205
AM Peak	$05: 00-06: 00$
PM Peak	$17: 00-18: 00$
	7,298

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	R12177
Type	SPOT
Fnct'l Class	1
Located On	I-93
	Exit 36 Montvale Ave Stoneham Woburn
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Wed 4/30/2014
End Date	Thu 5/1/2014
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000761
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
(1) 0:00-1:00	65
1:00-2:00	40
2:00-3:00	23
3:00-4:00	47
4:00-5:00	112
5:00-6:00	440
6:00-7:00	545
7:00-8:00	1,373
8:00-9:00	1,237
9:00-10:00	1,077
10:00-11:00	867
11:00-12:00	737
12:00-13:00	770
13:00-14:00	791
14:00-15:00	838
15:00-16:00	777
16:00-17:00	849
17:00-18:00	1,011
18:00-19:00	747
19:00-20:00	517
20:00-21:00	416
21:00-22:00	320
22:00-23:00	250
23:00-24:00	121
Total	13,970
AADT	12,208
AM Peak	$\begin{array}{r} 07: 00-08: 00 \\ 1,373 \end{array}$
PM Peak	$\begin{array}{r} 17: 00-18: 00 \\ 1,011 \end{array}$

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	R12177
Type	SPOT
Fnct'I Class	1
Located On	I-93
	Exit 36 Montvale Ave Stoneham Woburn
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Tue 4/29/2014
End Date	Wed 4/30/2014
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000761
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
(1) 0:00-1:00	54
1:00-2:00	31
2:00-3:00	38
3:00-4:00	48
4:00-5:00	106
5:00-6:00	456
6:00-7:00	596
7:00-8:00	1,368
8:00-9:00	1,006
9:00-10:00	912
10:00-11:00	814
11:00-12:00	735
12:00-13:00	779
13:00-14:00	795
14:00-15:00	832
15:00-16:00	837
16:00-17:00	871
17:00-18:00	1,036
18:00-19:00	727
19:00-20:00	506
20:00-21:00	356
21:00-22:00	276
22:00-23:00	209
23:00-24:00	115
Total	13,503
AADT	11,982
AM Peak	$\begin{array}{r} \hline 07: 00-08: 00 \\ 1,368 \\ \hline \end{array}$
PM Peak	$\begin{array}{r} \hline 17: 00-18: 00 \\ 1,036 \\ \hline \end{array}$

Transportation Data Management System
Volume Count Report

LOCATION INFO	
Location ID	R12177
Type	SPOT
Fnct'I Class	1
Located On	I-93
	Exit 36 Montvale Ave Stoneham Woburn
Direction	RAMP
Community	Woburn
MPO ID	
HPMS ID	
Agency	MHD

COUNT DATA INFO	
Count Status	Accepted
Start Date	Mon 4/28/2014
End Date	Tue 4/29/2014
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Count Source	000000000761
Weather	
Study	
Speed Limit	
Description	
Sensor Type	Tube

INTERVAL:60-MIN	
Time	Hourly Count
$\mathbf{0 : 0 0 - 1 : 0 0}$	48
1:00-2:00	30
$\mathbf{2 : 0 0 - 3 : 0 0}$	37
3:00-4:00	46
4:00-5:00	117
$\mathbf{5 : 0 0 - 6 : 0 0}$	412
$\mathbf{6 : 0 0 - 7 : 0 0}$	529
$\mathbf{7 : 0 0 - 8 : 0 0}$	1,132
$\mathbf{8 : 0 0 - 9 : 0 0}$	997
$\mathbf{9 : 0 0 - 1 0 : 0 0}$	884
$\mathbf{1 0 : 0 0 - 1 1 : 0 0}$	712
$\mathbf{1 1 : 0 0 - 1 2 : 0 0}$	705
$\mathbf{1 2 : 0 0 - 1 3 : 0 0}$	691
$\mathbf{1 3 : 0 0 - 1 4 : 0 0}$	698
$\mathbf{1 4 : 0 0 - 1 5 : 0 0}$	804
$\mathbf{1 5 : 0 0 - 1 6 : 0 0}$	844
$\mathbf{1 6 : 0 0 - 1 7 : 0 0}$	769
$\mathbf{1 7 : 0 0 - 1 8 : 0 0}$	958
$\mathbf{1 8 : 0 0 - 1 9 : 0 0}$	670
$\mathbf{1 9 : 0 0 - 2 0 : 0 0}$	483
$\mathbf{2 0 : 0 0 - 2 1 : 0 0}$	275
$\mathbf{2 1 : 0 0 - 2 2 : 0 0}$	270
$\mathbf{2 2 : 0 0 - 2 3 : 0 0}$	192
$\mathbf{2 3 : 0 0 - 2 4 : 0 0}$	90
Total	12,393
AADT	11,345
AM Peak	$07: 00-08: 00$
PM Peak	$17: 00-18: 00$
958	

LOCATION 2

I-95 Southbound at the I-90 Interchange in Weston

I-95 Southbound Ramps at I-90 Interchange Automatic Traffic Recorder (ATR) Locations

Massachusetts Highway Department
WEEKLY SUMMARY FOR LANE 1
Starting: 4/28/2015

STA. 1

Bite Reference: 150110000624 Site ID: 000000000100 Location: EXIT 25 RAMP FROM I-95 SB TO I-90 Direction:

Massachusetts Highway Department
 WEEKLY SUMMARY FOR LANE I

Starting: 4/28/2015

$$
\text { STA. } 2
$$

iite Reference: 150110000862 iite ID: 000000000200 ocation: EXIT 24 RAMP EROM I-95 SB TO RTE 30 irection:

TIME	$\begin{array}{r} \mathrm{MON} \\ 4 \end{array}$	$\begin{array}{r} \text { TUE } \\ 28 \end{array}$	WED 29	$\begin{array}{r} \text { THO } \\ 30 \end{array}$	$\begin{array}{r} \text { FRI } \\ 1 \end{array}$	$\begin{gathered} \text { WKDAY } \\ \text { AVG } \end{gathered}$	$\begin{array}{r} \text { SAT } \\ 2 \end{array}$	$\begin{array}{r} \text { SUN } \\ 3 \end{array}$	WEEK AVG	TOTAL
01:00	16	25	33	15	26	23	30	47	27	192
02:00	12	19	17	12	10	14	29	53	21	152
03:00	9	13	9	12	7	10	18	28	13	96
04:00	8	6	17	9	6	9	5	11	8	62
05:00	24	30	31	2θ	18	26	11	8	21	150
06:00	114	143	137	122	109	125	36	27	98	688
07:00	509	671	541	490	521	546	134	61	418	2927
08:00	766	1115	901	816	778	875	215	100	670	4691
09:00	590	755	788	690	652	695	242	135	550	3852
10:00	591	690	636	642	462	604	293	209	503	3523
11:00	397	492	481	471	429	454	369	298	419	2937
12:00	357	440	427	388	356	393	363	345	382	2676
13:00	353	431	459	527	448	443	388	387	427	2993
14:00	351	435	430	451	456	424	420	389	418	2932
15:00	459	472	458	468	554	482	395	420	460	3226
16:00	554	593	546	473	415	516	470	401	493	3452
17:00	491	592	651	479	515	545	384	417	504	3529
18:00	605	736	887	732	746	741	446	399	650	4551
19:00	615	684	670	595	493	611	369	320	535	3746
20:00	325	347	378	339	281	334	274	251	313	2195
21:00	233	250	255	223	192	230	192	141	212	1486
22:00		166	178	141	155	160	201	149	165	990
23:00		95	106	100	132	108	148	83	110	664
24:00		48	52	53	72	56	76	35	56	336
COTALS	7379	9248	9088	8276	7833	8424	5508	4714	7473	52046
f AVG WKDY	87,5	109.7	107, 1	98.2	92.9		65.3	55.9		
\% AVG WEER	98.7	123.7	121.6	110.7	104.8		73.7	63		
a ${ }^{\text {a }}$ Times	08:00	08:00	08:00	08;00	08:00	08:00	11:00	12;00	08:00	
TM Peaks	766	1115	901	816	778	875	369	345	670	
2M Times	19:00	18:00	18:00	18:00	18:00	18:00	16:00	15:00	$18: 00$	
PM Peaks	615	736	887	732	.746	741	470	420	650	

STA. 3

Site Reference: 150110000467	File: V300,prn
Site ID: 000000000300	City: WESTON
socation: ON-RAMP FROM RTE. 30 TO I-95 SB	County: VOL

Massachusetts Highway Department
WEEKLY SUMMARY FOR LANE 1
Starting: 4/28/2015

$$
\text { STA. } 4
$$

Site Reference: 150110000625	Eile: $\nabla 400$. pIn
Site ID: 000000000400	City: WESTON
Location: ON-RAMP EROM I-90 TO I-95 SB	County: vOL


```
MassDOT Highway Division
            WEEKLY SUMMARY
    Starting:4/28/2015
                STA,I
```

File: V100.prn
City: WESTON
County: VOL
Eage: 1

Site Reference: I50110000624
Site ID: 000000000100
Location: EXIT 25 RAMP EROM I-95 SB TO I-90 Direction: ROAD TOTAL

TIME MON	TUE	WED	THU	ERI	SAT	20	2

00:15	53	400	64	445	64	390	45	453	75	497	89	438	75	390	465	3013	66	430
00:30	58	372	47	429	43	470	39	488	70	527	69	448	64	434	390	3168	55	452
00:45	33	354	54	430	45	382	64	393	63	526	70	538	74	429	403	3052	57	436
01:00	40	374	54	414	40	395	42	432	37	482	49	472	55	470	317	3039	45	434
01:15	27	351	46	389	67	407	40	456	56	468	64	481	87	453	387	3005	55	429
01:30	28	439	51	410	33	374	22	458	57	475	41	426	111	474	343	3056	49	436
01:45	35	352	39	397	39	403	27	451	42	498	32	407	61	409	275	2917	39	416
02;00	28	366	29	428	29	420	31	509	43	537	39	427	61	410	260	3097	37	442
02:15	12	424	31	435	45	490	27	546	31	532	40	408	52	478	238	3313	34	473
02:30	16	410	15	505	13	500	26	541	43	596	50	417	30	482	193	3451	27	493
02:45	23	503	30	512	44	541	40	563	29	544	43	463	26	445	235	3571	33	510
03:00	33	54.4	41	521	26	603	44	591	29	\$18	27	421	27	414	227	3612	32	516
03:15	22	557	32	561	31	612	22	583	54	513	30	430	17	413	208	3669	29	524
03:30	31	544	46	569	28	638	32	540	47	505	30	408	24	449	238	3653	34	521
03:45	32	488	48	585	42	609	28	565	42	535	25	446	28	431	245	3659	35	522
04:00	27	585	47	590	49	550	67	532	46	537	38	411	20	439	294	3644	42	520
04:15	52	589	49	603	48	655	57	515	61	548	44	433	18	434	329	3777	47	539
04:30	64	557	69	522	67	579	63	559	58	531	45	410	25	433	391	3591	55	513
04: 45	69	471	75	574	70	581	80	581	77	463	73	372	39	481	483	3523	69	503
05;00	106	412	89	554	99	647	102	613	125	547	51	368	23	402	595	3543	85	506
05:15	114	487	122	583	129	661	99	561	101	502	75	361	35	407	675	3562	96	508
05:30	174	461	166	452	162	557	159	531	133	497	89	424	47	364	930	3286	132	469
05:45	236	450	247	556	258	570	243	491	262	587	87	463	54	365	1387	3482	198	497
06:00	298	487	342	549	325	617	314	552	330	446	125	381	52	405	1786	3437	255	491
06:15	449	538	482	567	419	578	444	483	394	430	107	425	74	352	2369	3373	338	481
06:30	479	554	527	550	519	496	528	588	424	398	145	401	92	418	2714	3405	387	486
06:45	473	556	544	541	406	500	447	591	448	397	197	451	170	358	2685	3394	383	484
07:00	479	453	503	499	399	463	450	434	475	412	188	336	130	315	2624	2912	374	416
07:15	505	382	480	449	386	398	404	438	460	416	195	305	105	285	2535	2673	362	381
07:30	608	314	399	372	433	367	437	391	451	391	254	328	137	276	2719	2439	388	348
07:45	458	307	400	313	373	331	382	303	503	343	295	283	178	250	2589	2130	369	304
08:00	379	259	352	297	442	263	381	269	420	345	269	251	184	228	2427	1912	346	273
08:15	370	239	370	274	413	284	432	274	500	276	292	267	187	216	2564	1830	366	261
08:30	351	229	306	256	372	258	409	296	457	253	361	229	188	250	2444	1771	349	253
08:45	316	214	339	214	397	326	400	251	497	251	392	233	211	210	2552	1699	364	242
09:00	341	255	337	214	386	254	409	237	516	215	323	231	236	210	2548	1616	364	230
09:15	305		367	215	378	258	435	222	432	191	346	239	270	159	2533	1284	361	214
09:30	382		396	236	398	208	449	241	493	210	411	234	326	165	2855	1294	407	215
09:45	432		422	215	458	231	462	182	433	209	426	204	345	142	2978	1183	425	197
10:00	503		469	171	479	193	457	214	510	192	408	210	344	152	3170	1132	452	188
10:15	529		453	187	436	171	461	147	479	171	470	172	370	124	3198	972	456	162
10:30	432		371	155	439	162	419	153	429	198	491	164	366	95	2947	927	421	154
10:45	446		396	131	431	140	432	151	436	165	483	151	426	93	3050	831	435	138
11:00	393		416	107	428	144	421	109	445	144	468	120	464	77	3035	701	433	116
11:15	425		386	95	372	81	406	118	514	136	442	127	423	58	2968	615	424	102
11:30	411		419	97	409	106	464	103	486	143	470	125	452	63	3111	637	444	106
11:45	394		407	84	417	93	421	94	482	113	441	93	399	61	2961	538	423	89
12:00	393		432	74	407	65	433	60	476	103	482	95	493	56	3116	453	445	75

TOTALS	27141	30132	30814	30949	31584	25608	22599	198827	
AM Times	$6: 45$	$6: 15$	$9: 45$	$6: 15$	$8: 15$	$10: 15$	$11: 15$	$10: 00$	$10: 00$
AM Peaks	2065	2056	1812	1869	1970	1912	1767	12365	1764
PM Times	$15: 45$	$15: 30$	$16: 30$	$16: 30$	$14: 00$	$12: 30$	$12: 45$	$15: 30$	$15: 30$
PM Peaks	2219	2347	2468	2314	2209	1939	1826	14733	2102

TOTALS	7379	9248	9088	8276	7833	5508	4714	52046	7441
AM Times	$7: 00$	$7: 00$	$7: 15$	$7: 00$	$7: 00$	$10: 30$	$11: 00$	$7: 00$	$7: 00$
AM Peaks	777	1136	901	818	783	370	350	4700	669
PM Times	$18: 00$	$17: 45$	$17: 30$	$17: 30$	$17: 30$	$15: 15$	$12: 45$	$17: 30$	$17: 30$
PM Peaks	646	810	935	747	747	470	422	4678	666

MassDOT Highway Division
 WEEKLY SUMMARY
 Starting:4/28/2015

Page: 1

STA. 3

Site Reference: 150110000467 Site ID: 00000000300
LOcation: ON-RAMP FROM RTE, 30 TO I-95 SB Direction: ROAD TOTAL

TIME MON	TUE	WED	THU	ERI TOT	1	30	29	3

00:15	9	93	11	91	18	112	10	111	14	100	21	102	17	101	100	710	14	101
00:30	5	96	4	131	4	104	9	114	8	109	9	117	16	125	55	796	7	113
00:45	10	104	11	97	10	101	7	128	12	121	15	96	12	112	77	759	11	108
01:00	7	116	4	121	8	97	7	103	6	114	11	117	17	101	60	769	8	109
01:15	4	93	4	115	15	106	11	109	12	121	14	88	32	103	92	735	13	105
01:30	6	100	3	105	6	118	3	113	11	122	3	103	27	90	59	751	8	107
01:45	1	102	5	117	5	122	4	126	4	120	7	96	17	108	43	791	6	113
02:00	2	102	5	98	7	107	4	114	8	99	6	92	5	B8	37	700	5	100
02:15	4	104	2	105	4	106	11	104	4	133	7	104	8	110	40	766	5	109
02:30	5	128	6	117	2	140	5	140	6	146	6	102	6	102	36	875	5	125
02:45	3	117	1	126	5	126	6	140	6	117	6	99	7	79	34	804	4	114
03:00	3	117	6	113	8	98	5	121	6	109	1	102	5	85	34	745	4	106
03:15	4	134	6	118	6	126	4	119	4	123	2	97	4	91	30	808	4	115
03:30	9	106	6	140	B	139	4	112	5	108	2	103	5	89	39	797	5	113
03:45	4	107	8	123	1	101	3	100	8	109	5	97	3	87	32	724	4	103
04:00	4	114	6	113	6	101	2	124	10	124	4	90	4	101	36	767	5	109
04:15	2	132	0	139	9	131	2	127	2	104	6	76	2	74	23	783	3	111
04:30	3	111	8	133	7	123	2	140	6	131	10	91	3	94	39	823	5	117
04:45	15	104	4	136	10	142	14	133	7	135	2	80	5	74	57	804	8	114
05:00	13	75	12	131	11	161	14	143	12	126	4	97	4	67	70	800	10	114
05:15	18	116	16	159	13	140	19	145	15	131	9	81	10	79	100	851	14	121
05:30	20	125	15	145	14	141	14	136	14	120	9	100	5	65	91	832	13	118
05:45	27	137	45	123	37	112	41	106	36	119	13	95	6	78	205	770	29	110
06:00	28	140	36	97	41	122	33	103	34	127	15	96	13	69	200	754	28	107
06:15	63	134	51	108	61	111	44	112	54	116	22	74	18	50	313	705	44	100
06:30	58	101	59	109	65	130	74	125	65	97	25	64	21	66	367	692	52	98
06:45	98	106	117	127	95	113	112	125	118	106	35	71	26	45	601	693	85	99
07:00	110	95	103	83	116	98	99	104	98	77	38	74	24	53	588	584	84	83
07:15	118	93	130	102	137	85	127	86	135	88	49	81	44	66	740	601	105	85
07:30	122	76	128	93	121	77	127	92	121	77	68	79	43	51	730	545	104	77
07:45	135	67	140	73	142	80	146	76.	149	64	72	60	41	55	825	475	117	67
08:00	131	64	146	83	141	58	157	95	138	54	63	58	42	46	818	458	116	65
08:15	143	56	153	88	146	91	132	76	139	57	76	47	63	43	852	458	121	65
08:30	152	58	120	62	127	55	149	60	152	54	84	62	48	37	832	388	118	55
08:45	135	46	145	61	151	50	133	51	142	55	91	44	60	38	857	345	122	49
09:00	127	51	143	60	122	47	130	41	133	44	90	34	48	34	793	311	113	44
09:15	113		130	84	123	48	124	59	140	44	80	61	66	37	776	333	110	55
09:30	106		114	82	124	64	128	51	120	40	100	52	74	57	766	346	109	57
09:45	112		106	56	130	53	117	35	109	28	108	63	77	29	759	264	108	44
10:00	98		94	31	103	41	108	33	89	42	105	48	79	30	676	225	96	37
10:15	105		92	35	107	31	110	23	97	38	104	39	72	21	687	187	98	31
10:30	93		93	33	117	27	92	30	107	69	103	49	101	21	706	229	100	38
10:45	101		102	27	105	22	104	22	108	44	116	60	86	23	722	198	103	33
11:00	113		97	32	92	18	108	35	114	43	116	47	68	16	708	191	101	31
11:15	87		97	35	96	31	96	25	100	39	104	43	86	24	666	197	95	32
11:30	103		86	16	81	14	92	14.	103	35	110	19	94	14	669	112	95	18
11:45	102		107	19	108	20	123	22	106	33	106	30	99	11	751	135	107	22
12:00	97		95	12	115	15	97	15	109	30	99	20	109	3	721	95	103	15

TOTALS	6448	7276	7235	7281	7238	5751	4764	45993	6586
AM Times	$7: 45$	$7: 30$	$8: 00$	$7: 45$	$7: 45$	$10: 45$	$11: 15$	$8: 00$	$8: 00$
AM Reaks	561	567	565	584	578	446	388	3359	477
PM Times	$17: 30$	$16: 45$	$16: 45$	$16: 30$	$16: 30$	$12: 15$	$12: 30$	$16: 45$	$16: 45$
PM Reaks	536	571	584	561	523	432	441	3287	467

Massdot Highway Division
 WEEKLY SUMMARY
 Starting:4/28/2015

Page: 1

STA.q

File: V400.prn
City: WESTON
county: VOL

Site Reference: 150110000625
Site ID: 000000000400
Location: ON-RAMP FROM I-90 TO I-95 SB Direction: ROAD TOTAL

00:15	53	337	47	246	43	321	69	317	80	293	83	427	70	346	445	2287	63	326
00:30	46	279	32	316	54	310	45	313	70	317	73	416	70	287	390	2238	55	319
00:45	35	302	40	368	45	352	50	310	76	358	56	383	64	358	366	2431	52	347
01:00	37	326	45	341	66	348	51	342	77	373	64	412	59	365	399	2507	57	358
01:15	40	310	27	286	36	341	35	274	48	354	63	365	64	349	313	2279	44	325
01:30	37	311	28	323	26	346	44	310	44	353	46	352	84	371	309	2366	44	338
01:45	30	326	21	300	26	424	33	300	32	403	36	386	62	367	240	2506	34	358
02:00	28	308	32	338	18	364	27	379	35	402	45	359	66	331	251	2481	35	354
02:15	20	342	31	370	21	353	24	355	37	411	41	386	64	340	238	2557	34	365
02:30	20	381	25	410	20	422	17	377	26	407	28	386	29	385	165	2768	23	395
02:45	19	382	16	384	15	427	25	478	28	374	34	419	31	361	168	2825	24	403
03:00	18	389	18	399	7	386	10	360	16	379	24	373	27	378	120	2664	17	380
03:15	18	368	11	388	11	374	24	364	28	382	16	347	16	342	124	2565	17	366
03:30	23	290	27	419	17	376	23	383	18	322	25	349	24	393	157	2532	22	361
03:45	23	344	21	361	31	357	21	348	24	365	18	372	13	406	151	2553	21	364
04:00	27	368	21	398	27	343	29	351	34	359	28	373	12	385	178	2577	25	368
04:15	25	327	26	358	40	353	28	344	36	360	16	378	12	331	183	2451	26	350
04:30	26	296	44	358	29	325	38	322	30	301	26	353	11	355	204	2310	29	330
04:45	43	259	65	323	49	347	43	334	45	333	12	350	12	334	269	2280	38	325
05:00	54	303	57	350	55	351	68	333	61	328	25	353	10	380	330	2398	47	342
05:15	65	309	70	329	77	310	65	346	83	325	25	345	16	347	401	2311	57	330
05:30	115	334	99	324	118	338	115	336	105	340	40	348	16	362	608	2382	86	340
05:45	162	336	154	354	168	351	164	328	166	338	54	360	27	340	895	2407	127	343
06:00	226	366	229	356	237	411	218	336	221	363	56	284	48	357	1235	2473	176	353
06:15	247	327	285	399	276	334	319	331	264	379	73	283	42	306	1506	2359	215	337
06:30	236	356	271	302	287	310	282	382	287	383	119	255	59	318	1541	2306	220	329
06:45	294	319	298	291	332	342	290	350	347	388	111	293	95	272	1767	2255	252	322
07:00	303	251	344	350	353	337	374	356	378	341	129	249	84	244	1965	2128	280	304
07:15	372	268	413	344	428	338	394	303	395	347	148	237	85	272	2235	2109	319	301
07:30	407	241	452	308	449	256	444	254	453	316	156	228	92	267	2453	1870	350	267
07:45	445	272	489	276	486	251	491	235	484	282	149	227	140	219	2684	1762	383	251
08:00	512	187	542	200	498	207	545	255	463	253	219	225	123	228	2902	1555	414	222
08:15	440	176	495	193	458	195	419	207	373	210	200	171	118	197	2503	1349	357	192
08:30	460	180	502	178	451	202	440	207	556	193	213	193	162	210	2784	1363	397	194
08:45	409	172	392	194	425	178	479	165	479	178	295	166	136	177	2615	1230	373	175
09:00	465	147	460	166	426	173	433	169	425	182	279	170	156	184	2644	1191	377	170
09:15	457		415	130	450	182	533	170	411	158	24.9	178	176	169	2691	987	384	164
09:30	461		489	158	472	185	480	184	412	195	302	193	170	158	2786	1073	398	178
09:45	432		477	168	444	207	442	197	360	197	286	183	219	156	2660	1108	380	184
10:00	369		407	102	449	153	396	153	392	168	340	159	240	134	2593	869	370	144
10:15	346		324	108	264	184	362	166	347	181	356	186	249	110	2248	935	321	155
10:30	295		351	103	298	130	346	118	364	152	326	182	290	131	2270	816	324	136
10:45	326		339	125	311	110	356	133	364	150	360	175	318	116	2374	809	339	134
11:00	306		354	93	313	102	366	104	373	153	386	183	324	84	2422	719	346	119
11:15	268		300	100	281	86	339	111	313	127	402	155	293	89	2196	668	313	111
11:30	289		313	79	294	73	326	79	327	109	467	131	383	94	2399	565	342	94
11:45	317		303	63	290	85	334	88	367	111	421	89	321	67	2353	503	336	83
12:00	303		304	65	329	54	334	90	340	108	398	98	336	56	2344	471	334	78

	20738	23399	23604	23837	24495	20803	18346	155222	22361
TOTALS	$7: 45$	$7: 45$	$7: 45$	$8: 45$	$7: 45$	$11: 15$	$11: 15$	$7: 45$	$7: 45$
AM Times	$7: 457$	2028	1893	1925	1876	1688	1333	10873	1551
AM Peaks	1857								
PM Times	$14: 30$	$14: 45$	$14: 30$	$14: 00$	$13: 45$	$12: 15$	$15: 15$	$14: 30$	$14: 30$
PM Peaks	1520	1590	1609	1589	1623	1638	1526	10822	1544

APPENDIX C

Crash Data

LOCATION 1

I-93 Southbound Between I-95 and Montvale Avenue in Woburn and Stoneham

Count	Crash Number	Crash Crash Time	Crash Date	Crash Severity	Number of Vehicles	Total Nonfatal Injury	Total Fatal Injury	Manner of Collision	Road Surface	Ambient Light Condition	Weather Condition	Vehicle Traveled Direction	Roadway	Location
	2645141	2010 2:05 PM	23-Sep-2010	Property damage only (n	2	0	0	Single vehicle crash	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	22555994	2010 8:00 AM	18-Jan-2010	Property damage only (n	2	0	0	Sideswipe, same direction	Snow	Daylight	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	2567185	2010 4:55 PM	12-Feb-2010	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	2590453	2010 8:57 AM	23-Mar-2010	Property damage only (n	3	0	0	Rear-end	Wet	Daylight	Cloudy/Rain	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	2591433	2010 8:59 AM	15-Apr-2010	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 / M	VALE AVENUE
	62598097	2010 4:16 AM	16-May-2010	Property damage only (n	1	0	0	Single vehicle crash	Dry	Dark - lighted roadway	Clear	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	72614147	2010 8:30 PM	22-Jun-2010	Non-fatal injury	1	1	0	Single vehicle crash	Other	Dark - lighted roadway	Not Reported	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	2670945	2010 11:26 PM	14-Dec-2010	Non-fatal injury	4	1	0	Sideswipe, same direction	Dry	Dark - lighted roadway	Cloudy	V1:Southbound / V2:Not reported / VER	Rte 93 S	Exit 36 on Rte 93 S
	2649274	2010 7:57 AM	30-Sep-2010	Non-fatal injury	4	2	0	Rear-end	Dry	Daylight	Cloudy	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	102653156	2010 11:44 PM	18-Oct-2010	Non-fatal injury	1	1	0	Single vehicle crash	Dry	Dark - lighted roadway	Clear	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	112662901	2010 6:15 PM	08-Nov-2010	Non-fatal injury	2	1	0	Angle	Dry	Dark - roadway not lighted	Clear/Rain	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	122663635	2010 9:25 AM	22-Nov-2010	Property damage only (n	4	0	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	3666188	2010 11:16 AM	01-Dec-2010	Non-fatal injury	1	1	0	Single vehicle crash	Wet	Daylight	Not Reported	V1:Southbound	RAMP-MO	ALE AVE
	142700876	2011 7:40 AM	17-Feb-2011	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	52703014	2011 5:53 PM	03-Mar-2011	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93
	162728282	2011 11:38 PM	20-May-2011	Non-fatal injury	1	1	0	Sideswipe, same direction	Dry	Dark - lighted roadway	Clear	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$17 \quad 2744167$	2011 12:30 PM	24-Jul-2011	Non-fatal injury	2	2	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	182778968	2011 10:28 PM	05-Oct-2011	Non-fatal injury	4	2	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93
	192812191	2011 5:33 PM	29-Nov-2011	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Cloudy	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	202709812	2011 9:45 PM	24-Mar-2011	Property damage only (n	1	0	0	Single vehicle crash	Wet	Dark - lighted roadway	Snow	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
2	212709816	2011 8:45 PM	25-Mar-2011	Non-fatal injury	3	1	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
22	$22 \quad 2718150$	2011 3:31 PM	01-Apr-2011	Property damage only (n	2	0	0	Rear-end	Wet	Daylight	Rain	V1:Southbound / V2:Southbound		
23	232700863	2011 9:30 AM	20-Jan-2011	Property damage only (n	2	0	0	Rear-end	Wet	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
24	$24 \quad 2702746$	2011 1:59 AM	13-Feb-2011	Property damage only (n	1	0	0	Single vehicle crash	Dry	Dark - lighted roadway	Cloudy	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
25	$25 \quad 2716293$	2011 8:25 PM	20-Apr-2011	Property damage only (n	4	0	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	262721013	2011 7:15 PM	24-Apr-2011	Property damage only (n	2	0	0	Rear-end	Dry	Dusk	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$27 \quad 2719038$	2011 9:00 AM	26-Apr-2011	Non-fatal injury	3	1	0	Angle	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	2727262	2011 9:10 PM	08-May-2011	Property damage only (n	2	0	0	Angle	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	292782648	2011 6:30 AM	07-Oct-2011	Property damage only (n	3	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 935
	302814845	2011 11:27 AM	31-Oct-2011	Property damage only (n	2	0	0	Angle	Dry	Daylight	Clear	V1:Southbound / V2:Westbound		
	312941666	2011 11:15 PM	02-Dec-2011	Non-fatal injury	2	1	0	Sideswipe, same direction	Dry	Dark - lighted roadway	Not Reported	V1:Southbound/ V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	323226326	2012 6:30 PM	01-Aug-2012	Non-fatal injury	3	1	0	Rear-end	Wet	Daylight	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
33	$33 \quad 3243304$	2012 00:00 AM	15-Aug-2012	Property damage only (n	2	0	0	Sideswipe, same direction	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93
	$34 \quad 3248871$	2012 6:36 AM	22-Aug-2012	Property damage only (n	4	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93
35	$35 \quad 3278879$	2012 9:48 AM	16-Oct-2012	Non-fatal injury	3	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93	Exit 36 on Rte 93
	363252668	2012 7:44 AM	14-Sep-2012	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/ V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	372951592	2012 7:30 PM	27-Feb-2012	Non-fatal injury	2	1	0	Sideswipe, same direction	Dry	Dark - lighted roadway	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$38 \quad 3321446$	2012 6:16 AM	13-Dec-2012	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	392853093	2012 6:00 PM	05-Jan-2012	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	402872386	2012 6:52 AM	13-Jan-2012	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	412894055	2012 5:45 PM	27-Jan-2012	Property damage only (n	2	0	0	Rear-end	Wet	Dark - lighted roadway	Rain	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$42 \quad 2894059$	2012 7:25 AM	01-Feb-2012	Property damage only (n	3	0	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	432914850	2012 6:20 PM	09-Feb-2012	Property damage only (n	2	0	0	Rear-end	Dry	Dark - lighted roadway	Not Reported	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	442937668	2012 7:50 PM	01-Mar-2012	Property damage only (n	4	0	0	Angle	Snow	Dark - lighted roadway	Snow	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
45	$45 \quad 2976134$	2012 8:00 AM	19-Mar-2012	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
46	$46 \quad 3018135$	2012 8:27 AM	03-Apr-2012	Property damage only (n		0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$47 \quad 3019528$	2012 3:30 AM	09-Apr-2012	Non-fatal injury	2	1	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
48	$48 \quad 3207184$	2012 6:21 AM	23-Jul-2012	Property damage only (n	2	0	0	Sideswipe, same direction	Wet	Daylight	Cloudy/Rain	V1:Southbound/V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	493245395	2012 00:00 AM	24-Aug-2012	Property damage only (n	1	0	0	Single vehicle crash	Dry	Dark - lighted roadway	Clear	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	$50 \quad 3266539$	2012 7:44 AM	20-Sep-2012	Property damage only (n	2	0	0	Sideswipe, same direction	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	513278621	2012 8:35 PM	14-Oct-2012	Property damage only (n	2	0	0	Angle	Dry	Dark - lighted roadway	Cloudy	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	523286145	2012 2:11 PM	22-Oct-2012	Property damage only (n	2	0	0	Sideswipe, same direction	Dry	Daylight	Clear	V1:Southbound / V2:Southbound		
	$53 \quad 3282338$	2012 6:10 PM	24-Oct-2012	Non-fatal injury	5	2	0	Rear-end	Dry	Dark - roadway not lighted	Clear	V1:Southbound / V2:Southbound / V3:	Rte 93 S	Exit 36 on Rte 93 S
	543285757	2012 5:59 AM	01-Nov-2012	Property damage only (n	2	0	0	Rear-end	Dry	Dawn	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S

Count		Crash Number	$\begin{aligned} & \text { Crash } \\ & \text { Year } \end{aligned}$	Crash Time	Crash Date	Crash Severity	Number of Vehicles	Total Nonfatal Injury	Total Fatal Injury	Manner of Collision	Road Surface	Ambient Light Condition	Weather Condition	Vehicle Traveled Direction	Roadway	Location
	55	3290936	2012	6:25 AM	14-Nov-2012	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	56	3293154	2012	6:12 AM	19-Nov-2012	Property damage only (n	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/V2:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	57	3325690	2012	2:03 AM	30-Dec-2012	Non-fatal injury	1	1	0	Single vehicle crash	Snow	Dark - lighted roadway	Snow	V1:Southbound	Rte 93 S	Exit 36 on Rte 93 S
	58	3378131*		3:26 AM	01-Apr-2012	Fatal injury	2	1	1	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound	RTE 95	
	59	3378030*	2012	4:19 AM	01-Apr-2012	Property damage only (n	3	0	0	Rear-end	Dry	Dark - lighted roadway	Clear	V1:Southbound / V2:Southbound /	RTE 95	
	60	3123331*	2012	8:35 AM	06-Jun-2012	Not Reported	4	0	0	Rear-end	Dry	Daylight	Cloudy	V1:Southbound / V2:Southbound /	S/ OF RT 1	
	61	3154571*	2012	8:15 AM	15-Jun-2012	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound/V2:Southbound		Exit 37 on Rte 935

LOCATION 2

I-95 Southbound at the I-90 Interchange in Weston

Count	Crash Number		Crash year Crash Time	Crash Date	Crash Severity	Number of Vehicles	Total Nonfatal	Total Fatal Injury	Manner of Collision	Road Surface	Ambient Light	Weather Condition	Vehicle Traveled Direction	dway	Location
	1	2641964	2010 7:45 AM	24-Aug-2010	Non-fatal injury	1	1	0	Single vehicle crash	Wet	Davilight	Cloudy/Rain	V1:Southbound R	Rte 95 s	Exit 24 on Rte 95 S
	2	2606670	2010 4:05 PM	01-Jun-2010	Property damage only (n)	3	0	0	Rear-end	Dry	Davilight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 955	Exit 25 on Rte 95
	3	2610642	2010 6:31 PM	15-Jun-2010	Property damage only (n)	2	0	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound/v2:Southbound Re	Rte 955	Exit 25 on Rte 955
	4	2618905	2010 3:32 PM	18-Jun-2010	Non-fatal injury	3	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:Soutt Re	Rte 95s	Exit 25 on Rte 95s
	5	2612071	2010 9:52 AM	21-Jun-2010	Property damage only (n)	1	0	0	Single veticle crash	Dry	Daylight	Clear	V1:Southbound Re	Rte 95 s	Exit 24 on Rte 955
	6	2634065	2010 5:10 PM	19-Aug-2010	Property damage only (n)	3	0	0	Rear-end	Dry	Dayight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 24 on Rte 955
	7	2595266	2010 4:55 PM	19-Mar-2010	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	clear	V1:Southbound / v2:Southbound Re	Rte 95 S	Exit 25 on Rte 955
	8	2592131	2010 9:20 AM	24-Mar-2010	Non-fatal injury	2	1	0	Sideswipe, same direction	Dry	Daylight	Cloudy	V1:Southbound/V2:Southbound Rte	Rte 955	RAMP-RT 90 TO RT 95 SB
	9	2620862	2010 3:20 PM	06-Ju-2010	Non-fatal injury	1	1	0	Single vehicle crash	Dry	Daylight	Clear	V1:Southbound	Rte 955	Exit 24 on Rte 955
	10	2624720	2010 2:27 PM	23-ul-2010	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	Cloudy	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	11	2638740	2010 3:28 PM	26-Aug-2010	Non-fatal injury	4	1	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	12	2647835	2010 7:05 AM	04-Cct-2010	Non-fatal injury	2	1	0	Rear-end	Wet	Daylight	Cloudy/Rain	V1:Southbound/v2:Southbound Re	Rte $95 \mathrm{~s} /$ /te 30	RAMP-RT 30 TO RT 95 SB
	13	2745183	2010 4:5 PM	14-Cct-2010	Property damage only (n)	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/V2:Southbound Re	Rte 95	Exit 25 on Rte 95
	14	2656562	2010 12:40 PM	01-Nov-2010	Non-fatal injury	1	1	0	Single vehicle crash	Dry	Daylight	Clear	V1:Southbound	Rte 95 s	Exit 24 on Rte 955
	15	2663166	2010 3:50 PM	05-Nov-2010	Property damage only (n)	4	0	0	Rear-end	Dry	Daylight	Cloudy	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	16	267682	2010 5:51 PM	07-Dec-2010	Non-fatal injury	2	1	0	Rear-end	Dry	Dark - roadway not lighted	Not Reported	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	17	2749846	2011 12:03 PM	04-Aug-2011	Non-fatal injury	1	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound Re	Rte 95 s	Exit 24 on Rte 955
	18	2765897	2011 6:24AM	21-Sep-2011	Property damage only (n)	2	0	0	Sideswipe, same direction	Dry	Dawn	Fog, smog, smoke	V1:Southbound/V2:Southbound R	Rte 95	Exit 24 on Rte 95
	19	2835781	2011 4:00 PM	09-Dec-2011	Property damage only (n)	2	0	0	Rear-end	Dry	Dusk	clear	V1:Southbound/v2:Southbound Re	Rte 95 s	Exit 24 on Rte 955
	20	2680997	2011 4:58 PM	11-Jan-2011	Non-fatal injury	3	1	0	Rear-end	Dry	Dusk	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	21	2702374	2011 10:15 AM	22-Feb-2011	Property damage only (n)	2	0	0	Angle	Dry	Daylight	Clear	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	22	2755755	$201111: 25 \mathrm{AM}$	26-Feb-2011	Non-fatal injury	1	1	0	Single vehicle crash	Dry	Daylight	Clear	V1:Southbound	Rte 955	RAMP-RT 90 TO RT 95 SB
	23	270994	2011 4:29 PM	18-Mar-2011	Property damage only (n)	4	0	0	Rear-end	Dry	Daylight	clear	V1:Southbound / V2:Southbound / /3:5out Re	Rte 95 s	Exit 25 on Rte 95 s
	24	2727714	2011 3:52 PM	25-Mar-2011	Property damage only (n)	2	0	0	Angle	Dry	Daylight	Not Reported	V1:Southbound/v2:Southbound Re	Rte 95 s	Exit 25 on Rte 955
	25	2728134	2011 4:11 PM	02-May-2011	Non-fatal injury	3	1	0	Sideswipe, same direction	Dry	Daylight	clear	V1:Southbound / V2:Southbound / /3:5out Re	Rte 95 s	Exit 25 on Rte 955
	26	2727785	2011 4:14PM	06-May-2011	Non-fatal injury	3	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 955	Exit 25 on Rte 955
	27	2728138	2011 4:30 PM	13-May-2011	Property damage only (n)	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	28	2737919	2011 6:00 PM	20-Jun-2011	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	29	278684	2011 7:40 PM	22-Jun-2011	Property damage only (n)	3	0	0	Rear-end	Dry	Dusk	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	30	2738606	2011 3:39 PM	28-Jun-2011	Non-fatal injury	3	2	0	Rear-end	Dry	Daylight	clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	31	2749813	2011 4:45 PM	14-Jul-2011	Property damage only (n)	2	0	0	Rear-end	Dry	Daviight	Clear	V1:Southbound / V2:Southbound R	Rte 95 s	Exit 25 on Rte 95s
	32	279884	2011 5:15 PM	20-Ju-2011	Property damage only (n)	3	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / /3:5out Re	Rte 955	Exit 25 on Rte 955
	33	2751662	2011 4:25 PM	21-Jul-2011	Property damage only (n)	3	0	0	Rear-end	Dry	Daylight	Not Reported	V1:Southbound / V2:Southbound / / 3 :Sout Re	Rte 955	Exit 24 on Rte 955
	34	2750709	2011 4:11 PM	11-Aug-2011	Non-fatal injury	3	1	0	Rear-end	Dry	Davight	Clear	V1:Southbound / V2:Southbound / /3:5out Re	Rte 955	Exit 25 on Rte 955
	35	2827961	2011 8:10 AM	24-Sep-2011	Non-fatal injury	1	1	0	Single veticle crash	Wet	Daviight	Rain	V1:Southbound	Rte 95 s	Exit 25 on Rte 955
	36	2782652	2011 5:08 PM	05-0ct-2011	Non-fatal injury	3	2	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 95 s
	37	2787675	2011 3:20 PM	07-0ct-2011	Property damage only (n)	3	0	0	Rear-end	Dry	Davilight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 24 on Rte 955
	38	2788846	2011 4:25 PM	20-ct-2011	Property damage only (n)	4	0	0	Rear-end	Dry	Daylight	Cloudy	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 955	Exit 25 on Rte 955
	39	2793997	2011 5:20 PM	09 -Nov-2011	Not Reported	1	0	0	Single veticle crash	Dry	Dark-roadway not lighted	Clear	V1:Southbound	Rte 95 s	Exit 25 on Rte 955
	40	2793998	2011 4:17 PM	11-Nov-2011	Property damage only (n)	4	0	0	Rear-end	Dry	Davight	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 955	Exit 25 on Rte 955
	41	2887405	2011 4:18 PM	18-Nov-2011	Property damage only (ni	2	0	0	Rear-end	Dry	Dusk	clear	V1:Southbound/v2:Southbound Re	Rte 95 s	Exit 24 on Rte 955
	42	2805793	2011 7:57 PM	22-Nov-2011	Property damage only (n)	2	0	0	Rear-end	Dry	Dark-roadway not lighted	clear	V1:Southbound/V2:Southbound Rte	Rte 95 s	Exit 25 on Rte 955
	43	3374698	$201111: 59 \mathrm{AM}$	29-Nov-2011	Not Reported	1	0	0	Single vehicle crash	Dry	Daylight	Cloudy	V1:Southbound	Rte 95 s	Exit 24 on Rte 955
	44	2833764	2011 5:34 PM	13-Dec-2011	Property damage only (n)	4	0	0	Rear-to-rear	Dry	Dark - roadway not lighted	Clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	45	3235162	2012 6:30 PM	14-Jun-2012	Property damage only (n)	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/V2:Southbound R	Rte 955	Exit 25 on Rte 955
	46	2954168	2012 12:26 PM	29-Feb-2012	Property damage only (n)	1	0	0	Sideswipe, same direction	Wet	Davight	Rain	V1:Southbound R	Rte 95 s	Exit 25 on Rte 955
	47	3069207	2012 8:20 AM	06-Mar-2012	Not Reported	2	0	0	Angle	Dry	Daylight	clear	V1:Southbound / V2:Southbound Rit	Rte 95 s	Exit 25 on Rte 955
	48	3381262	2012 3:41 AM	06-Oct-2012	Property damage only (n)	1	0	0	Single vehicle crash	Wet	Dark - unknown roadway ligh	Cloudy	V1:Southbound		
	49	2889040	2012 11:35 PM	16-Jan-2012	Property damage only (n)	1	0	0	Single vehicle crash	Snow	Dark-roadway not lighted	Snow	V1:Southbound	Rte 95	Exit 25 on Rte 95
	50	2896829	2012 8:40 PM	30-Jan-2012	Property damage only (n)	1	0	0	Single vehicle crash	Dry	Dark-lighted roadway	Clear	V1:Southbound	Rte 95 s	Exit 24 on Rte 955
	51	3049843	2012 4:12 PM	17-Feb-2012	Non-fatal injury	3	3	0	Rear-end	Dry	Dusk	clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	52	3065707	2012 6:27 PM	05-Apr-2012	Not Reported	2	0	0	Rear-end	Dry	Dusk	clear	V1:Southbound/v2:Southbound R	Rte 955	Exit 25 on Rte 955
	53	3049845	2012 3:28 PM	12-Apr-2012	Non-fatal injury	2	1	0	Rear-end	Dry	Daylight	Clear	V1:Southbound/V2:Southbound R	Rte 95 s	Exit 24 on Rte 955
	54	3068814	2012 4:05 PM	27-Apr-2012	Not Reported	2	0	0	Rear-end	Dry	Daylight	clear	V1:Southbound/v2:Southbound Re	Rte 95 s	Exit 25 on Rte 955
	55	3095220	2012 5:05 PM	01-May-2012	Not Reported	2	0	0	Rear-end	Wet	Daylight	Not Reported	V1:Southbound/ / $2:$ Southbound Re	Rte 95 s	Exit 25 on Rte 955
	56	3118659	2012 3:37 PM	17-May-2012	Not Reported	2	0	0	Angle	Dry	Dayight	Not Reported	V1:Southbound/V2:Southbound Rte	Rte 95 s	Exit 24 on Rte 955
	57	3381249	2012 3:35 PM	23-May-2012	Non-fatal injury	,	2	0	Rear-end	Dry	Daylight	clear	V1:Southbound/V2:Southbound R	Rte 95 s	
	58	3158785	2012 4:43 AM	13-Jun-2012	Property damage only (n)	1	0	0	Single veticle crash	Wet	Dawn	Rain	V1:Southbound R	Rte 955	Exit 24 on Rte 955
	59	3163119	2012 11:00 AM	21-Jun-2012	Property damage only (n)		0	0	Rear-end	Dry	Daylight	clear	V1:Southbound / V2:Southbound / V3:Nort Re	Rte 95 s	Exit 25 on Rte 955
	60	3168335	2012 5:36 PM	08-Ju-2012	Non-fatal injury	4	3	0	Rear-end	Dry	Daviight	clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 955
	61	3207355	2012 3:18 PM	20-Ju-2012	Non-fatal injury	,	1	0	Rear-end	Dry	Davilight	clear	V1:Southbound / V2:Southbound R	Rte 95 s	Exit 25 on Rte 95s
	62	3235165	2012 4:06 PM	01-Aug-2012	Property damage only (n)	2	0	0	Rear-end	wet	Davilight	Cloudy/Rain	V1:Southbound/V2:Southbound Rte	Rte 955	Exit 25 on Rte 955
	63	3242532	2012 2:17 PM	10-Aug-2012	Property damage only (n)		0	0	Rear-end	Dry	Daviight	Cloudy	V1:Southbound / V2:Southbound Rte	Rte 955	Exit 25 on Rte 95s
	64	3248907	2012 2:22 PM	24-Aug-2012	Non-fatal injury		3	0	Rear-end	Dry	Daviight	clear	V1:Southbound / V2:Southbound / V3:Sout Re	Rte 95 s	Exit 25 on Rte 95s
	65	3245322	2012 3:30 PM	29-Aug-2012	Property damage only (n)	2	0	0	Rear-end	Dry	Daylight	Clear	V1:Southbound / V2:Southbound R R	Rte 95s	Exit 25 on Rte 955
	66	3251460	2012 8:50 PM	01-Sep-2012	Property damage only (n)		0	0	Sideswipe, same direction	Dry	Dark- lighted roadway	claar	V1:Southbound/V2:Southbound Re	Rte 95s	Exit 25 on Rte 955
	67	3381374	2012 7:30 PM	02-Sep-2012	Property damage only (ni	,	0	0	Sideswipe, same direction	Dry	Dark-lighted roadway	clar	V1:Southbound / V2:Southbound Riteren	Rte 95s	RAMP-RT 90 TO RT 95 SB
	68	3286163	2012 3:46 PM	26-Oct-2012	Non-fatal injury	2	1	0	Rear-end	Dry	Davight	clear	V1:Southbound/V2:Southbound Rte	Rte 95 s	Exit 25 on Rte 95s

APPENDIX D

Level of Service (LOS) Analysis
 Freeway Ramp Merge and Diverge Analys $\mathbf{G}^{\mathbf{s}}$

LOCATION 1

I-93 Southbound Between I-95 and Montvale Avenue in Woburn and Stoneham

2015 Existing Conditions

1. 2015 AM Merge
2. 2015 AM Diverge
3. 2015 AM Basis Freeway

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	5/20/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Merge from I-95 NB to I-93 SB
Jurisdiction:	Highway District 4
Analysis Year:	2015 Existing
Description: Low-Cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Merge
4
Free-flow speed on freeway 65.0 mph
Volume on freeway 5750 vph
On Ramp Data

\qquad

Capacity Checks

Flow Entering Merge Influence Area

	Flow	Entering Merge Influence Area	
V	Actual	Max Desirable	Violation?
$12 A$	4101	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \underset{\mathrm{R}}{\mathrm{v}}+0.0078 \mathrm{v} \underset{12}{ }-0.00627 \mathrm{~L}=27.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence C

Intermediate speed variable,	$\mathrm{M}=0.467$	
	S	
Space mean speed in ramp influence area,	$\underset{\mathrm{R}}{\mathrm{~S}}=54.3$	mph
Space mean speed in outer lanes,	$S_{0}=60.0$	mph
Space mean speed for all vehicles,	$\mathrm{S}=56.9$	mph

Phone:

Fax:
E-mail:

Diverge Analysis \qquad
Analyst:
Agency/Co.:
Date performed:
Analysis time period: AM Peak Hour
Freeway/Dir of Travel: I-93 SB (I-95 to Montvale Ave)
Junction: Diverge I-93 SB to Montvale
Jurisdiction:
Analysis Year: 2015 Existing
Description: Low-Cost Improvement to Bottleneck Locations

Type of analysis	Diverge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	6300	vph

Off Ramp Data

Junction Components	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph)	6300		1400		150	vph
Peak-hour factor, PHF	0.95		0.95		0.95	
Peak 15-min volume, v15	1658		368		39	v
Trucks and buses	4		3		3	\%
Recreational vehicles	0		0		0	\%
Terrain type:	Level		Level		Level	
Grade	0.00	\%	0.00	\%	0.00	\%
Length	0.00	mi	0.00	mi	0.00	mi
Trucks and buses PCE, ET	3.0*		3.0*		3.0*	
Recreational vehicle PCE, ER	1.2		1.2		1.2	

\qquad

Flow Entering Diverge Influence Area Actual

Max Desirable 4400

Violation?
No

	Actual	4085	4400

\qquad Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L} \quad=\quad 36.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence E
Speed Estimation

Intermediate speed variable,	D	$=0.636$	
Space mean speed in ramp influence area,	S	$=50.4$	mph
Space mean speed in outer lanes,	S	$=68.9$	mph
Space mean speed for all vehicles,	0	S	$=57.1$

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	1972	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	60.4	mi / h
Number of lanes, N	4	
Density, D	32.7	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

2015 Existing Conditions

1. 2015 PM Merge
2. 2015 PM Diverge
3. 2015 PM Basis Freeway

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	$5 / 20 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Merge from I-95 NB to I-93 SB
Jurisdiction:	Highway District 4
Analysis Year:	2015 Existing)
Description: Low-Cost Improvements to Bottleneck Locations	

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	5950	vph
On Ramp Data		

Side of freeway

Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 1700 vph
Length of first accel/decel lane
Length of second accel/decel lane
Adjacent Ramp Data (if one exists)
Right
1
30.0 mph

1500 ft
ft
\qquad

Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
$950 \quad$ vph
Upstream
Off
1000 ft

Heavy vehicle adjustment, fHV
0.980
0.985
0.985

Driver population factor, fP
\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
8372	9400	No

FO 8372 9400

No
v_{3} or $\mathrm{v} \operatorname{av34}$
Is v or $\mathrm{v} \quad>2700 \mathrm{pc} / \mathrm{h}$?
Yes
$3 \operatorname{av} 34$
Is v or $\mathrm{v}>1.5 \mathrm{v} / 2$
Yes
$3 \operatorname{av} 34 \quad 12$
If yes, $v=2607$ (Equation 13-15, 13-16, 13-18, or 13-19)
12A

	Flow Entering Merge Influence Area	Actual	Max Desirable	Violation?
V 12 A	4460	4600	No	

Density, $D=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v}-0.00627 \mathrm{~L}=30.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.568$	
Space mean speed in ramp influence area,	$S=51.9$	$m p h$
	R	
Space mean speed in outer lanes,	$S=59.8$	mph
	0	
Space mean speed for all vehicles,	$S=55.3$	$m p h$

HCS 2010: Freeway Merge and Diverge Segments Release 6.70

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	$5 / 20 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Diverge I-93 SB to Montvale
Jurisdiction:	Highway District 4
Analysis Year:	2015 Existing
Description: Low-Cost	
	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Diverge
Free-flow speed on freeway
Volume on freeway

4
65.0 mph
$7650 \quad$ vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	30.0	mph
Volume on ramp	1000	vph
Length of first accel/decel lane	350	ft
Length of second accel/decel lane		ft
Adjacent	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	350	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	On	
Distance to adjacent ramp	700	ft

\qquad

Flow Entering Diverge Influence Area Actual

Max Desirable 4400
Violation? 4571 Yes

Level of Service Determination (if not F) \qquad

Intermediate speed variable,	D	$=0.598$	
Space mean speed in ramp influence area,	S	$=51.2$	mph
Space mean speed in outer lanes,	S	$=66.6$	mph
Space mean speed for all vehicles,	0	S	$=57.8$
		mph	

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	2095	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	58.2	mi / h
Number of lanes, N	4	
Density, D	36.0	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	E	

Alternative 1: Lengthen the Deceleration Lane at the Exit 36 Diverge Area

1. 2025 AM Merge
2. 2025 AM Diverge
3. 2025 AM Basis Freeway

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	5/20/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Merge from I-95 NB to I-93 SB
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year
Description: Low-Cost	Improvements to Bottleneck Locations

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	6050	vph

Side of freeway

Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 1470 vph
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
30.0 mph

1500 ft
ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
890 vph
Upstream
Off
1000 ft

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
2831	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.00627 \mathrm{~L} \quad=17.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Intermediate speed variable,	$\mathrm{M}=0.297$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=58.2$	mph
Space mean speed in outer lanes,	$S_{0}=56.1$	mph
Space mean speed for all vehicles,	$S=56.8$	mph

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	$5 / 20 / 2015$
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Diverge I-93 SB to Montvale
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year
Description: Low-Cost Improvements to Bottleneck Locations	

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Diverge
Free-flow speed on freeway
Volume on freeway

4
65.0 mph 6600 vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	mph
Free-Flow speed on ramp	30.0	vph
Volume on ramp	1500	ft
Length of first accel/decel lane	1500	ft

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	160	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	On	
Distance to adjacent ramp	700	ft

\qquad

Flow Entering Diverge Influence Area Actual 4301

Max Desirable 4400

Violation?
No

	Actual	Max Desirable	Violation?
v	4301	4400	No

Density, $\quad \underset{R}{D}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}=27.7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C
Speed Estimation

Intermediate speed variable,	D	$=0.647$	
Space mean speed in ramp influence area,	$\mathrm{S}=50.1$	mph	
Space mean speed in outer lanes,	S_{R}	$=68.7$	mph
Space mean speed for all vehicles,	S_{S}	$=56.9$	mph

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	2071	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	58.6	mi / h
Number of lanes, N	4	
Density, D	35.3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	E	

Alternative 1: Lengthen the Deceleration Lane at the Exit 36 Diverge Area

1. 2025 PM Merge
2. 2025 PM Diverge
3. 2025 PM Basis Freeway

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	$5 / 20 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Merge from I-95 NB to I-93 SB
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year
Description: Low-Cost Improvements to Bottleneck Locations	

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	6300	vph

Side of freeway

Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 1700 vph
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
30.0 mph

1500 ft
ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
890 vph
Upstream
Off
1000 ft

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
4566	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}+0.00627 \mathrm{~L}=30.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence D

Intermediate speed variable,	$\mathrm{M}=0.606$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=51.1$	mph
Space mean speed in outer lanes,	$S_{0}=59.4$	mph
Space mean speed for all vehicles,	$S=54.7$	mph

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	5/20/2015
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Diverge I-93 SB to Montvale Av
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year
Description: Low-Cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Diverge
Free-flow speed on freeway
4
Volume on freeway 8000 vph
Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	30.0	mph
Volume on ramp	1050	vph
Length of first accel/decel lane	1500	ft
Length of second accel/decel lane		ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp

Yes
370 vph
Downstream
On
700 ft

\qquad

Flow Entering Diverge Influence Area Actual

Max Desirable 4400

Violation?
Yes

	Flow Entering	Diverge Influence Area
Actual	Max Desirable	Violation?
12	4684	4400

Intermediate speed variable,	$D=0.601$		
Space mean speed in ramp influence area,	S	$=51.2$	mph
Space mean speed in outer lanes,	S	$=66.4$	mph
Space mean speed for all vehicles,	0	S	$=57.7$
	mph		

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	2205	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	55.8	mi / h
Number of lanes, N	4	
Density, D	39.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	E	

Alternative 2: Create an Auxiliary Lane for Merging and Diverging Traffic

1. 2025 AM Merge
2. 2025 AM Diverge
3. 2025 AM Basis Freeway

Phone:

Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	$5 / 20 / 2015$
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Merge from I-95 NB to I-93 SB
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year Alternative 2
Description: Low-Costin Improvements to Bottleneck Locations	

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	6050	vph

Side of freeway

Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 1470 vph
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
30.0 mph

1500 ft
ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
890 vph
Upstream
Off
1000 ft

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
2831	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.00627 \mathrm{~L} \quad=17.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Intermediate speed variable,	$\mathrm{M}=0.297$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=58.2$	mph
Space mean speed in outer lanes,	$S_{0}=56.1$	mph
Space mean speed for all vehicles,	$S=56.8$	mph

Phone:
Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	5/20/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Diverge I-93 SB to Montvale
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year Alt 2
Description: Low-Cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Diverge
Free-flow speed on freeway
Volume on freeway

4
65.0 mph 6600 vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	30.0	mph
Volume on ramp	1500	vph
Length of first accel/decel lane	1500	ft
Length of second accel/decel lane		ft

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	160	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	On	
Distance to adjacent ramp	700	ft

\qquad

Flow Entering Diverge Influence Area Actual 4301

Max Desirable 4400

Violation?
No

	Actual	Max Desirable	Violation?
v	4301	4400	No

Density, $\quad \underset{R}{D}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}=27.7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C
Speed Estimation

Intermediate speed variable,	D	$=0.647$	
Space mean speed in ramp influence area,	$\mathrm{S}=50.1$	mph	
Space mean speed in outer lanes,	S_{R}	$=68.7$	mph
Space mean speed for all vehicles,	S_{S}	$=56.9$	mph

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	5	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	1604	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	64.4	mi / h
Number of lanes, N	5	
Density, D	24.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, Los	C	

Alternative 2: Create an Auxiliary Lane for Merging and Diverging Traffic

1. 2025 PM Merge
2. 2025 PM Diverge
3. 2025 PM Basis Freeway

Phone:
Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Agency/Co.
CTPS
Date performed: 5/20/2015
Analysis time period: PM Peak Hour
Freeway/Dir of Travel: I-93 SB (I-95 to Montvale Ave)
Junction: Merge from I-95 NB to I-93 SB
Jurisdiction: Highway District 4
Analysis Year: 2025 Future Year Alternative 2
Description: Low-Cost Improvements to Bottleneck Locations

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	65.0	mph
Volume on freeway	6300	vph

On Ramp Data

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
4566	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}+0.00627 \mathrm{~L}=30.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence D

Intermediate speed variable,	$\mathrm{M}=0.606$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=51.1$	mph
Space mean speed in outer lanes,	$S_{0}=59.4$	mph
Space mean speed for all vehicles,	$S=54.7$	mph

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Seth Asante
Agency/Co.:	CTPS
Date performed:	5/20/2015
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-93 SB (I-95 to Montvale Ave)
Junction:	Diverge I-93 SB to Montvale Av
Jurisdiction:	Highway District 4
Analysis Year:	2025 Future Year
Description: Low-Cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Diverge
Free-flow speed on freeway
4
Volume on freeway 8000 vph
Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	30.0	mph
Volume on ramp	1050	vph
Length of first accel/decel lane	1500	ft
Length of second accel/decel lane		ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp

Yes
370 vph
Downstream
On
700 ft

\qquad

Flow Entering Diverge Influence Area

Actual

 4671Max Desirable 4400

Violation?
Yes

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L} \quad=\quad 30.9 \quad \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	D	$=0.599$	
Space mean speed in ramp influence area,	$\mathrm{S}=51.2$	mph	
Space mean speed in outer lanes,	S_{R}	$=66.4$	mph
Space mean speed for all vehicles,	S_{S}	$=57.7$	mph

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	5	
Free-flow speed:	Measured	
FFS or BFFS	65.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	65.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	1711	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	65.0	mi / h
Average passenger-car speed, S	63.6	mi / h
Number of lanes, N	5	
Density, D	26.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

LOCATION 2

I-95 Southbound at the I-90 Interchange in Weston

2015 Existing Conditions

1. 2015 AM Diverge to I-90
2. 2015 AM Diverge to Route 30
3. 2015 AM Merge onto Route 30
4. 2015 AM Merge onto l-90

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/1/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-Cost	Improvements to Bottleneck Locations

Freeway Data \qquad

Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Diverge
4
55.0 mph

7100 vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	25.0	mph
Volume on ramp	1750	vph
Length of first accel/decel lane	350	ft
Length of second accel/decel lane		ft
Adjacent	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	900	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	Off	
Distance to adjacent ramp	1400	ft

\qquad

Flow Entering Diverge Influence Area

Actual	Max Desirable	Violation?
4468	4400	Yes

12
Level of Service Determination (if not F) \qquad

Intermediate speed variable,	D	$=0.730$	
Space mean speed in ramp influence area,	S	$=45.5$	mph
Space mean speed in outer lanes,	S	$=57.8$	mph
Space mean speed for all vehicles,	0	S	$=50.0$

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	AM Peak
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-cost	Improvements to Bottleneck Locations

Type of analysis	Diverge	
Number of lanes in freeway	4	
Free-flow speed on freeway	55.0	mph
Volume on freeway	5350	vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	25.0	mph
Volume on ramp	900	vph
Length of first accel/decel lane	500	ft
Length of second accel/decel lane		ft
____Adjacent	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	550	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	On	
Distance to adjacent ramp	400	ft

\qquad

Flow Entering Diverge Influence Area

Actual

 3184Max Desirable 4400

Violation?
No

	Flow Entering	Diverge Influence	Area
vatual	3184	4400	Violation?
12			No

Density, $\quad \underset{R}{D}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}=27.1 \quad \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C
Speed Estimation

Intermediate speed variable,	D	$=0.650$	
Space mean speed in ramp influence area,	$\mathrm{S}=46.6$	mph	
Space mean speed in outer lanes,	S_{R}	$=58.8$	mph
Space mean speed for all vehicles,	S_{S}	$=51.6$	mph

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	AM Peak
Freeway/Dir of Travel:	I-95 SB
Junction:	Merge from Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-cost	Improvements to Bottleneck Locations

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	55.0	mph
Volume on freeway	4450	vph

Side of freeway

Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp Length of first accel/decel lane
Length of second accel/decel lane

Right
1
25.0 mph
$550 \quad$ vph
450 ft
$f t$
$f t$
ft

Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
Adjacent Ramp Data (if one exists) \qquad

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
1307	4600	No

R12
Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \underset{\mathrm{R}}{\mathrm{v}}+0.0078 \mathrm{v}_{12}-0.00627 \mathrm{~L}=12.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Merge from Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2015
Description: Low-cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge	
4	
55.0	mph
5000	vph

On Ramp Data

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
4501	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}+0.00627 \mathrm{~L} \quad=37.1 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence E

Intermediate speed variable,	$\mathrm{M}=0.652$	
	S	
Space mean speed in ramp influence area,	$\mathrm{S}_{\mathrm{R}}=46.5$	mph
Space mean speed in outer lanes,	$S_{0}=50.5$	mph
Space mean speed for all vehicles,	$\mathrm{S}=48.2$	mph

2015 Existing Conditions

1. 2015 PM Diverge to I-90
2. $\mathbf{2 0 1 5}$ PM Diverge to Route 30
3. 2015 PM Merge onto Route 30
4. 2015 PM Merge onto I-90

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 1 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2015
Description: Low-cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway
Diverge
4
55.0 mph
$7500 \quad$ vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	25.0	mph
Volume on ramp	2250	vph
Length of first accel/decel lane	350	ft
Length of second accel/decel lane		ft
	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	550	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	Off	
Distance to adjacent ramp	1400	ft

0.980
0.980

Driver population factor, fP
\qquad

Flow Entering Diverge Influence Area Actual

Max Desirable 4400

Violation?
Yes

Level of Service Determination (if not F) \qquad

Phone:
Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-cost	Improvements to Bottleneck

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway 55.0 mph
Volume on freeway 5250 vph
Off Ramp Data

\qquad

Flow Entering Diverge Influence Area

> Actual 2881

Max Desirable 4400

Violation?
No

| | Actual | 2881 | 4400 |
| :---: | :--- | :--- | :--- | Level of Service Determination (if not F) \qquad

Density, $\quad \mathrm{D}=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L} \quad=\quad 24.5 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C
Speed Estimation

Intermediate speed variable,	D	$=0.613$	
Space mean speed in ramp influence area,	$\mathrm{S}=47.0$	mph	
Space mean speed in outer lanes,	S	$=58.5$	mph
Space mean speed for all vehicles,	S_{S}	$=52.2$	mph

Phone:

Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 2 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Merge from Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-cost Improvements to Bottleneck Location	

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	55.0	mph
Volume on freeway	4700	vph

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
Number of lanes in ramp
Free-flow speed on ramp
1
25.0 mph
$500 \quad \mathrm{vph}$
Length of first accel/decel lane
450
ft
Length of second accel/decel lane
ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
1800 vph
Downstream
On
850 ft

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
2692	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.00627 \mathrm{~L} \quad=23.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence C

Intermediate speed variable,	$\mathrm{M}=0.356$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=50.4$	mph
Space mean speed in outer lanes,	$\mathrm{S}_{0}=51.1$	mph
Space mean speed for all vehicles,	$S=50.7$	mph

Phone:
Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 2 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Merge from Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2015 Existing
Description: Low-cost Improvements to Bottleneck Location	

Type of analysis	Merge	
Number of lanes in freeway	4	
Free-flow speed on freeway	55.0	mph
Volume on freeway	5200	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	25.0	mph
Volume on ramp	1800	vph
Length of first accel/decel lane	400	ft
Length of second accel/decel lane		ft
Adjacent	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent Ramp	400	vph
Position of adjacent Ramp	Upstream	
Type of adjacent Ramp	On	
Distance to adjacent Ramp	800	ft

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
4342	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}+0.00627 \mathrm{~L} \quad=35.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence E

Intermediate speed variable,	$\mathrm{M}=0.601$	
	S	
Space mean speed in ramp influence area,	$\underset{\mathrm{R}}{\mathrm{~S}}=47.2$	mph
Space mean speed in outer lanes,	$S_{0}=50.5$	mph
Space mean speed for all vehicles,	$S=48.6$	mph

2025 With Improvements

1. 2025 AM Diverge to I-90
2. 2025 AM Diverge to Route 30
3. 2025 AM Merge onto Route 30
4. 2025 AM Merge onto I-90

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 1 / 2015$
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future Year
Description: Low-cost Improvements to Bottleneck Location	

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway 55.0 mph
Volume on freeway 7450 vph
Off Ramp Data

\qquad

Flow Entering Diverge Influence Area

Actual

 3541Max Desirable 4400

Violation?
No

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L} \quad=12.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence B
Speed Estimation

Intermediate speed variable,	$\mathrm{D}_{\mathrm{S}}=0.731$	
Space mean speed in ramp influence area,	$\underset{R}{S}=45.5$	mph
Space mean speed in outer lanes,	$S_{0}=55.2$	mph
Space mean speed for all vehicles,	$S=50.5$	mph

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 2 / 2015$
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future Year
Description: Low-cost Improvements to Bottleneck Location	

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway
Diverge
3
60.0 mph
$5500 \quad$ vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	25.0	mph
Volume on ramp	950	vph
Length of first accel/decel lane	500	ft
Length of second accel/decel lane		ft
	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	550	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	On	
Distance to adjacent ramp	450	ft

\qquad

Flow Entering Diverge Influence Area

Actual

 3870Max Desirable 4400

Violation?
No

| | Actual | 3870 | Max Desirable |
| :---: | :--- | :--- | :--- | Level of Service Determination (if not F) \qquad

Density, $\quad \underset{R}{D}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}=33.0 \quad \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	D	$=0.653$	
Space mean speed in ramp influence area,	$\mathrm{S}=48.3$	mph	
Space mean speed in outer lanes,	S_{R}	$=61.1$	mph
Space mean speed for all vehicles,	S_{S}	$=52.2$	mph

Phone:

Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	AM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Merge from Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future Year
Description: Low-cost	Improvements to Bottleneck Location

Type of analysis	Merge	
Number of lanes in freeway	3	
Free-flow speed on freeway	55.0	mph
Volume on freeway	4600	vph

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
Number of lanes in ramp
Free-flow speed on ramp
1
25.0 mph
$550 \quad \mathrm{vph}$
Length of first accel/decel lane 450 ft
Length of second accel/decel lane ft
Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

```
Yes
```

1900 vph
Downstream
On
850 ft

\qquad

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
3614	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}+0.00627 \mathrm{~L}=30.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Level of service for ramp-freeway junction areas of influence D

Intermediate speed variable,	$\mathrm{M}=0.443$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=49.2$	mph
Space mean speed in outer lanes,	$S_{0}=49.3$	mph
Space mean speed for all vehicles,	$\mathrm{S}=49.3$	mph

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	55.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	55.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	1952	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.4	mi / h
Number of lanes, N	4	
Density, D	35.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	E	

2025 With Improvements

1. 2025 PM Diverge to I-90
2. $\mathbf{2 0 2 5}$ PM Diverge to Route 30
3. 2025 PM Merge onto Route 30
4. 2025 PM Merge onto I-90

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 1 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Mass Pike
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future Year
Description: Low-cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway
Diverge
4
55.0 mph
$7500 \quad$ vph

Off Ramp Data

Side of freeway	Right	
Number of lanes in ramp	2	
Free-Flow speed on ramp	30.0	mph
Volume on ramp	2250	vph
Length of first accel/decel lane	1000	ft
Length of second accel/decel lane	500	ft
Adjacent	(if one exists)	
Does adjacent ramp exist?	Yes	
Volume on adjacent ramp	550	vph
Position of adjacent ramp	Downstream	
Type of adjacent ramp	Off	
Distance to adjacent ramp	1400	ft

\qquad

Flow Entering Diverge Influence Area

> Actual 3919

Max Desirable 4400

Violation?
No

Level of Service Determination (if not F) \qquad
Density,
Level of service for ramp-freeway junction areas of influence
Len

Intermediate speed variable,	D	$=0.713$	
Space mean speed in ramp influence area,	S	$=45.7$	mph
Space mean speed in outer lanes,	S	$=56.0$	mph
Space mean speed for all vehicles,	0	S	$=50.5$
		mph	

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	$6 / 2 / 2015$
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Diverge to Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future Year
Description: Low-cost	Improvements to Bottleneck Locations

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway
Diverge
3
55.0 mph
$5400 \quad$ vph

Off Ramp Data

\qquad

Flow Entering Diverge Influence Area

Actual

 3767Max Desirable 4400

Violation?
No

| | Actual | 3767 |
| :---: | :--- | :--- | Level of Service Determination (if not F) \qquad

Density, $\quad \mathrm{D}=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L} \quad=\quad 32.1 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	D	$=0.613$	
Space mean speed in ramp influence area,	$\mathrm{S}=47.0$	mph	
Space mean speed in outer lanes,	S	$=55.4$	mph
Space mean speed for all vehicles,	S	$=49.9$	mph

Phone:

Fax:
E-mail:

Merge Analysis \qquad

Analyst:	Seth
Agency/Co.:	CTPS
Date performed:	6/2/2015
Analysis time period:	PM Peak Hour
Freeway/Dir of Travel:	I-95 Southbound
Junction:	Merge from Route 30
Jurisdiction:	Highway District 6
Analysis Year:	2025 Future year
Description: Low-cost	Improvements to Bottleneck Location

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
Number of lanes in ramp
Free-flow speed on ramp
1
25.0 mph
$500 \quad \mathrm{vph}$
Length of first accel/decel lane
450
ft
Length of second accel/decel lane
ft

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

Yes
1850 vph
Downstream
On
850 ft

Capacity Checks

Flow Entering Merge Influence Area

Actual	Max Desirable	Violation?
3804	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=5.475+0.00734 \mathrm{v}+0.0078 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.00627 \mathrm{~L} \quad=32.1 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D

Intermediate speed variable,	$\mathrm{M}=0.474$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=48.8$	mph
Space mean speed in outer lanes,	$S_{0}=48.7$	mph
Space mean speed for all vehicles,	$S=48.8$	mph

Phone:
Fax:
E-mail:

Operational Analysis

Speed Inputs and Adjustments \qquad

Lane width	-	ft
Right-side lateral clearance	-	ft
Total ramp density, TRD	-	$\mathrm{ramps} / \mathrm{mi}$
Number of lanes, N	4	
Free-flow speed:	Measured	
FFS or BFFS	55.0	mi / h
Lane width adjustment, fLW	-	mi / h
Lateral clearance adjustment, fLC	-	mi / h
TRD adjustment	-	mi / h
Free-flow speed, FFS	55.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	1890	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	55.0	mi / h
Average passenger-car speed, S	54.8	mi / h
Number of lanes, N	4	
Density, D	34.5	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

APPENDIX E

MassDOT Highway Division Project Development Process

Overview of the Project Development Process

Transportation decision-making is complex and can be influenced by legislative mandates, environmental regulations, financial limitations, agency programmatic commitments, and partnering opportunities. Decision-makers and reviewing agencies, when consulted early and often throughout the project development process, can ensure that all participants understand the potential impact these factors can have on project implementation. Project development is the process that takes a transportation improvement from concept through construction.

The MassDOT Highway Division has developed a comprehensive project development process which is contained in Chapter 2 of the MassDOT Highway Division's Project Development and Design Guide. The eight-step process covers a range of activities extending from identification of a project need, through completion of a set of finished contract plans, to construction of the project. The sequence of decisions made through the project development process progressively narrows the project focus and, ultimately, leads to a project that addresses the identified needs. The descriptions provided below are focused on the process for a highway project, but the same basic process will need to be followed for non-highway projects as well.

1. Needs Identification

For each of the locations at which an improvement is to be implemented, MassDOT leads an effort to define the problem, establishes project goals and objectives, and defines the scope of the planning needed for implementation. To that end, it has to complete a Project Need Form (PNF), which states in general terms the deficiencies or needs related to the transportation facility or location. The PNF documents the problems and explains why corrective action is needed. For this study, the information defining the need for the project will be drawn primarily, perhaps exclusively, from the present report. Also, at this point in the process, MassDOT meets with potential participants, such as the Metropolitan Planning Organization (MPO) and community members, to allow for an informal review of the project.

The PNF is reviewed by the MassDOT Highway Division district office whose jurisdiction includes the location of the proposed project. MassDOT also sends the PNF to the MPO, for informational purposes. The outcome of this step determines whether the project requires further planning, whether it is already well supported by prior planning studies, and, therefore, whether it is ready to move forward into the design phase, or whether it should be dismissed from further consideration.

2. Planning

This phase will likely not be required for the implementation of the improvements proposed in this planning study, as this planning report should constitute the outcome of this step. However, in general, the purpose of this implementation step is for the project proponent to identify issues, impacts, and approvals that may need to be obtained, so that the subsequent design and permitting processes are understood.

The level of planning needed will vary widely, based on the complexity of the project. Typical tasks include: define the existing context, confirm project need, establish goals and objectives, initiate public outreach, define the project, collect data, develop and analyze alternatives, make recommendations, and provide documentation. Likely outcomes include consensus on the project definition to enable it to move forward into environmental documentation (if needed) and design, or a recommendation to delay the project or dismiss it from further consideration.

3. Project Initiation

At this point in the process, the proponent, MassDOT Highway Division, fills out a Project Initiation Form (PIF) for each improvement, which is reviewed by its Project Review Committee (PRC) and the MPO. The PRC is composed of the Chief Engineer, each District Highway Director, and representatives of the Project Management, Environmental, Planning, Right-ofWay, Traffic, and Bridge departments, and the MassDOT Federal Aid Program Office (FAPO). The PIF documents the project type and description, summarizes the project planning process, identifies likely funding and project management responsibility, and defines a plan for interagency and public participation. First the PRC reviews and evaluates the proposed project based on the MassDOT's statewide priorities and criteria. If the result is positive, MassDOT Highway Division moves the project forward to the design phase, and to programming review by the MPO. The PRC may provide a Project Management Plan to define roles and responsibilities for subsequent steps. The MPO review includes project evaluation based on the MPO's regional priorities and criteria. The MPO may assign project evaluation criteria score, a Transportation Improvement Program (TIP) year, a tentative project category, and a tentative funding category.

4. Environmental Permitting, Design, and Right-of-Way Process

This step has four distinct but closely integrated elements: public outreach, environmental documentation and permitting (if required), design, and right-of-way acquisition (if required). The outcome of this step is a fully designed and permitted project ready for construction. However, a project does not have to be fully designed in order for the MPO to program it in the TIP. The sections below provide more detailed information on the four elements of this step of the project development process.

Public Outreach

Continued public outreach in the design and environmental process is essential to maintain public support for the project and to seek meaningful input on the design elements. The public outreach is often in the form of required public hearings, but can also include less formal dialogues with those interested in and affected by a proposed project.

Environmental Documentation and Permitting
The project proponent, in coordination with the Environmental Services section of the MassDOT Highway Division, will be responsible for identifying and complying with all applicable federal, state, and local environmental laws and requirements. This includes determining the appropriate project category for both the Massachusetts Environmental Protection Act (MEPA) and the National Environmental Protection Act (NEPA). Environmental documentation and permitting is often completed in conjunction with the Preliminary Design phase described below.

Design
There are three major phases of design. The first is Preliminary Design, which is also referred to as the 25-percent submission. The major components of this phase include full survey of the project area, preparation of base plans, development of basic geometric layout, development of preliminary cost estimates, and submission of a functional design report. Preliminary Design, although not required to, is often completed in conjunction with the Environmental Documentation and Permitting. The next phase is Final Design, which is also referred to as the 75-percent and $100-$ percent submission. The major components of this phase include preparation of a subsurface exploratory plan (if required), coordination of utility relocations, development of traffic management plans through construction zones, development of final cost estimates, and refinement and finalization of the construction plans. Once Final Design is complete, a full set of Plans, Specifications, and Estimates (PS\&E) is developed for the project.

Right-of-Way Acquisition
A separate set of Right-of-Way plans are required for any project that requires land acquisition or easements. The plans must identify the existing and proposed layout lines, easements, property lines, names of property owners, and the dimensions and areas of estimated takings and easements.

5. Programming (Identification of Funding)

Programming, which typically begins during the design phase, can actually occur at any time during the process, from planning to design. In this step, which is distinct from project initiation, the proponent requests that the MPO place the project in the region's Transportation Improvement Program (TIP). The proponent requesting the project's listing on the TIP can be the community or it can be one of the MPO member agencies (the Regional Planning Agency, MassDOT, and the Regional Transit Authority). The MPO then considers the project in terms of state and regional needs, evaluation criteria, and compliance with the regional Transportation Plan and decides whether to place it in the draft TIP for public review and then in the final TIP.

6. Procurement

Following project design and programming of a highway project, the MassDOT Highway Division publishes a request for proposals. It then reviews the bids and awards the contract to the qualified bidder with the lowest bid.

7. Construction

After a construction contract is awarded, MassDOT Highway Division and the contractor develop a public participation plan and a management plan for the construction process.

8. Project Assessment

The purpose of this step is to receive constituents' comments on the project development process and the project's design elements. MassDOT Highway Division can apply what is learned in this process to future projects.

Project Development Schematic Timetable

Description	Schedule Influence	Typical Duration
Step I: Problem/Need/Opportunity Identification The proponent completes a Project Need Form (PNF). This form is then reviewed by the MassDOT District office which provides guidance to the proponent on the subsequent steps of the process.	The Project Need Form has been developed so that it can be prepared quickly by the proponent, including any supporting data that is readily available. The District office shall return comments to the proponent within one month of PNF submission.	1 to 3 months
Step II: Planning Project planning can range from agreement that the problem should be addressed through a clear solution to a detailed analysis of alternatives and their impacts.	For some projects, no planning beyond preparation of the Project Need Form is required. Some projects require a planning study centered on specific project issues associated with the proposed solution or a narrow family of alternatives. More complex projects will likely require a detailed alternatives analysis.	Project Planning Report: 3 to 24+ months
Step III: Project Initiation The proponent prepares and submits a Project Initiation Form (PIF) and a Transportation Evaluation Criteria (TEC) form in this step. The PIF and TEC are informally reviewed by the Metropolitan Planning Organization (MPO) and MassDOT District office, and formally reviewed by the PRC.	The PIF includes refinement of the preliminary information contained in the PNF. Additional information summarizing the results of the planning process, such as the Project Planning Report, are included with the PIF and TEC. The schedule is determined by PRC staff review (dependent on project complexity) and meeting schedule.	1 to 4 months
Step IV: Design, Environmental, and Right of Way The proponent completes the project design. Concurrently, the proponent completes necessary environmental permitting analyses and files applications for permits. Any right of way needed for the project is identified and the acquisition process begins.	The schedule for this step is dependent upon the size of the project and the complexity of the design, permitting, and right-of-way issues. Design review by the MassDOT district and appropriate sections is completed in this step.	3 to 48+ months
Step V: Programming The MPO considers the project in terms of its regional priorities and determines whether or not to include the project in the draft Regional Transportation Improvement Program (TIP) which is then made available for public comment. The TIP includes a project description and funding source.	The schedule for this step is subject to each MPO's programming cycle and meeting schedule. It is also possible that the MPO will not include a project in its Draft TIP based on its review and approval procedures.	3 to 12+ months
Step VI: Procurement The project is advertised for construction and a contract awarded.	Administration of competing projects can influence the advertising schedule.	1 to 12 months
Step VII: Construction The construction process is initiated including public notification and any anticipated public involvement. Construction continues to project completion.	The duration for this step is entirely dependent upon project complexity and phasing.	3 to 60+ months
Step VIII: Project Assessment The construction period is complete and project elements and processes are evaluated on a voluntary basis.	The duration for this step is dependent upon the proponent's approach to this step and any follow-up required.	1 month

Source: MassDOT Highway Division Project Development and Design Guide

[^0]: ${ }^{1}$ Federal Highway Administration, Recurring Traffic Bottlenecks: A Primer: Focus on Low-Cost Operations Improvements, US Department of Transportation, Federal Highway Administration, June 2009, p. 1.

[^1]: ${ }^{2}$ Seth Asante, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Bottleneck Locations, Phase I," June 2, 2011.
 ${ }^{3}$ Chen-Yuan Wang, MPO staff, memorandum to the Transportation Planning and Programming Committee of the Boston Region Metropolitan Planning Organization, "LowCost Improvements to Bottleneck Locations, Phase II," March 12, 2012.
 ${ }^{4}$ Seth Asante, MPO staff, memorandum to the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Express-Highway Bottleneck Locations: Selection of Study Locations," April 2, 2015.

[^2]: ${ }^{5}$ Express-Highway Traffic Volumes, I-93 Southbound 2010 Balanced Traffic Volumes, Estimated by the Central Transportation Planning Staff.

[^3]: ${ }^{6}$ Chen-Yuan Wang, Route 2 Improvements from Route 111 in Acton to Baker Avenue in Concord: A Feasibility Study, report produced by the Central Transportation Planning Staff for the Massachusetts Department of Transportation, February 2003.
 ${ }^{7}$ Route 2 Reconstruction at the Concord Rotary, Concord Board of Selectmen Presentation, November 24, 2008.
 ${ }^{8}$ Express-Highway Traffic Volumes, I-95 Northbound 2007 Balanced Traffic Volumes, Estimated by the Central Transportation Planning Staff.

[^4]: ${ }^{9}$ Highway Capacity Manual 2010, Transportation Research Board of the National Academies, Washington, DC, December 2010.

[^5]: ${ }^{10}$ Highway Capacity Software 2010, Version 6.65, McTrans Center, PO Box 116585, Gainesville, Florida, October 2014.

[^6]: ${ }^{11}$ Crash Modification Factors Clearinghouse, US Department of Transportation Federal Highway Administration.

[^7]: ${ }^{12} \mathrm{AM}$ peak period begins at 6:00 AM and ends at 10:00 AM; PM peak period begins at 3:00 PM and ends at 7:00 PM.

[^8]: ${ }^{13}$ Highway Capacity Software 2010, Version 6.65, McTrans Center, PO Box 116585, Gainesville, Florida, October 2014.

[^9]: ${ }^{14}$ Crash Modification Factors Clearinghouse, US Department of Transportation Federal Highway Administration.

[^10]: ${ }^{1}$ Karl H Quackenbush, CTPS Executive Director, work program to the Boston Region Metropolitan Organization, "Low-Cost Improvements to Express-Highway Bottleneck Locations: FFY 2015," November 20, 2014.
 ${ }^{2}$ Federal Highway Administration, Recurring Traffic Bottlenecks: A Primer: Focus on Low-Cost Operations Improvements, US Department of Transportation, Federal Highway Administration, June 2009, p. 1.
 ${ }^{3}$ Seth Asante, MPO staff, memorandum to the Transportation Planning and Programing Committee of the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Bottleneck Locations, Phase I," June 2, 2011.
 ${ }^{4}$ Chen-Yuan Wang, MPO staff, memorandum to the Transportation Planning and Programing Committee of the Boston Region Metropolitan Planning Organization, "Low-Cost Improvements to Bottleneck Locations, Phase II," dated March 12, 2012.

[^11]: ${ }^{5}$ Express-Highway Traffic Volumes, I-93 Southbound 2010 Balanced Traffic Volumes, Estimated by CTPS.

[^12]: ${ }^{6}$ Chen-Yuan Wang, Route 2 Improvements from Route 111 in Acton to Baker Avenue in Concord: A Feasibility Study, report produced by the Central Transportation Planning Staff for the Massachusetts Department of Transportation, February 2003.
 ${ }^{7}$ Route 2 Reconstruction at the Concord Rotary, Concord Board of Selectmen Presentation, November 24, 2008.
 ${ }^{8}$ Express-Highway Traffic Volumes, I-95 Northbound 2007 Balanced Traffic Volumes, Estimated by CTPS.
 ${ }^{9}$ Express-Highway Traffic Volumes, I-93 Southbound 2010 Balanced Traffic Volumes, estimated by CTPS.

